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MATHEMATICAL ANALYSIS OF A THREE-TIERED MODEL OF
ANAEROBIC DIGESTION ∗

SARRA NOUAOURA† , NAHLA ABDELLATIF†‡ , RADHOUANE FEKIH-SALEM†§ , AND

TEWFIK SARI¶

Abstract. In this paper, we are interested in a mechanistic model describing the anaerobic
mineralization of chlorophenol in a three-step food-web. The model is a six-dimensional system of
ordinary differential equations. In our study, the phenol and the hydrogen inflowing concentrations
are taken into account as well as the maintenance terms. In previous studies in the existing literature,
the stability of the steady states was considered only in the particular case without maintenance,
where the model can be reduced to a three-dimensional system. Moreover, we consider the case of a
large class of growth kinetics, instead of Monod kinetics. According to the four operating parameters
of the process, represented by the dilution rate and input concentrations of the chlorophenol, the
phenol and the hydrogen, we show that the system can have up to eight steady states and we
analytically determine the necessary and sufficient conditions for their existence and their local
stability. In previous studies of the case including maintenance, the stability analysis was performed
only numerically. We show that the positive steady state can be unstable and we give numerical
evidence for a supercritical Hopf bifurcation with the appearance of a stable periodic orbit. Finally,
we give a bifurcation diagram with the concentration of influent chlorophenol as the bifurcating
parameter, clarifying the findings of a recent study in literature.

Key words. Anaerobic digestion, Bistability, Chemostat, Chlorophenol mineralisation, Hopf
bifurcation, Limit cycle.

AMS subject classifications. 34A34, 34D20, 37N25, 92B05

1. Introduction. The anaerobic digestion is a natural process in which organic
material is converted into biogas in an environment without oxygen by the action of a
microbial ecosystem. It is used for the treatment of wastewater and has the advantage
of producing methane and hydrogen under appropriate conditions. The full Anaerobic
Digestion Model No.1.(ADM1) [9] is highly parametrized with a large number of state
variables. Whilst suitable for dynamic simulation, analytical results on the model are
impossible and only numerical investigations are available [3]. Due to the analytical
intractability of the full ADM1, simpler mechanistic models of microbial interaction
has been proposed in view of a better understanding of the anaerobic digestion process.

The two-tiered models, which take the form of four-dimensional mathematical
models with a cascade of two biological reactions, where one substrate is consumed
by one microorganism to produce a product that serves as the main limiting substrate
for a second microorganism, are the simplest models which encapsulate the essence of
the anaerobic digestion process. Two-tiered models with commensalistic relationship
including or not substrate inhibition of the second population are widely considered
[1, 2, 11, 15] where the second population (the commensal population) benefits for
its growth from the first population (the host population) while the host population
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is not affected by the growth of the commensal population. On the contrary, when
the growth of the first population is affected by the growth of the second population,
which is the case, for instance, if the first population is itself inhibited by the product
(the substrate produced by the first biological reaction that serves as the substrate
for the second population), the system describes a syntrophic relationship [4, 5, 7, 12,
13, 18, 22]. Syntrophic models are more realistic simple models of anaerobic digestion
than commensalistic models. For more details and informations on commensalism and
syntrophy, the reader is referred to [13] and the references therein. An important and
interesting extension of the two-tiered models are the eight-dimensional mathematical
models, which include syntrophy and inhibition [20, 21].

In this paper, we consider another extension of two-tiered models which consists in
a six-dimensional mathematical model obtained by introducing an additional micro-
organism and substrate into a two-tiered syntrophic model [6, 14, 17, 19]. The organ-
isms involved in the resulting three-tiered model are the chlorophenol and the phenol
degraders and the hydrogenotrophic methanogen. The chlorophenol degrader grows
on both chlorophenol and hydrogen and produces phenol. The phenol degrader con-
sumes the phenol to form hydrogen, which inhibits its growth. The hydrogenotrophic
methanogen grows on the produced hydrogen. The model includes maintenance, that
is, microbial decay terms.

In [19], the existence and stability of the steady states were determined only
numerically, using specific growth rates described by double Monod, Monod with
product inhibition, and Monod kinetics, respectively, (see formulas (5.1)). It has
been shown that the model can have eight steady states. Several operating diagrams,
which are the bifurcation diagrams with respect to the four operating parameters
(i.e. the dilution rate, the influent chlorophenol, the influent phenol and the influent
hydrogen) have been numerically constructed showing the role, and the importance
of each operating parameter, in particular for the coexistence of all three species.

An analytical approach, using a general representation of the specific growth rates,
is given in [14], in the particular case with only influent chlorophenol in the model.
When there is no influent phenol and influent hydrogen the system has only three
steady states. The existence of the steady states with and without inclusion of a mi-
crobial decay term is given in [14]. With no decay, the six-dimensional mathematical
model is reduced to a three-dimensional one and local stability is analytically char-
acterized. The operating diagrams with respect to the dilution rate and the influent
chlorophenol, which were obtained numerically in [19] are analytically constructed
in [14], showing the possibility of an instability region for the positive steady state.
This instability was not depicted in [19]. Numerical simulations were performed, con-
firming that the region of the instability of the positive steady state actually exists
when maintenance is included. Numerical analysis has suggested the presence of a
Hopf bifurcation emerging through the positive steady state, with the concentration
of influent chlorophenol as the bifurcating parameter.

In [6], the three-tiered model of [14, 19] was simplified by neglecting the part of
hydrogen produced by the phenol degrader. Without maintenance, the existence and
stability of the eight steady states were analytically characterized. Recently in [17],
the original three-tiered model of [14, 19] without neglecting the part of hydrogen
produced by the phenol degrader is considered in the case without maintenance. The
existence and stability of the eight steady states are analytically characterized and
the Hopf bifurcation of the positive steady state, which was numerically observed in
[14], is proved.

Here, we focus on the mathematical analysis of the model, extending the works
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previously cited [6, 14, 17, 19]. We have generalized the approach presented in [14]
by including multiple substrate inflow into the model and characterizing the stability
of steady state in the case including maintenance. We have extended [19] by giving
analytic results on the existence and stability of the eight steady states and with
general growth functions. We have extended [6, 17] by including maintenance. The
stability analysis is much more delicate since the model cannot be reduced to a three-
dimensional differential system as in the case without maintenance.

This paper is organized as follows: in section 2, we start by presenting the mathe-
matical model with three-tiered microbial species, which takes into account the phenol
and the hydrogen inflowing concentrations. We give the general assumptions on the
microbial growth functions and some preliminary results on positivity and bounded-
ness of solutions. Next, in section 3, we describe the steady states of the model. In
section 4, the necessary and sufficient conditions of existence and stability of the steady
states are determined according to the operating parameters. Then, in section 5, we
give an application of our theoretical results to the three-tiered model considered in
[19]. Then, we conclude by discussing our results in section 6. The definitions and
properties of the functions that are reported in the existence and stability conditions
of the steady states are given in Appendix A. The proofs of the propositions are re-
ported in Appendices B to E and H. We present the Liénard-Chipart stability criteria
that are used to show the stability of the steady states in Appendix F. Details and
complements on the three-tiered model considered in [19] are given in Appendix G.
In Appendix I, the numerical simulations confirm our mathematical results. Finally,
all the tables of the Appendices are given in Appendix J.

2. The model. We consider the system studied in [14], which represents a three-
tiered microbial food-web model:

ẋ0 = (µ0(s0, s2)−D − a0)x0

ẋ1 = (µ1(s1, s2)−D − a1)x1

ẋ2 = (µ2(s2)−D − a2)x2

ṡ0 = D
(
sin

0 − s0

)
− µ0(s0, s2)x0

ṡ1 = D
(
sin

1 − s1

)
+ µ0(s0, s2)x0 − µ1(s1, s2)x1

ṡ2 = D
(
sin

2 − s2

)
− ωµ0(s0, s2)x0 + µ1(s1, s2)x1 − µ2(s2)x2

(2.1)

where s0 is the first substrate (chlorophenol in the application, see section 5) concen-
tration and x0 its degrader concentration; s1 and x1 for the second substrate (phenol);
s2 and x2 for the third substrate (hydrogen); D is the dilution rate; µi is the specific
growth rate; sin

i is the inflowing substrate concentration; ai is the maintenance (or
decay) rate for i = 0, 1, 2 and corresponding to chlorophenol, phenol and hydrogen,
respectively. The model considered in [14] incorporates six yield coefficient. However,
without loss of generality, they can be normalized to one, except for one of them, ω,
which is assumed to be a positive constant, see [14]. The model in [14] considers only
the input concentration sin

0 . Here, following [19], we add the inputs sin
1 and sin

2 . We
assume that the growth functions satisfy the following conditions:

Hypothesis 2.1. For all s0 > 0 and s2 > 0, 0 < µ0 (s0, s2) < +∞, µ0 (0, s2) = 0,
µ0 (s0, 0) = 0.

Hypothesis 2.2. For all s1 > 0 and s2 ≥ 0, 0 < µ1 (s1, s2) < +∞, µ1 (0, s2) = 0.

Hypothesis 2.3. For all s2 > 0, 0 < µ2 (s2) < +∞, µ2(0) = 0.

Hypothesis 2.4. For all s0 > 0 and s2 > 0,
∂µ0

∂s0
(s0, s2) > 0,

∂µ0

∂s2
(s0, s2) > 0.



4 S. NOUAOURA, N. ABDELLATIF, R. FEKIH-SALEM, AND T. SARI

Hypothesis 2.5. For all s1 > 0 and s2 > 0,
∂µ1

∂s1
(s1, s2) > 0,

∂µ1

∂s2
(s1, s2) < 0.

Hypothesis 2.6. For all s2 > 0,
dµ2

ds2
(s2) > 0.

Hypothesis 2.7. The function s2 7→ µ0(+∞, s2) is monotonically increasing and
the function s2 7→ µ1(+∞, s2) is monotonically decreasing, with µ1(+∞,+∞) = 0.

Hypothesis 2.1 means that no growth can occur for species x0 without substrates
s0 and s2. Hypothesis 2.2 means that no growth can occur for species x1 without
substrate s1. Hypothesis 2.3 means that the production of s2 is necessary for the
growth of the species x2. Hypothesis 2.4 means that the growth rate of species x0

increases with substrates s0 and s2. Hypothesis 2.5 means that the growth rate of
the species x1 increases with the substrate s1 but is inhibited by the production of
s2. Hypothesis 2.6 means that the growth rate of species x2 increases with substrate
s2. Hypothesis 2.7 means that the maximum growth rate of the species x0 and x1

increases and decreases, respectively, with the concentration of substrate s2.
We have the following result whose proof is standard and is left to the reader:

Proposition 2.8. For any non-negative initial conditions, all solutions of system
(2.1) are bounded and remain non-negative for all t > 0.

3. Steady states. A steady state exists (or is said to be ‘meaningful’) if and
only if all its components are non-negative. This predicts eight possible steady states,
labeled below as in [19]:
• SS1, where x0 = 0, x1 = 0 and x2 = 0: the washout steady state where all

populations are extinct.
• SS2, where x0 = 0, x1 = 0 and x2 > 0: only the the hydrogenotrophic

methanogen population is maintained.
• SS3, where x0 > 0, x1 = 0 and x2 = 0: only the chlorophenol degraders are

maintained.
• SS4, where x0 > 0, x1 > 0 and x2 = 0: only the hydrogenotrophic methanogens

are washed out.
• SS5, where x0 > 0, x1 = 0 and x2 > 0: only the phenol degraders are washed

out.
• SS6, where x0 > 0, x1 > 0 and x2 > 0: all three populations are present.
• SS7, where x0 = 0, x1 > 0 and x2 = 0: only the phenol degraders are present.
• SS8, where x0 = 0, x1 > 0 and x2 > 0: only the chlorophenol degraders are

washed out.

Proposition 3.1. Assume that Hypotheses 2.1 to 2.6 hold. The steady states SS1,
SS2,. . ., SS8, are given in Table 1.

Proof. The proof is given in Appendix B.
For the description of the steady states given in Table 1, together with the statement
of their conditions of existence and stability, we need to define some auxiliary functions
that are listed in Table 2. The existence and properties of these functions are given
in Appendix A.

4. Existence and stability of steady states. We state now the necessary and
sufficient conditions of existence and stability of the steady states given in Table 1.
Any reference to steady state stability should be considered as local exponential sta-
bility, that is to say, the real parts of the eigenvalues are negative. In Table 1, it is
claimed that
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Table 1
The steady states of (2.1). The functions M0, M1, M2, Ψ, ψ0 and ψ1 are defined in Table 2.

s0, s1, s2 x0, x1, x2

SS1 s0 = sin
0 , s1 = sin

1 , s2 = sin
2 x0 = 0, x1 = 0, x2 = 0

SS2
s0 = sin

0 , s1 = sin
1

s2 = M2(D + a2)

x0 = 0, x1 = 0
x2 = D

D+a2

(
sin

2 −M2(D + a2)
)

SS3

s0 = s0

(
D, sin

0 , s
in
2

)
is a solution of ψ0(s0) = D + a0

s1 = sin
1 + sin

0 − s0

s2 = sin
2 − ω

(
sin

0 − s0

)
x0 = D

D+a0

(
sin

0 − s0

)
x1 = 0
x2 = 0

SS4

s2 = s2

(
D, sin

0 , s
in
1 , s

in
2

)
is a solution of
Ψ (s2, D) = (1− ω)sin

0 + sin
1 + sin

2

s0 = M0 (D + a0, s2)
s1 = M1 (D + a1, s2)

x0 = D
D+a0

(
sin

0 − s0

)
x1 = D

D+a1

(
sin

0 − s0 + sin
1 − s1

)
x2 = 0

SS5
s0 = M0 (D + a0,M2(D + a2))
s1 = sin

0 + sin
1 − s0

s2 = M2(D + a2)

x0 = D
D+a0

(
sin

0 − s0

)
x1 = 0
x2 = D

D+a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
SS6

s0 = M0 (D + a0,M2(D + a2))
s1 = M1 (D + a1,M2(D + a2))
s2 = M2(D + a2)

x0 = D
D+a0

(
sin

0 − s0

)
x1 = D

D+a1

(
sin

0 + sin
1 − s1 − s0

)
x2 = D

D+a2

(
(1− ω)(sin

0 − s0)

+sin
1 − s1 + sin

2 − s2

)
SS7

s0 = sin
0

s1 = s1

(
D, sin

1 , s
in
2

)
is a solution of ψ1(s1) = D + a1

s2 = sin
1 − s1 + sin

2

x0 = 0,
x1 = D

D+a1

(
sin

1 − s1

)
x2 = 0

SS8
s0 = sin

0

s1 = M1 (D + a1,M2(D + a2))
s2 = M2(D + a2)

x0 = 0,
x1 = D

D+a1

(
sin

1 − s1

)
x2 = D

D+a2

(
sin

1 − s1 + sin
2 − s2

)
• The s0-component of SS3 is a solution of equation

ψ0(s0) = D + a0.(4.1)

• The s1-component of SS7 is a solution of equation

ψ1(s1) = D + a1.(4.2)

• The s2-component of SS4 is a solution of equation

Ψ (s2, D) = (1− ω)sin
0 + sin

1 + sin
2 .(4.3)

Following [14], we add a hypothesis which then assures that there are at most two
steady states of the form SS4.

Hypothesis 4.1. In the case ω < 1, the function Ψ has a unique minimum s2(D)
on the interval

(
s0

2(D), s1
2(D)

)
, such that ∂Ψ

∂s2
(s2, D) < 0 on

(
s0

2(D), s2(D)
)

and
∂Ψ
∂s2

(s2, D) > 0 on
(
s2(D), s1

2(D)
)
.

The following result determines the conditions under which each of the three equations
(4.1)–(4.3) has a solution and gives the number of solutions.
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Table 2
Notations, intervals and auxiliary functions.

Definition

s0 = M0(y, s2)
For s2 ≥ 0 fixed, s0 = M0(y, s2) is the unique solution
of equation µ0(s0, s2) = y.
It is defined for 0 ≤ y < µ0(+∞, s2).

s1 = M1(y, s2)
For s2 ≥ 0 fixed, s1 = M1(y, s2) is the unique solution
of equation µ1(s1, s2) = y.
It is defined for 0 ≤ y < µ1(+∞, s2).

s2 = M2(y)
s2 = M2(y) is the unique solution
of equation µ2(s2) = y.
It is defined for 0 ≤ y < µ2(+∞).

s2 = M3(s0, z)
For s0 ≥ 0 fixed, s2 = M3(s0, z) is the unique solution
of equation µ0(s0, s2) = z.
It is defined for 0 ≤ z < µ0(s0,+∞).

s0
2 = s0

2(D)
and
s1

2 = s1
2(D)

For D ≥ 0 satisfying the conditions
D + a0 < µ0(+∞,+∞) and D + a1 < µ1(+∞, 0),
there exist unique values s0

2 = s0
2(D) and s1

2 = s1
2(D),

such that
µ0

(
+∞, s0

2(D)
)

= D + a0 and µ1

(
+∞, s1

2(D)
)

= D + a1.
I1 I1 =

{
D ≥ 0 : s0

2(D) < s1
2(D)

}
,

I2 I2 =
{
D ∈ I1 : s0

2(D) < M2(D + a2) < s1
2(D)

}
.

Ψ(s2, D)
Ψ (s2, D) = (1− ω)M0(D + a0, s2) +M1(D + a1, s2) + s2.
It is defined for D ∈ I1 and s0

2(D) < s2 < s1
2(D).

φ1(D)
φ1(D) = inf

s02(D)<s2<s12(D)
Ψ(s2, D) = Ψ(s2(D), D).

It is defined for D ∈ I1.

φ2(D)
φ2(D) = Ψ (M2(D + a2), D).
It is defined for D ∈ I2.

φ3(D)
φ3(D) =

∂Ψ

∂s2
(M2(D + a2), D).

It is defined for D ∈ I2.
J0 J0 =

(
max

(
0, sin

0 − sin
2 /ω

)
, sin

0

)
J1 J1 =

(
0, sin

1

)
ψ0(s0)

ψ0 (s0) = µ0

(
s0, s

in
2 − ω

(
sin

0 − s0

))
.

It is defined for s0 ∈
[
max

(
0, sin

0 − sin
2 /ω

)
,+∞

)
.

ψ1(s1)
ψ1 (s1) = µ1

(
s1, s

in
1 + sin

2 − s1

)
.

It is defined for s1 ∈
[
0, sin

1 + sin
2

]
.

ϕ0(D)
ϕ0(D) = M0 (D + a0,M2(D + a2)).
It is defined for D ∈

{
D ≥ 0 : s0

2(D) < M2(D + a2)
}

.

ϕ1(D)
ϕ1(D) = M1 (D + a1,M2(D + a2)).
It is defined for D ∈

{
D ≥ 0 : M2(D + a2) < s1

2(D)
}

.

Lemma 4.2. The equation ψ0 (s0) = y has a solution in the interval J0 defined in
Table 2 if and only if µ0

(
sin

0 , s
in
2

)
> y. The mapping ψ0 is monotonically increasing

and thus, if it exists, this solution is unique.
The equation ψ1 (s1) = y has a solution in the interval J1 defined in Table 2 if and
only if µ1

(
sin

1 , s
in
2

)
> y. The mapping ψ1 is monotonically increasing and thus, if it

exists, this solution is unique.
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The equation Ψ(s2, D) = sin has a solution if and only if sin ≥ φ1(D).
• When ω ≥ 1 then, the mapping s2 7→ Ψ(s2, D) is monotonically increasing,

and thus, if it exists, this solution is unique. Moreover, if ω > 1, φ1(D) = −∞
and if ω = 1, φ1(D) = Ψ

(
s0

2(D), D
)
> 0.

• When ω < 1 then, there exist two solutions which are equal when sin = φ1(D).
Moreover, φ1(D) > 0.

Proof. The proof is given in Appendix C.1

The study of stability of SS4 and SS6 is treated separately in Proposition 4.3 and
Proposition 4.4. It requires new definitions and notations that are not listed in Table 2.
We need the following notations:

E =
∂µ0

∂s0
(s0, s2), F =

∂µ0

∂s2
(s0, s2), G =

∂µ1

∂s1
(s1, s2), H = −∂µ1

∂s2
(s1, s2),(4.4)

I =
dµ2

ds2
(s2), J = µ0(s0, s2), K = µ1(s1, s2), L = µ2(s2).(4.5)

Proposition 4.3. When it exists, SS4 is stable if and only if

∂Ψ

∂s2
(s2, D) > 0, (1− ω)sin

0 + sin
1 + sin

2 < φ2(D),

φ3(D) > 0 and φ4(D, sin
0 , s

in
1 , s

in
2 ) > 0,

(4.6)

where s2 is a solution of (4.3), the functions φ2 and φ3 are defined in Table 2 and the
function φ4 is defined by:

φ4

(
D, sin

0 , s
in
1 , s

in
2

)
= c1c2c3 − c21c4 − c23,(4.7)

where the coefficients ci, i = 1, . . . , 4 are given by:

c1 =2D + (E + ωF )x0 + (G+H)x1,

c2 =D2 + (E + ωF )(D + J)x0 + (G+H)(D +K)x1 + (E(G+H)− (1− ω)FG)x0x1,

c3 =D(E + ωF )Jx0 +D(G+H)Kx1 + (E(G+H)− (1− ω)FG)(J +K)x0x1,

c4 =(E(G+H)− (1− ω)FG)JKx0x1,

and the functions E, F , G, H, I, J , K and L, defined by (4.4) and (4.5), are evaluated
at the components of SS4 given in Table 1.

Proof. The proof is given in Appendix C.3.1.

Proposition 4.4. If it exists, SS6 is stable if and only if c3 > 0, c5 > 0, r4 > 0 and
r5 > 0, where these coefficients are defined in Table 3.

Proof. The proof is given in Appendix C.3.2.

Now, we can state our main result.

Theorem 4.5. Assume that Hypotheses 2.1 to 2.7 and 4.1 hold. The necessary
and sufficient conditions of existence and stability of the steady states are given in
Table 4.

Proof. The proof of existence conditions is given in Appendix C.2. The stability
of SS4 and SS6 follows from Proposition 4.3 and Proposition 4.4, respectively. The
proof of stability of all other steady states is given in Appendix C.3.3.
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Table 3
The Liénard-Chipart coefficients for SS6. The functions E, F , G, H, I, J, K and L, defined

by (4.4) and (4.5), are evaluated at the components of SS6 given in Table 1.

c1 = 3D + (E + Fw)x0 + (G+H)x1 + Ix2

c2 = 3D2 + (2D + J)(E + ωF )x0 + (2D +K)(G+H)x1 + EIx0x2 +GIx1x2
+(2D + L)Ix2 + (E(G+H) − (1 − ω)FG)x0x1

c3 = D3 +D(D + 2J)(E + ωF )x0 +D(D + 2K)(G+H)x1 +D(D + 2L)Ix2
+EI(D + J + L)x0x2 +GI(D +K + L)x1x2 + EGIx0x1x2 + (E(G+H)

−(1 − ω)FG)(D + J +K)x0x1
c4 = D2(E + ωF )Jx0 +D2(G+H)Kx1 +D2ILx2 + EI(DJ +DL+ JL)x0x2

+GI (DK +DL+KL)x1x2 + EGI(J +K + L)x0x1x2 + (E(G+H)

−(1 − ω)FG)(DJ +DK + JK)x0x1
c5 = DEIJLx0x2 +DGIKLx1x2 +D(E(G+H) − (1 − ω)FG)JKx0x1

+EGI (JK + JL+KL)x0x1x2
c6 = EGIJKLx0x1x2

r0 = c1c2 − c3, r1 = c1c4 − c5, r2 = c3r0 − c1r1, r3 = c5r0 − c21c6
r4 = r1r2 − r0r3, r5 = r3r4 − c1c6r

2
2

Table 4
The necessary and sufficient conditions of existence and local stability of steady states of (2.1).

M0, M1, M2, M3, Ψ, φ1, φ2, φ3, ψ0, ϕ0 and ϕ1 are given in Table 2, φ4 is given in (4.7), c3, c5,
r4 and r5 are defined in Table 3.

Existence conditions Stability conditions

SS1 Always exists
µ0

(
sin0 , s

in
2

)
< D + a0, µ1

(
sin1 , s

in
2

)
< D + a1,

µ2

(
sin2

)
< D + a2

SS2 µ2

(
sin2

)
> D + a2 sin0 < ϕ0(D), sin1 < ϕ1(D)

SS3 µ0

(
sin0 , s

in
2

)
> D + a0

µ1

(
sin0 + sin1 − s0, s

in
2 − ω

(
sin0 − s0

))
< D + a1,

sin2 − ωsin0 < M2(D + a2) − ωϕ0(D)

with s0 solution of equation ψ0(s0) = D + a0

SS4

(1 − ω)sin0 + sin1 + sin2 ≥ φ1(D),

sin0 > M0 (D + a0, s2),

sin0 + sin1 > M0 (D + a0, s2)

+M1 (D + a1, s2)

with s2 solution of equation

Ψ(s2) = (1 − ω)sin0 + sin1 + sin2

(1 − ω)sin0 + sin1 + sin2 < φ2(D),
∂Ψ

∂s2
(s2, D) > 0,

φ3(D) > 0, φ4(D, sin0 , s
in
1 , s

in
2 ) > 0

SS5
sin0 > ϕ0(D),

sin2 − ωsin0 > M2(D + a2) − ωϕ0
sin0 + sin1 < ϕ0(D) + ϕ1(D)

SS6
(1 − ω)sin0 + sin1 + sin2 > φ2(D),

sin0 > ϕ0, sin0 + sin1 > ϕ0 + ϕ1
c3 > 0, c5 > 0, r4 > 0, r5 > 0

SS7 µ1

(
sin1 , s

in
2

)
> D + a1

sin1 + sin2 < M3

(
sin0 , D + a0

)
+M1

(
D + a1,M3

(
sin0 , D + a0

))
,

sin1 + sin2 < M2(D + a2) + ϕ1(D)

SS8
sin1 > ϕ1(D),

sin1 + sin2 > ϕ1(D) +M2(D + a2)
sin0 < ϕ0(D)

Remark 4.6. Using Lemma 4.2, we have the following results:
• When it exists, SS2 is unique.
• When it exists, SS7 is unique.
• If ω ≥ 1, when it exists, SS4 is unique. Its stability condition ∂Ψ

∂s2
(s2, D) > 0

is always satisfied. If ω > 1, φ1(D) = −∞, so that its existence condition
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(1− ω)sin
0 + sin

1 + sin
2 ≥ φ1(D) is always satisfied.

• If ω < 1, using Hypothesis 4.1, there exist at most two steady states of the
form SS4. If (1 − ω)sin

0 + sin
1 + sin

2 > φ1(D), equation (4.3) has two solutions
s∗12 < s∗22 , such that ∂Ψ

∂s2

(
s∗12 , D

)
< 0 and ∂Ψ

∂s2

(
s∗22 , D

)
> 0. We denote by SS41

the steady state of type SS4 corresponding to s∗12 while SS42 corresponds to
s∗22 . When it exists, SS41 is unstable. When SS42 exists, its stability condition
∂Ψ
∂s2

(s2, D) > 0 is always satisfied.

In the particular cases, where sin
1 = 0 or sin

2 = 0, some of the steady states
described in Theorem 4.5 do not exist and the existence conditions of the existing
steady state can be simplified. More precisely, we have the following result.

Proposition 4.7. • If sin
1 = 0 then, SS7 and SS8 do not exist. If sin

2 = 0, SS2,
SS3 and SS5 do not exist. Therefore, in the case where sin

1 = sin
2 = 0, the

steady states SS2, SS3, SS5, SS7 and SS8 do not exist.
• If sin

1 = sin
2 = 0 then, if ω ≥ 1, SS4 does not exist and if ω < 1, SS4 exists if

and only if (1− ω)sin
0 ≥ φ1(D).

• If sin
1 = sin

2 = 0 then, if ω ≥ 1, SS6 does not exist and if ω < 1, SS6 exists if
and only if (1− ω)sin

0 > φ2(D).

Proof. The proof is given in Appendix D.

Remark 4.8. Assume that sin
1 = sin

2 = 0. Then, only the steady states SS1, SS4
and SS6 exist. The conditions (1−ω)sin

0 ≥ φ1(D) and (1−ω)sin
0 > φ2(D) of existence

of SS4 and SS6, respectively, given in Proposition 4.7 are equivalent to the conditions
sin

0 ≥ F1(D) and sin
0 > F2(D), respectively, given in Lemmas 3 and 4 of [14]. Indeed,

we have F1(D) = φ1(D)
1−ω and F2(D) = φ2(D)

1−ω . Therefore, we recover the results of [14],

where the study is restricted to the case sin
1 = sin

2 = 0. Notice that, the steady states
SS1, SS4 and SS6 were labeled SS1, SS2 and SS3 in [14], respectively.

From Table 4, we can deduce the following result.

Proposition 4.9.
• If SS2 or SS3 or SS7 exists then, SS1 is unstable.
• If SS6 exists then, SS2, SS4, SS5 and SS8 are unstable.
• If SS5 exists then, SS2, SS3 and SS8 are unstable.
• If SS8 exists then, SS7 is unstable.

Proof. The proof is given in Appendix E.

Without maintenance, the necessary and sufficient conditions of existence and
stability are summarized in Table 5 where the function φ5 is defined by

φ5(D, sin
0 , s

in
1 , s

in
2 ) = (EIx0x2 + EGφ3(D)x0x1)(Ix2 + (G+H)x1

+(E + ωF )x0) + (Ix2 + (G+H)x1 + ωFx0)GIx1x2,
(4.8)

and the functions E, F , G, H and I, defined by (4.4) and (4.5), are evaluated at
the components of SS6 given in Table 1 and the function φ3(D) is defined in Table 2
with ai = 0, i = 0, 1, 2. The steady states are deduced from Table 1 by putting
ai = 0. Except for the stability condition of SS6, all other conditions in Table 5 can
be deduced easily from Table 4. In fact, the proofs for SS4 and SS6, which are similar
to the one given in [14], make use of the fact that system (2.1) can be reduced to a
cascade system (see Appendix C.3 in [14]).

5. Applications to a chlorophenol-mineralising three-tiered microbial
’food web’. The aim of this section is to illustrate the theoretical results of this
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Table 5
The maintenance free case: the necessary and sufficient conditions of existence and local stabil-

ity of steady states of (2.1). M0, M1, M2, M3, Ψ, φ1, φ2, φ3, ψ0, ϕ0 and ϕ1 are given in Table 2
with ai = 0, i = 0, 1, 2, and φ5 is given in (4.8).

Existence conditions Stability conditions

SS1 Always exists µ0

(
sin0 , s

in
2

)
< D, µ1

(
sin1 , s

in
2

)
< D, µ2

(
sin2

)
< D

SS2 µ2

(
sin2

)
> D sin0 < ϕ0(D), sin1 < ϕ1(D)

SS3 µ0

(
sin0 , s

in
2

)
> D

µ1

(
sin0 + sin1 − s0, s

in
2 − ω

(
sin0 − s0

))
< D,

sin2 − ωsin0 < M2(D) − ωϕ0(D)

with s0 solution of equation ψ0(s0) = D

SS4

(1 − ω)sin0 + sin1 + sin2 ≥ φ1(D),

sin0 > M0(D, s2),

sin0 + sin1 > M0(D, s2) +M1(D, s2)

with s2 solution of equation

Ψ(s2, D) = (1 − ω)sin0 + sin1 + sin2

(1 − ω)sin0 + sin1 + sin2 < φ2(D),
∂Ψ

∂s2
(s2, D) > 0, φ3(D) > 0

SS5
sin0 > ϕ0(D),

sin2 − ωsin0 > M2(D) − ωϕ0(D)
sin0 + sin1 < ϕ0(D) + ϕ1(D)

SS6
(1 − ω)sin0 + sin1 + sin2 > φ2(D),

sin0 > ϕ0(D), sin0 + sin1 > ϕ0 + ϕ1

φ3(D) > 0, or

φ3(D) < 0 and φ5(D, sin0 , s
in
1 , s

in
2 ) > 0

SS7 µ1

(
sin1 , s

in
2

)
> D

sin1 + sin2 < M3

(
sin0 , D

)
+M1

(
D,M3

(
sin0 , D

))
,

sin1 + sin2 < M2(D) + ϕ1(D)

SS8 sin1 > ϕ1, sin1 + sin2 > ϕ1 +M2(D) sin0 < ϕ0(D)

paper in the case of the chlorophenol-mineralising three-tiered microbial ‘food web’
considered in [19]. The specific growth rates take the form:

f0 (Sch, SH2
) =

km,chSch

KS,ch + Sch

SH2

KS,H2,c + SH2

,

f1 (Sph, SH2
) =

km,phSph

KS,ph + Sph

1

1 + SH2
/KI,H2

, f2 (SH2
) =

km,H2
SH2

KS,H2
+ SH2

,

(5.1)

where Sch, Sph and SH2 are the chlorophenol, phenol and hydrogen substrates concen-
trations respectively. Let us denote by Xch, Xph and XH2 the chlorophenol, phenol
and hydrogen degrader concentrations, Sch,in, Sph,in and SH2,in the inflowing concen-
trations, kdec,ch, kdec,ph and kdec,H2

the decay rates, and by Ych, Yph and YH2
the yield

coefficients. The equation of the model take the form:

Ẋch =(Ychf0 (Sch, SH2
)−D − kdec,ch)Xch

Ẋph =(Yphf1 (Sph, SH2)−D − kdec,ph)Xph

ẊH2
=(YH2

f2 (SH2
)−D − kdec,H2

)XH2

Ṡch =D (Sch,in − Sch)− f0 (Sch, SH2
)Xch

Ṡph =D (Sph,in − Sph) + 224
208 (1− Ych) f0 (Sch, SH2

)Xch − f1 (Sph, SH2
)Xph

ṠH2
=D (SH2,in − SH2

)− 16
208f0 (Sch, SH2

)Xch − f2 (SH2
)XH2

+ 32
224 (1− Yph) f1 (Sph, SH2

)Xph

(5.2)

where 224/208 (1− Ych) represents the fraction of chlorophenol converted to phenol,
32/224 (1− Yph) represents the fraction of phenol that is transformed to hydrogen and
16/208 represents the fraction of hydrogen consumed by the chlorophenol degrader
Xch. The biological parameter values are provided in Table 10. They were previously
used in [9, 14, 19].
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Following [14], by using the linear change of variable given by (G.1) and (G.2),
the yield coefficients in (5.2) can be normalized to one except of one of them, which is
equal to ω ' 0.53, when the yield coefficients are those given in Table 10. Therefore,
(5.2) is of the form (2.1), with ω < 1. The specific growth functions (5.1) become
the functions defined in (G.3), keep their form by this linear change of variables and
satisfy Hypotheses 2.1 to 2.7 and 4.1. Therefore, the results of our paper apply to
(5.2). The details are given in Appendix G. For the growth functions (G.3), the
various functions defined in Table 2 are listed in Table 13.

In [19], most of the results on the existence and stability of steady states of model
(5.2) were obtained numerically. Our analytical study of (2.1) permit to give rigorous
proofs for (5.2). From Remark 4.6, as ω < 1, the system can have two steady states
SS41 and SS42 of the form SS4.

In what follows, we consider the input concentrations Sph,in = 0 and SH2,in =
2.67 × 10−5, corresponding to Fig. 3(a) in [19]. We fix D = 0.01. As a consequence
of Theorem 4.5, we obtain the following result which determine the existence and the
stability of the steady states of (5.2) with respect to the input concentration Sch,in.

Proposition 5.1. Assume that the biological parameters in (5.2) are given as in
Table 10. Assume that Sph,in = 0, SH2,in = 2.67 × 10−5 and D = 0.01. Let σi,
i = 1, . . . , 6 be the bifurcation values defined in Table 6. The existence and stability
of steady states of (5.2), with respect to the input concentration Sch,in is given in
Table 7. The nature of the bifurcations when Sch,in cross the values σi, i = 1, . . . , 6
is given in Table 8.

Proof. The proof is supported by numerical experimentation and is given in Ap-
pendix H.

Table 6
Definitions of the critical values of σi, i = 1, . . . , 6

Definition Value
σ1 = M0 (D + a0, SH2,in) /(Y3Y4) 0.003173
σ2 = ϕ0(D)/(Y3Y4) 0.013643
σ3 = (SH2,in −M2(D + a2) + ωϕ0(D))/(ωY3Y4) 0.013985
σ4 = (φ1(D)− SH2,in)/((1− ω)Y3Y4) 0.029402
σ5 = (φ2(D)− SH2,in)/((1− ω)Y3Y4) 0.033292
σ6 is the largest root of equation r5 = 0 0.1025

Table 7
Existence and stability of steady states, with respect to Sch,in. The bifurcation values σi, i =

1, . . . , 6 are given in Table 6. The letter S (resp. U) means that the corresponding steady state is
stable (resp. unstable). No letter means that the steady state does not exist.

Interval SS1 SS2 SS3 SS41 SS42 SS5 SS6
0 < Sch,in < σ1 U S
σ1 < Sch,in < σ2 U S U
σ2 < Sch,in < σ3 U U U S
σ3 < Sch,in < σ4 U U S
σ4 < Sch,in < σ5 U U S U U
σ5 < Sch,in < σ6 U U S U U U
σ6 < Sch,in U U S U U S

Remark 5.2. Not all of the behaviors described in Table 7 were reported in [19].
For D = 0.01, the operating diagram of Fig. 3(a) of [19] predicts only three possible
behaviors: the stability of SS2, the stability of SS3 and the bistability between SS3
and SS6. Note that the destabilization of SS6 via a Hopf bifurcation with emergence
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Table 8
The nature of the bifurcations corresponding to the critical values of σi, i = 1, . . . , 6, defined in

Table 6. There exists also a critical value σ∗ ' 0.099295 corresponding to the value of Sch,in where
the stable limit cycle disappears when Sch,in is decreasing.

Type of the bifurcation
σ1 Transcritical bifurcation of SS1 and SS3
σ2 Transcritical bifurcation of SS2 and SS5
σ3 Transcritical bifurcation of SS3 and SS5
σ4 Saddle-node bifurcation of SS41 and SS42

σ5 Transcritical bifurcation of SS41 and SS6
σ∗ Disappearance of the stable limit cycle
σ6 Supercritical Hopf bifurcation

of a stable limite cycle has not been observed in [19]. Even, the possibility of stability
of SS5 has not been reported in the operating diagram. Indeed, Fig. 3(a) of [19] does
not correctly describe the transition from the region labeled SS2 (and corresponding
to the stability of SS2) to the SS3 region. Our results show that this transition is via a
SS5 region. The existence of the SS5 region was depicted in Fig. 3(b) of [19] in the case
where SH2,in = 2.67×10−2. However, this region also exists when SH2,in = 2.67×10−5,
but it is very thin, since for D = 0.01 it corresponds to σ2 < Sch,in < σ3, where
σ2 ' 0.013643 and σ3 ' 0.013985.

0 0.10.02 0.04 0.06 0.080.01 0.03 0.05 0.07 0.09 0.11

0e00

2e−04

4e−04

6e−04

8e−04

1e−04

3e−04

5e−04

7e−04

0 0.010.002 0.004 0.006 0.008 0.012 0.014 0.016 0.018

0e00

2e−06

1e−06

2e−07

4e−07

6e−07

8e−07

1.2e−06

1.4e−06

1.6e−06

1.8e−06

2.2e−06

2.4e−06
(a)Xch

SS1 SS2 SS3
SS41

SS6

SS42

σ1
σ2��� σ3AAK σ4σ5 σ∗σ6Sch,in

(b)Xch

SS1SS2

SS3 SS5

σ1 σ2σ3Sch,in

Fig. 5.1. (a) Projections of the ω-limit set in variable Xch as a function of Sch,in ∈ [0, 0.11],
reveal the occurrence and disappearance of stable limit cycles. (b) A magnification of the transcritical
bifurcations when Sch,in ∈ [0, 0.018].

Figures 5.1 and 5.2 depict the bifurcation diagram of system (5.2) where Xch and
XH2

are represented, respectively, as a function of the bifurcation parameter Sch,in.
Figure 5.1(b), Figure 5.2(b) and Figure 5.3 depict magnifications of the bifurcation
diagram showing the transcritical bifurcations occurring at σ1, σ2, σ3 and σ5, the
saddle-node bifurcation occurring at σ4, the Hopf bifurcation occurring at σ6 and the
disappearance of the cycle occurring at σ∗. In Figure 5.1(b), the steady states SS1
and SS2 cannot be distinguished since they have both a zero Xch-component. Since
for Sch,in < σ2, SS2 is stable and SS1 is unstable, the Xch = 0 axis is plotted in blue,
which is the color for SS2 in Table 9. In Figure 5.2(b), the steady states SS1 and SS2
are distinguished while SS1 and SS3 cannot be distinguished, since they have both
a zero XH2

-component. Since for Sch,in > σ3, SS3 is stable and SS1 is unstable, the
XH2

= 0 axis is plotted in purple, which is the color for SS3 in Table 9.
Numerical simulations have shown that there exists a critical value σ∗ ∈ (σ5, σ6),

which corresponds to the value of Sch,in, where the stable limit cycle that appears



A THREE-TIERED MODEL 13
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(a)XH2

SS1 SS2 SS3 SS41SS42

SS6

σ1
σ2��� σ3AAK σ4σ5 σ∗σ6Sch,in

(b)XH2

SS1

SS2

SS3

SS5

σ1 σ2σ3Sch,in

Fig. 5.2. (a) Projections of the ω-limit set in variable XH2
as a function of Sch,in ∈ [0, 0.11],

reveal the occurrence and disappearance of stable limit cycles. (b) A magnification of the transcritical
bifurcations when Sch,in ∈ [0, 0.018].
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1e−04

2e−05

4e−05

6e−05

8e−05

1.2e−04

1.4e−04

1.6e−04

(a)Xch

SS42

SS41

SS6

SS1 SS2 SS3

σ4 σ5Sch,in

(b)XH2

SS6

SS1SS2 SS3 SS41SS42

σ∗ σ6Sch,in

Fig. 5.3. (a) A magnification of saddle-node bifurcation at Sch,in = σ4 and the transcritical
bifurcation at Sch,in = σ5 when Sch,in ∈ [0.028, 0.035]. (b) A magnification of the appearance and
disappearance of stable limit cycles when Sch,in ∈ [0.098, 0.105].

Table 9
The colors that are used in Figures 5.1 to 5.3, the solid (resp. dashed) lines are used for stable

(resp. unstable) steady states.

SS1 SS2 SS3 SS41 SS42 SS5 SS6
Red Blue Purple Dark Green Magenta Green Cyan

for Sch,in = σ6 through a supercritical Hopf bifurcation, disappears when Sch,in is
decreasing. In [17], a numerical study of the bifurcation diagram with respect to the
parameter D is given in the case without maintenance and sin

1 = sin
2 = 0. Figure 6

in [17] shows that the disappearance of the limit cycle occurs through a saddle-node
bifurcation of limit cycles which gives birth to stable and unstable periodic orbits. We
conjecture that in our case also the stable limit cycle disappears by a confluence with
an unstable limit cycle. Numerical simulations are shown in Appendix I illustrating
the main results of this section namely the bistability with convergence either to SS3
or to a stable limit cycle according to the initial conditions, when σ∗ < Sch,in < σ6,
and bistability with convergence toward SS3 or SS6, when Sch,in > σ6.

6. Discussion. In this work, we have extended model (5.2) of a chlorophenol-
mineralising three-tiered microbial ‘food web’ presented in [19], by considering the
model (2.1) with general growth functions. Our study considers the effects of the
phenol and hydrogen input concentrations, which were neglected in the analytical
analysis given in [14], together with the effects of maintenance terms, which were
neglected in the analytical analysis given in [6, 17] and in [14] for the stability analysis.

Our first aim was the theoretical analysis of the three-tiered model by providing
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a complete study for the existence and local stability of all steady states. Our math-
ematical analysis of the model has revealed several possible asymptotic behaviors:
Theorem 4.5 provides a complete theoretical description of the existence and stability
of the steady states according to the operating parameters D, sin

0 , sin
1 and sin

2 . System
(2.1) can have up to eight steady states: the washout steady state which always exists,
a positive steady state where all degrader populations are maintained and six other
steady states corresponding to the extinction of one or two degrader populations. In
[19], the results on the existence and stability of steady states of model (5.2) were
obtained only numerically. Our analytical results on the existence and stability of the
steady states of (2.1), give rigorous proofs for (5.2).

Our results extend the results on existence and stability of steady states given in
[6, 14, 17] obtained in some particular cases of (2.1). In the particular case sin

0 > 0,
sin

1 = sin
2 = 0, without phenol and hydrogen input concentrations, considered in [14],

system (2.1) can have only up to three steady states: the washout steady state, a
positive steady state, where all degrader populations are maintained, and one steady
state where only the hydrogen degrader is extinct. In the particular case without
maintenance, considered in [6, 17], system (2.1) can have also up to eight steady
states, but their stability is much more simpler to study, since the six-dimensional
system (2.1) can be reduced to a three-dimensional one.

Our second achievement was to show that the positive steady state of coexistence
of all species can be unstable, a fact that has been already depicted in [14], in the
particular case sin

0 > 0, sin
1 = sin

2 = 0. In [14], a numerical evidence for the possibility
of a Hopf bifurcation is given, with the appearance of a stable limit cycle. In this paper,
we give also numerical evidence for a Hopf bifurcation, in the case sin

0 > 0, sin
1 = 0 and

sin
2 > 0. It should be noticed that the possibility of the Hopf bifurcation of the positive

steady state, is analytically proved in [17], in the case without maintenance which can
be reduced to a three-dimensional system. The destabilization of the positive steady
state was not detected by the numerical analysis in [19].

In order that the results can be useful in practice, one should have a description
of the operating diagrams which describe the existence and stability of steady states
with respect to the operating parameters. In [19], the operating diagrams were ob-
tained numerically. The region of instability of the coexistence steady state was not
depicted. The more precise operating diagram showing the region of instability of the
positive steady state was given in [14] in the case without phenol and hydrogen input
concentrations. In [14], the operating diagrams were obtained analytically only in the
case without maintenance. It is a challenge for future work to use our characteriza-
tions of existence and stability conditions of steady states to obtain analytically the
operating diagram. As it was stated in Remark 5.2, the bifurcation diagram with the
chlorophenol input concentration as the bifurcating parameter shown in Figures 5.1
and 5.2 proves that some of the operating diagrams obtained in [19] have omitted
important transition phenomena between steady states.

Appendix A. Definitions and notations. In this section, we prove that the
functions listed in Table 2 are well defined, and we give their properties.

Let s2 ≥ 0 be fixed. Using Hypotheses 2.1 and 2.4, there exists a unique function

y ∈ [0, µ0(+∞, s2)) 7→M0(y, s2) ∈ [0,+∞),

such that for s0 ≥ 0, s2 ≥ 0 and y ∈ [0, µ0(+∞, s2)), we have:

s0 = M0(y, s2)⇐⇒ y = µ0(s0, s2).(A.1)
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Let s2 ≥ 0 be fixed. Using Hypotheses 2.2 and 2.5, there exists a unique function

y ∈ [0, µ1(+∞, s2)) 7→M1(y, s2) ∈ [0,+∞),

such that for s1 ≥ 0, s2 ≥ 0 and y ∈ [0, µ1(+∞, s2)), we have:

s1 = M1(y, s2)⇐⇒ y = µ1(s1, s2).(A.2)

Using Hypotheses 2.3 and 2.6, there exists a unique function

y ∈ [0, µ2(+∞)) 7→M2(y) ∈ [0,+∞),

such that for s2 ≥ 0 and y ∈ [0, µ2(+∞)), we have:

s2 = M2(y)⇐⇒ y = µ2(s2).(A.3)

Let s0 ≥ 0 be fixed. Using Hypotheses 2.1 and 2.4, there exists a unique function

z ∈ [0, µ0(s0,+∞)) 7→M3(s0, z) ∈ [0,+∞),

such that for s0 ≥ 0, s2 ≥ 0 and z ∈ [0, µ0(s0,+∞)), we have:

s2 = M3(s0, z)⇐⇒ z = µ0(s0, s2).(A.4)

Note that, from Hypotheses 2.4 and 2.5, we have

∂M0

∂y (y, s2) =
[
∂µ0

∂s0
(s0, s2)

]−1

> 0, ∂M1

∂y (y, s2) =
[
∂µ1

∂s1
(s1, s2)

]−1

> 0,

∂M3

∂z (s0, z) =
[
∂µ0

∂s2
(s0, s2)

]−1

> 0,
(A.5)

∂M0

∂s2
(y, s2) = −∂µ0

∂s2
(s0, s2)

[
∂µ0

∂s0
(s0, s2)

]−1

< 0,

∂M1

∂s2
(y, s2) = −∂µ1

∂s2
(s1, s2)

[
∂µ1

∂s1
(s1, s2)

]−1

> 0.
(A.6)

For D ≥ 0 satisfying the conditions D+ a0 < µ0(+∞,+∞) and D+ a1 < µ1(+∞, 0),
there exist unique values s0

2 = s0
2(D) and s1

2 = s1
2(D), such that µ0

(
+∞, s0

2(D)
)

=

D + a0 and µ1

(
+∞, s1

2(D)
)

= D + a1 (see Fig. 2(a) of [14]). The definition domains
of all the other functions in Table 2 are deduced from those of the functions M0, M1

and M2.

Appendix B. Proof of Proposition 3.1. A steady state of (2.1) is obtained
by setting the right-hand sides equal to zero:

[µ0 (s0, s2)−D − a0]x0 = 0(B.1)

[µ1 (s1, s2)−D − a1]x1 = 0(B.2)

[µ2 (s2)−D − a2]x2 = 0(B.3)

D
(
sin

0 − s0

)
− µ0 (s0, s2)x0 = 0(B.4)

D
(
sin

1 − s1

)
+ µ0 (s0, s2)x0 − µ1 (s1, s2)x1 = 0(B.5)

D
(
sin

2 − s2

)
+ µ1 (s1, s2)x1 − ωµ0 (s0, s2)x0 − µ2 (s2)x2 = 0.(B.6)
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Using (B.1)+(B.4), (B.2)-(B.1)+(B.5) and (B.3)+ω(B.1)
-(B.2)+(B.6), one obtains the set of equations

D
(
sin

0 − s0

)
− (D + a0)x0 = 0

D
(
sin

1 − s1

)
+ (D + a0)x0 − (D + a1)x1 = 0

D
(
sin

2 − s2

)
− ω (D + a0)x0 + (D + a1)x1 − (D + a2)x2 = 0.

(B.7)

We can solve (B.7) and obtain x0, x1 and x2 with respect to s0, s1 and s2:

x0 =
D

D + a0

(
sin

0 − s0

)
,(B.8)

x1 =
D

D + a1

(
sin

0 − s0 + sin
1 − s1

)
,(B.9)

x2 =
D

D + a2

(
(1− ω)

(
sin

0 − s0

)
+ sin

1 − s1 + sin
2 − s2

)
.(B.10)

We can also solve (B.7) and obtain s0, s1 and s2 with respect to x0, x1 and x2:

s0 = sin
0 −

D + a0

D
x0,(B.11)

s1 = sin
1 +

D + a0

D
x0 −

D + a1

D
x1,(B.12)

s2 = sin
2 − ω

D + a0

D
x0 +

D + a1

D
x1 −

D + a2

D
x2.(B.13)

For the steady state SS1, x0 = x1 = x2 = 0. Hence, (B.11)–(B.13) result in
s0 = sin

0 , s1 = sin
1 and s2 = sin

2 .
For the steady state SS2, x0 = x1 = 0 and x2 > 0. Hence, (B.11) and (B.12)

result in s0 = sin
0 and s1 = sin

1 . Therefore, (B.10) results in

x2 =
D

D + a2

(
sin

2 − s2

)
.

Since x2 > 0, (B.3) results in µ2(s2) = D+ a2. Using definition (A.3) of M2, we have

s2 = M2(D + a2).

For the steady state SS3, x1 = x2 = 0 and x0 > 0. Hence, (B.8) results in

x0 =
D

D + a0

(
sin

0 − s0

)
.

Using this expression together with x1 = x2 = 0 in (B.12) and (B.13) result in

s1 = sin
1 + sin

0 − s0 and s2 = sin
2 − ω(sin

0 − s0).(B.14)

Since x0 > 0, (B.1) results in

µ0(s0, s2) = D + a0.(B.15)
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Replacing s2 by its expression (B.14) with respect to s0 in (B.15) results in

ψ0(s0) = D + a0,

where ψ0 is the function defined in Table 2 by:

ψ0(s0) = µ0

(
s0, s

in
2 − ω

(
sin

0 − s0

))
.

For the steady state SS4, x0 > 0, x1 > 0 and x2 = 0. Hence, (B.8) and (B.9)
result in

x0 =
D

D + a0

(
sin

0 − s0

)
and x1 =

D

D + a1

(
sin

0 − s0 + sin
1 − s1

)
.(B.16)

Since x0 > 0 and x1 > 0, (B.1) and (B.2) result in µ0(s0, s2) = D+a0 and µ1(s1, s2) =
D + a1. Therefore, using definitions (A.1) and (A.2) of M0 and M1, we have

s0 = M0(D + a0, s2) and s1 = M1(D + a1, s2).(B.17)

Using (B.16) together with x2 = 0 in (B.13), we have

s2 = sin
2 − ω

(
sin

0 − s0

)
+ sin

0 − s0 + sin
1 − s1.(B.18)

Replacing s0 and s1 by their expressions (B.17) with respect to s2 in (B.18), it follows
that, s2 is a solution of equation

Ψ (s2, D) = (1− ω)sin
0 + sin

1 + sin
2 ,

where Ψ is the function defined in Table 2 by:

Ψ(s2, D) = (1− ω)M0(D + a0, s2) +M1(D + a1, s2) + s2.

For the steady state SS5, x0 > 0, x2 > 0 and x1 = 0. Using (B.8) together with
x1 = 0 in (B.12) results in

s1 = sin
1 − s0 + sin

0 .

Using this expression in (B.10) results in

x2 =
D

D + a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
.

Since x0 > 0 and x2 > 0, (B.1) and (B.3) result in µ0(s0, s2) = D + a0 and µ2(s2) =
D + a2. Therefore, using definitions (A.1) and (A.3) of M0 and M2, we have

s2 = M2(D + a2) and s0 = M0 (D + a0,M2(D + a2)) .

For the steady state SS6, x0 > 0, x1 > 0 and x2 > 0. Then, as a consequence of
(B.1)–(B.3), we obtain:

µ0(s0, s2) = D + a0, µ1(s1, s2) = D + a1, µ2(s2) = D + a2.

Using definitions (A.1)–(A.3) of the functions M0, M1 and M2, it follows that s2, s0

and s1 are given by:

s2 = M2(D + a2), s0 = M0(D + a0, s2), s1 = M1(D + a1, s2),



18 S. NOUAOURA, N. ABDELLATIF, R. FEKIH-SALEM, AND T. SARI

which prove the s-components of SS6 in Table 1. (B.8)–(B.10) give the x-components
of SS6 in Table 1.

For the steady state SS7, x0 = x2 = 0 and x1 > 0. Hence, (B.11) results in
s0 = sin

0 . From (B.9), we have

x1 =
D

D + a1

(
sin

1 − s1

)
.

Using this expression together with x0 = x2 = 0 in (B.13) results in

s2 = sin
1 − s1 + sin

2 .(B.19)

Since x1 > 0, then, as a consequence of (B.2), we obtain:

µ1(s1, s2) = D + a1.

Replacing s2 by its expression (B.19) with respect to s1 results in

ψ1(s1) = D + a1,

where ψ1 is the function defined in Table 2 by:

ψ1(s1) = µ1(s1, s
in
1 − s1 + sin

2 ).

For the steady state SS8, x0 = 0, x1 > 0 and x2 > 0. Hence, (B.11) results in
s0 = sin

0 . Using this expression in (B.9) and (B.10) results in

x1 =
D

D + a1

(
sin

1 − s1

)
, x2 =

D

D + a2

(
sin

1 − s1 + sin
2 − s2

)
.

Since x1 > 0 and x2 > 0, as a consequence of (B.2) and (B.3), we have µ1(s1, s2) =
D + a1 and µ2(s2) = D + a2. Therefore, using definitions (A.2) and (A.3) of the
functions M1 and M2, it follows that s2 and s1 are given by:

s2 = M2(D + a2), s1 = M1 (D + a1,M2(D + a2)) .

Appendix C. Proof of Theorem 4.5. We first give the proof of Lemma 4.2
which determines the conditions under which each of the three equations (4.1)–(4.3)
has a solution and the number of solutions, that is to say the existence conditions of
the steady states SS3, SS7 and SS4, respectively.

C.1. Proof of Lemma 4.2. Recall that J0 =
(
max

(
0, sin

0 − sin
2 /ω

)
, sin

0

)
. If

sin
2 − ωsin

0 > 0, one has ψ0 (0) = µ0

(
0, sin

2 − ωsin
0

)
= 0 and if sin

2 − ωsin
0 ≤ 0,

one has sin
0 − sin

2 /ω ≥ 0, so that ψ0

(
sin

0 − sin
2 /ω

)
= µ0

(
sin

0 − sin
2 /ω, 0

)
= 0. Thus,

ψ0

(
max

(
0, sin

0 − sin
2 /ω

))
= 0. On the other hand, ψ0

(
sin

0

)
= µ0

(
sin

0 , s
in
2

)
. Therefore,

there exists a solution s0 ∈ J0 satisfying ψ0 (s0) = y if and only if µ0

(
sin

0 , s
in
2

)
> y.

Since ψ0 is monotonically increasing, if it exists, this solution is unique. Indeed, we
have

dψ0

ds0
(s0) =

∂µ0

∂s0
(s0, s

in
2 − ω(sin

0 − s0)) + ω
∂µ0

∂s2
(s0, s

in
2 − ω(sin

0 − s0)),

which is positive thanks to Hypothesis 2.4. Recall that J1 =
(
0, sin

1

)
. We have

ψ1(0) = µ1

(
0, sin

1 + sin
2

)
= 0 and ψ1(sin

1 ) = µ1

(
sin

1 , s
in
2

)
. Therefore, there exists a
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solution s1 ∈ J1 satisfying ψ1 (s1) = y if and only if µ1(sin
1 , s

in
2 ) > y. Since ψ1 is

monotonically increasing, if it exists, this solution is unique. Indeed, we have

dψ1

ds1
(s1) =

∂µ1

∂s1

(
s1, s

in
1 + sin

2 − s1

)
− ∂µ1

∂s2

(
s1, s

in
1 + sin

2 − s1

)
,

which is positive thanks to Hypothesis 2.5. Let us consider now the existence of
solution of equation Ψ(s2, D) = sin. From the definitions of s0

2(D) and s1
2(D) given in

Table 2, we have M0

(
D + a0, s

0
2(D)

)
= +∞ and M1

(
D + a1, s

1
2(D)

)
= +∞. From

the definition of Ψ(s2, D) given in Table 2, it follows that,
• for all ω > 0, we have lim

s2→s12(D)
Ψ(s2, D) = +∞,

• for all ω > 1, we have lim
s2→s02(D)

Ψ(s2, D) = −∞,

• for all ω < 1, we have lim
s2→s02(D)

Ψ(s2, D) = +∞,

• for all ω = 1, we have Ψ(s0
2(D), D) = φ1(D).

Moreover, we have

∂Ψ

∂s2
(s2, D) = (1− ω)

∂M0

∂s2
(D + a0, s2) +

∂M1

∂s2
(D + a1, s2) + 1.(C.1)

Under Hypotheses 2.4 and 2.5, for all y ∈ (0, µ0(+∞, s2)) and s2 > 0, we have
∂M0

∂s2
(y, s2) < 0 and for all y ∈ (0, µ1(+∞, s2)) and s2 > 0, we have ∂M1

∂s2
(y, s2) > 0 (see

formulas in (A.6)). Therefore, for ω ≥ 1, the function s2 7→ Ψ(s2, D) is monotonically
increasing. If ω = 1 then, Ψ

(
s0

2(D), D
)
> 0. From Hypothesis 4.1, if ω < 1, the

equation Ψ(s2, D) = sin has two solutions if and only if sin ≥ φ1(D). This completes
the proof.

C.2. Existence of the steady states. The steady state SS1 always exists.
The steady state SS2 exists if and only if x2 > 0, that is to say sin

2 > M2(D+a2),
which is equivalent to µ2

(
sin

2

)
> D + a2, thanks to Hypothesis 2.6.

The steady state SS3 exists if and only if equation (4.1) has a positive solution and
the s1, s2 and x0-components of SS3 defined in Table 1 are positive. This condition is
equivalent to say that 0 < s0 < sin

0 and s0 > sin
0 − sin

2 /ω. Therefore, (4.1) must have
a solution in the interval J0. Using Lemma 4.2, (4.1) has a solution in the interval J0

if and only if µ0

(
sin

0 , s
in
2

)
> D + a0. If it exists, this solution is unique.

The steady state SS4 exists if and only if equation (4.3) has a solution which is,
according to Lemma 4.2, equivalent to the condition (1−ω)sin

0 +sin
1 +sin

2 ≥ φ1(D), and
the solution s∗2 of (4.3) is such that the x0 and x1-components defined in Table 1 are
positive which is equivalent to sin

0 > M0 (D + a0, s2) and sin
0 +sin

1 > M0 (D + a0, s2)+
M1 (D + a1, s2).

The steady state SS5 exists if and only if its components x0, x2 and s1 defined in
Table 1 are positive. This condition is equivalent to sin

0 > s0 and sin
2 −ωsin

0 > s2−ωs0.
Using the s0 and s2-components of SS5 in Table 1, it follows that, the existence
conditions of SS5 in Table 4 must be satisfied.

The steady state SS6 exists if and only if its x-components defined in Table 1
are positive which is equivalent to the conditions sin

0 > s0, sin
1 + sin

0 > s0 + s1 and
(1− ω)sin

0 + sin
1 + sin

2 > (1− ω)s0 + s1 + s2 are satisfied. Using the s-components of
SS6 in Table 1, these conditions are the same as the existence conditions of SS6 in
Table 4.

The steady state SS7 exists if and only if (4.2) has a positive solution and the
s2 and x1-components of SS7 defined in Table 1 are positive. This last condition is
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equivalent to 0 < s1 < sin
1 . Consequently, (4.2) must have a solution in the interval

J1. Using Lemma 4.2, there exists a solution s1 ∈ J1, satisfying (4.2), if and only if
µ1(sin

1 , s
in
2 ) > D + a1. If it exists, this solution is unique.

The steady state SS8 exists if and only if its components x1 and x2 are positive.
This is equivalent to sin

1 > s1 and sin
1 + sin

2 > s1 + s2. Using the s-components of SS8
defined in Table 1, these conditions are the same as those for the existence of SS8 in
Table 4.

C.3. Stability of the steady states. The local stability of the steady states
is determined by the eigenvalues of the Jacobian matrix of system (2.1) evaluated at
the steady state. The Jacobian matrix of (2.1) corresponds to the 6× 6 matrix:

J =


J−D−a0 0 0 Ex0 0 Fx0

0 K−D−a1 0 0 Gx1 −Hx1

0 0 L−D−a2 0 0 Ix2

−J 0 0 −D−Ex0 0 −Fx0

J −K 0 Ex0 −D−Gx1 Fx0+Hx1

−ωJ K −L −ωEx0 Gx1 −D−ωFx0−Hx1−Ix2

 ,

where the functions E, F , G, H, I, J , K and L are defined by (4.4) and (4.5), and are
evaluated at the steady state. We have used the opposite sign of the partial derivative
H = −∂µ1/∂s2, such that all constants involved in the computation become positive.
The stability of the steady state is investigated by analyzing the real parts of the
eigenvalues of J , which are the roots of the characteristic polynomial.

C.3.1. Proof of Proposition 4.3. For SS4, the characteristic polynomial is

P4(λ) = (λ− λ1)(λ+D)
(
λ4 + c1λ

3 + c2λ
2 + c3λ+ c4

)
,

where λ1 = µ2 (s2) − D − a2 with s2 is defined by (4.3) and the coefficients ci for
i = 1, . . . , 4 are defined in Proposition 4.3. From Lemma F.1, all of the roots of the
fourth order polynomial have negative real parts if and only if ci > 0, for i = 1, 3, 4
and r1 = c1c2c3 − c21c4 − c23 > 0. From the expression of c1 given in Proposition 4.3,
we always have c1 > 0. Moreover, c3 > 0 and c4 > 0 if and only if

E(G+H)− (1− ω)FG > 0.(C.2)

Using (4.4) and (A.6), we have

∂M0

∂s2
(D + a0, s2) = −F

E
and

∂M1

∂s2
(D + a1, s2) =

H

G
.

Using (C.1), it follows that

∂Ψ

∂s2
(s2, D) = −F

E
(1− ω) +

H

G
+ 1 =

E(G+H)− (1− ω)FG

EG
.

Since E and G are positive, condition (C.2) is equivalent to
∂Ψ

∂s2
(s2, D) > 0.

From definition (4.7) of φ4 and since µ2 is increasing, it follows that, SS4 is stable
if and only if

s2 < M2(D + a2),
∂Ψ

∂s2
(s2, D) > 0 and φ4

(
D, sin

0 , s
in
1 , s

in
2

)
> 0.(C.3)



A THREE-TIERED MODEL 21

When s1
2 ≤ M2(D + a2), the s2-component of SS4 satisfies s2 < s1

2 ≤ M2(D + a2).
Thus, SS4 is stable if and only if the second and the third conditions of (C.3) hold.
When M2(D + a2) < s1

2, we will prove that (C.3) is equivalent to (4.6). To this end,
assume first that ω ≥ 1. If s2 < M2(D+ a2), then s0

2 ≤ s2 < M2(D+ a2) < s1
2. From

Lemma 4.2, the mapping s2 7→ Ψ(s2, D) is increasing for all s2 ∈ (s0
2, s

1
2). Hence, the

condition s2 < M2(D + a2) is equivalent to

(1− ω)sin
0 + sin

1 + sin
2 = Ψ(s2, D) < Ψ (M2(D + a2), D) = φ2(D).(C.4)

In addition, we have φ3(D) > 0 for all D ∈ I2. Now, when ω < 1, from Lemma 4.2
and using Hypothesis 4.1, equation (4.3) has at most two solutions s∗12 < s∗22 , such
that ∂Ψ

∂s2

(
s∗12 , D

)
< 0 and ∂Ψ

∂s2

(
s∗22 , D

)
> 0 (see Figure G.1). Thus, the steady state

SS41 corresponding to s∗12 is unstable. For the steady state SS42 corresponding to
s∗22 , the condition s∗22 < M2(D + a2) implies the first and the second condition of
(4.6) since the mapping s2 7→ Ψ(s2, D) is increasing on

(
s2, s

1
2

)
. On the other hand,

if the first condition of (4.6) or equivalently (C.4) holds, then

s∗22 < M2(D + a2) or s0
2 < M2(D + a2) < s∗12 .

This last condition is in contradiction with the second condition of (4.6). This com-
pletes the proof of the proposition.

C.3.2. Proof of Proposition 4.4. For the positive steady state SS6, the char-
acteristic polynomial is given by:

P6(λ) = λ6 + c1λ
5 + c2λ

4 + c3λ
3 + c4λ

2 + c5λ+ c6,

where ci, i = 1, . . . , 6 are defined in Table 3. From Lemma F.2, all of the roots of the
sixth order polynomial have negative real parts if and only if ci > 0, i = 1, 3, 5, 6 and
rj > 0, j = 4, 5, where ci and rj are listed in Table 3. Since c1 and c6 are positive,
the proof is complete.

C.3.3. Stability of all other steady states. For SS1, the characteristic poly-
nomial is

P1(λ) = (λ− λ1)(λ− λ2)(λ− λ3)(λ+D)3,

where λ1 = µ0

(
sin

0 , s
in
2

)
−D−a0, λ2 = µ1

(
sin

1 , s
in
2

)
−D−a1 and λ3 = µ2

(
sin

2

)
−D−a2.

Therefore, SS1 is stable if and only if λ1 < 0, λ2 < 0 and λ3 < 0, that is, the stability
conditions of SS1 in Table 4 hold.

For SS2, the characteristic polynomial is

P2(λ) = (λ− λ1)(λ− λ2)(λ+D)2(λ2 + c1λ+ c2),

where λ1 = µ0

(
sin

0 ,M2(D + a2)
)
− D − a0, λ2 = µ1

(
sin

1 ,M2(D + a2)
)
− D − a1,

c1 = D + Ix2 and c2 = LIx2. Since c1 > 0 and c2 > 0, the real parts of the roots of
the quadratic factor are negative. Therefore, SS2 is stable if and only if λ1 < 0 and
λ2 < 0. Since M0 and M1 are increasing (see formulas in (A.5)), these conditions are
equivalent to the stability conditions of SS2 in Table 4.

For SS3, the characteristic polynomial is

P3(λ) = (λ− λ1)(λ− λ2)(λ+D)2(λ2 + c1λ+ c2),

where λ1 = µ1

(
sin

0 − s0 + sin
1 , s

in
2 − ω

(
sin

0 − s0

))
−D−a1, λ2 = µ2

(
sin

2 −ω
(
sin

0 −s0

))
−

D − a2, c1 = D + (E + ωF )x0 and c2 = J(E + ωF )x0, where s0 is the solution in
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the interval J0 of equation ψ0 (s0) = D + a0. Since c1 > 0 and c2 > 0, the real parts
of the roots of the quadratic factor are negative. Therefore, SS3 is stable if and only
if λ1 < 0 and λ2 < 0. The condition λ1 < 0 is the first stability condition of SS3 in
Table 4. Since M2 is increasing from (A.5), the condition λ2 < 0 is equivalent to

sin
2 − ω

(
sin

0 − s0

)
< M2(D + a2) ⇐⇒ s0 <

(
M2(D + a2)− sin

2

)
/ω + sin

0 .(C.5)

As the function ψ0 is increasing, (C.5) is equivalent to

ψ0(s0) < ψ0

((
M2(D + a2)− sin

2

)
/ω + sin

0

)
.(C.6)

From the definition of the function ψ0 together with the condition ψ0(s0) = D + a0

defining s0, we deduce that (C.6) is equivalent to

D + a0 < µ0

((
M2(D + a2)− sin

2

)
/ω + sin

0 ,M2(D + a2)
)
.

Since M0 is increasing, this condition is equivalent to the second stability condition
of SS3 in Table 4.

For SS5, the characteristic polynomial is

P5(λ) = (λ− λ1)(λ+D)
(
λ4 + c1λ

3 + c2λ
2 + c3λ+ c4

)
,

where λ1 = µ1

(
sin

0 + sin
1 −M0(D + a0,M2(D + a2)),M2(D + a2)

)
−D − a1 and the

coefficients ci are given by:

c1 = 2D + (E + ωF )x0 + Ix2,

c2 = D2 + (E + ωF )(D + J)x0 + I(D + L)x2 + EIx0x2,

c3 = D(E + ωF )Jx0 +DILx2 + EI(J + L)x0x2 and c4 = EIJLx0x2.

From Lemma F.1, the roots of the fourth order polynomial are of negative real parts
if and only if

ci > 0, for i = 1, 3, 4 and r1 = c1c2c3 − c21c4 − c23 > 0.(C.7)

We always have ci > 0 for i = 1, 3, 4. We can write r1 as follows:

r1 =DJ
[
(D + J)(E + ωF )3 − E3J

]
x3

0 +D2I3Lx3
2 + E2I2(E + ωF )(J + L)x3

0x
2
2 +DEI3(J + 2L)x0x

3
2

+ E2I3(J + L)x2
0x

3
2 + EI

[
D(2J + L)(E + ωF )2 + ωFJ2(2E + ωF )

]
x3

0x2 + 3D3I2Lx2
2

+D2J
[
3D(E + ωF )2 + FωJ(2E + ωF )

]
x2

0 + EI2
[
D(J + L)(5E + 3ωF ) + Fω

(
J2 + L2

)]
x2

0x
2
2

+DI
[
Fω

(
DFω(2J + L) + FωJ(J + 2L) +DE(9J + 5L) + 2EJ2

)
+DE2(7J + 4L)

]
x2

0x2

+DI2 [DE(4J + 7L) + FωL(2J + L) +DFω(J + 2L)]x0x
2
2 + 2D4J(E + ωF )x0 + 2D4ILx2

+D2I [D(J + L)(5E + 3ωF ) + 2FωJL]x0x2 +
(
D2 +DEx0 +DIx2 + EIx0x2

)
(EJx0 − ILx2)2.

Thus, r1 > 0. Consequently, the conditions (C.7) are satisfied. Therefore, SS5 is
stable if and only if λ1 < 0. Since M1 is increasing, this condition is equivalent to the
stability condition of SS5 in Table 4.

For SS7, the characteristic polynomial is

P7(λ) = (λ− λ1)(λ− λ2)(λ+D)2(λ2 + c1λ+ c2),

where λ1 = µ0

(
sin

0 , s
in
1 − s1 + sin

2

)
−D − a0, λ2 = µ2

(
sin

1 − s1 + sin
2

)
−D − a2, c1 =

D + (G + H)x1 and c2 = K(G + H)x1 where s1 is the solution in the interval J1 of
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equation ψ1 (s1) = D + a1. Since c1 > 0 and c2 > 0, the real parts of the roots of
the quadratic factor are negative. Therefore, SS7 is stable if and only if λ1 < 0 and
λ2 < 0. Since the functions M2 and M3 are increasing from (A.5), the conditions
λ1 < 0 and λ2 < 0 are equivalent to

s1 > sin
1 + sin

2 −M3(sin
0 , D + a0) and s1 > sin

1 + sin
2 −M2(D + a2).(C.8)

Since the function ψ1 is increasing, (C.8) is equivalent to

ψ1(s1) > ψ1

(
sin

1 + sin
2 −M3(sin

0 , D + a0)
)
, ψ1(s1) > ψ1

(
sin

1 + sin
2 −M2(D + a2)

)
.

From the definition of the function ψ1 together with the condition ψ1(s1) = D + a1

which defines s1, the preceding conditions are equivalent to

µ1

(
sin

1 + sin
2 −M3(sin

0 , D + a0),M3(sin
0 , D + a0)

)
< D + a1,

µ1

(
sin

1 + sin
2 −M2(D + a2),M2(D + a2)

)
< D + a1.

Since M1 is increasing, these conditions are equivalent to the stability conditions of
SS7 in Table 4.

For SS8, the characteristic polynomial is

P8(λ) = (λ− λ1)(λ+D)
(
λ4 + c1λ

3 + c2λ
2 + c3λ+ c4

)
,

where λ1 = µ0

(
sin

0 ,M2(D + a2)
)
−D − a0 and the coefficients ci are given by:

c1 = 2D + (G+H)x1 + Ix2,

c2 = D2 + (G+H)(D +K)x1 + I(D + L)x2 +GIx1x2,

c3 = D(G+H)Kx1 +DILx2 +GI(K + L)x1x2 and c4 = GIKLx1x2.

From Lemma F.1, the roots of the fourth order polynomial are of negative real parts
if and only if

ci > 0, for i = 1, 3, 4 and r1 = c1c2c3 − c21c4 − c23 > 0.(C.9)

We always have ci > 0, for i = 1, 3, 4. We can write r1 as follows:

r1 =DK
[
(D +K)(G+H)3 −G3K

]
x3

1 +D2I3Lx3
2 +G2I2(G+H)(K + L)x3

1x
2
2 +G2I3(K + L)x2

1x
3
2

+GI
[
D(2K + L)(G+H)2 +HK2(2G+H)

]
x3

1x2 +DGI3(K + 2L)x1x
3
2 + 3D3I2Lx2

2

+D2K
[
3D(G+H)2 +HK(2G+H)

]
x2

1 +GI2
[
D(K + L)(5G+ 3H) +H

(
K2 + L2

)]
x2

1x
2
2

+DI
[
H
(
DH(2K + L) +HK(K + 2L) +DG(9K + 5L) + 2GK2

)
+DG2(7K + 4L)

]
x2

1x2

+DI2 [DG(4K + 7L) +HL(2K + L) +DH(K + 2L)]x1x
2
2 + 2D4K(G+H)x1 + 2D4ILx2

+D2I [D(K + L)(5G+ 3H) + 2HKL]x1x2 +
(
D2 +DGx1 +DIx2 +GIx1x2

)
(GKx1 − ILx2)2.

Thus, r1 > 0. Consequently, the conditions (C.9) are satisfied. Finally, SS8 is stable
if and only if λ1 < 0, that is to say µ0

(
sin

0 ,M2(D + a2)
)
< D + a0. Since M0 is

increasing, this condition is equivalent to the stability condition of SS8 in Table 4.

Appendix D. Proof of Proposition 4.7. If sin
1 = 0 then, µ1

(
sin

1 , s
in
2

)
= 0, so

that the conditions µ1

(
sin

1 , s
in
2

)
> D+a1 and sin

1 > ϕ1(D) of existence of SS7 and SS8,
respectively, cannot be satisfied. Therefore, SS7 and SS8 do not exist. If sin

2 = 0 then,
µ2

(
sin

2

)
= 0 and µ0

(
sin

0 , s
in
2

)
= 0, so that the existence conditions µ2

(
sin

2

)
> D + a2,
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µ0

(
sin

0 , s
in
2

)
> D+ a0 of SS2 and SS3 cannot be satisfied, respectively. Moreover, the

second existence condition of SS5 implies that

sin
0 < ϕ0(D)− M2(D + a2)

ω
< ϕ0(D),

which is in contradiction with the first existence condition of SS5. Therefore, SS2,
SS3 and SS5 do not exist.
Assume that sin

1 = sin
2 = 0. If ω = 1, the first existence condition of SS4 in Table 4 is

written 0 ≥ φ1(D). This condition cannot be satisfied, since φ1(D) = Ψ
(
s0

2(D), D
)
>

0 from Lemma 4.2. Thus, the steady state SS4 does not exist if ω = 1.
When ω > 1, s2 is solution of equation

(1− ω)sin
0 = (1− ω)s0 + s1 + s2.

Hence,
(1− ω)

(
sin

0 − s0

)
= s1 + s2.

Since s1 > 0 and s2 > 0, then, we have necessarily

(1− ω)
(
sin

0 − s0

)
> 0,

so that sin
0 −s0 < 0. From the x0-component of SS4 in Table 1, we deduce that x0 < 0.

Thus, SS4 does not exist if ω > 1.
When sin

1 = sin
2 = 0, the s2-component of SS4 becomes the solution of equation

(1− ω)sin
0 = Ψ(s2, D).

From the definition of Ψ in Table 2, it follows that,

sin
0 = M0 (D + a0, s2) +

M1 (D + a1, s2) + s2

(1− ω)
.

If 0 < ω < 1, then

sin
0 > M0 (D + a0, s2) +M1 (D + a1, s2) > M0 (D + a0, s2) ,

thus, the second and the third existence conditions of SS4 in Table 4 are satisfied
when ω < 1. Therefore, SS4 exists if and only if the first existence condition of SS4
in Table 4 is satisfied. This condition becomes in the particular case sin

1 = sin
2 = 0,

(1− ω)sin
0 ≥ φ1(D).

Regarding the steady state SS6 in the particular case sin
1 = sin

2 = 0, the first
existence condition in Table 4 becomes

(1− ω)sin
0 > φ2(D),(D.1)

which is equivalent to

(1− ω)
(
sin

0 − ϕ0(D)
)
> ϕ1(D) +M2(D + a2).

When ω ≥ 1, this last inequality cannot hold, since sin
0 > ϕ0(D), so that the steady

state SS6 does not exist.
If ω < 1, condition (D.1) implies that

(1− ω)sin
0 > (1− ω)ϕ0(D) + (1− ω)ϕ1(D),
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that is,

sin
0 > ϕ0(D) + ϕ1(D) > ϕ0(D),

which are the second and the third existence conditions of SS6 in Table 4. Thus, the
existence condition of SS6 is only condition (D.1).

Appendix E. Proof of Proposition 4.9. If SS2 exists then, its condition
of existence µ2

(
sin

2

)
> D + a2 holds. Therefore, the condition µ2

(
sin

2

)
< D + a2 of

stability of SS1 is not satisfied.
If SS3 exists then, its condition of existence µ0

(
sin

0 , s
in
2

)
> D+a0 holds. Therefore,

the condition µ0

(
sin

0 , s
in
2

)
< D + a0 of stability of SS1 is not satisfied.

If SS7 exists then, its condition of existence µ1

(
sin

1 , s
in
2

)
> D+a1 holds. Therefore,

the condition µ1

(
sin

1 , s
in
2

)
< D + a1 of stability of SS1 is not satisfied.

If SS6 exists then, the conditions

(1− ω)sin
0 + sin

1 + sin
2 > φ2(D), sin

0 > ϕ0(D), sin
0 + sin

1 > ϕ0(D) + ϕ1(D)

hold. Therefore, the condition sin
0 < ϕ0(D) of stability of SS2 or SS8 is not satisfied,

the condition (1 − ω)sin
0 + sin

1 + sin
2 < φ2(D) of stability of SS4 is not satisfied, and

the condition sin
0 + sin

1 < ϕ0(D) + ϕ1(D) of stability of SS5 is not satisfied.
If SS5 exists then, its conditions of existence

sin
0 > ϕ0(D) and sin

2 − ωsin
0 > M2(D + a2)− ωϕ0(D)

hold. Therefore, the condition sin
0 < ϕ0(D) of stability of SS2 or SS8 is not satisfied

and the condition sin
2 −ωsin

0 < M2(D+a2)−ωϕ0(D) of stability of SS3 is not satisfied.
If SS8 exists then, its conditions of existence sin

1 + sin
2 > ϕ1(D) + M2(D + a2)

holds. Therefore, the condition sin
1 + sin

2 < ϕ1(D) +M2(D + a2) of stability of SS7 is
not satisfied.

Appendix F. Liénard-Chipart stability criteria.

Lemma F.1. Consider the fourth order polynomial P̃4(λ) with real coefficients
given by:

P̃4(λ) = c0λ
4 + c1λ

3 + c2λ
2 + c3λ+ c4.

All of the roots of the polynomial P̃4(λ) have negative real part if and only if

ci > 0, for i = 1, 3, 4, and r1 = c3r0 − c21c4 > 0,(F.1)

where r0 = c1c2 − c0c3.

Proof. From the Liénard-Chipart stability criteria (see Gantmacher [8], Theorem

11), all of the roots of the polynomial P̃4 have negative real part if and only if

ci > 0, i = 1, 3, 4, det(∆2) > 0 and det(∆4) > 0,(F.2)

where ∆2 and ∆4 are the Hurwitz matrices defined by:

∆2 =

[
c1 c3
c0 c2

]
and ∆4 =


c1 c3 0 0
c0 c2 c4 0
0 c1 c3 0
0 c0 c2 c4

 .
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Conditions (F.2) are equivalent to

ci > 0, i = 1, 3, 4, r0 = c1c2 − c0c3 > 0 and r1 = c3r0 − c21c4 > 0.(F.3)

When all conditions (F.3) hold, the condition r1 > 0 implies that r0 > 0. Thus,
conditions (F.3) are equivalent to (F.1).

Lemma F.2. Consider the six order polynomial P̃6(λ) with real coefficients given
by:

P̃6(λ) = c0λ
6 + c1λ

5 + c2λ
4 + c3λ

3 + c4λ
2 + c5λ+ c6.

All of the roots of the polynomial P̃6(λ) have negative real part if and only if

ci > 0, i = 1, 3, 5, 6, r4 > 0 and r5 > 0,(F.4)

where r4 = r1r2 − r0r3 and r5 = r3r4 − c1c6r2
2, with

r0 = c1c2 − c0c3, r1 = c1c4 − c0c5, r2 = c3r0 − c1r1 and r3 = c5r0 − c21c6.

Proof. From the Liénard-Chipart stability criteria (see Gantmacher [8], Theorem

11), all of the roots of the polynomial P̃6 have negative real part if and only if

ci > 0, i = 1, 3, 5, 6, det(∆2) > 0, det(∆4) > 0 and det(∆6) > 0,(F.5)

where ∆2, ∆4 and ∆6 are the Hurwitz matrices defined by:

∆2 =

[
c1 c3
c0 c2

]
, ∆4 =


c1 c3 c5 0
c0 c2 c4 c6
0 c1 c3 c5
0 c0 c2 c4

 , ∆6 =


c1 c3 c5 0 0 0
c0 c2 c4 c6 0 0
0 c1 c3 c5 0 0
0 c0 c2 c4 c6 0
0 0 c1 c3 c5 0
0 0 c0 c2 c4 c6

 .

Conditions (F.5) are equivalent to

ci > 0, i = 1, 3, 5, 6, r0 > 0, r4 = r1r2 − r0r3 > 0, r5 = r3r4 − c1c6r2
2 > 0.(F.6)

When all conditions (F.6) hold, the condition r5 > 0 implies that r3 > 0, that is,
c5r0 > c6c

2
1 which implies that r0 > 0. Hence, conditions (F.6) are equivalent to

(F.4).

Appendix G. A chlorophenol-mineralising three-tiered microbial ‘food
web’. Following [14], model (5.2) considered in [19] can be rescaled to obtain model
(2.1) using the following change of variables:

x0 = Y3Y4

Y0
Xch, x1 = Y4

Y1
Xph, x2 = 1

Y2
XH2 ,

s0 = Y3Y4Sch, s1 = Y4Sph, s2 = SH2
.

(G.1)

The inflowing concentrations are given by:

sin
0 = Y3Y4Sch,in, sin

1 = Y4Sph,in, sin
2 = SH2,in,(G.2)

the death rates are a0 = kdec,ch, a1 = kdec,ph, a2 = kdec,H2
, and the yield coefficients

are

Y0 = Ych, Y1 = Yph, Y2 = YH2
, Y3 = 224/208(1− Y0), Y4 = 32/224(1− Y1)
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with ω = 16
208Y3Y4

= 1
2(1−Ych)(1−Yph) . When the yield coefficients are those given in

Table 10, we have ω ' 0.53. The growth functions take the form:

µ0(s0, s2) =
m0s0

K0 + s0

s2

L0 + s2
,

µ1(s1, s2) =
m1s1

K1 + s1

1

1 + s2/KI
, µ2(s2) =

m2s2

K2 + s2
,

(G.3)

where

m0 = Y0km,ch, K0 = Y3Y4KS,ch, L0 = KS,H2,c, m1 = Y1km,ph,

K1 = Y4KS,ph, KI = KI,H2 , m2 = Y2km,H2 , K2 = KS,H2 .

The growth functions (G.3) satisfy Hypotheses 2.1 to 2.7 and 4.1. For these growth
functions, the various functions defined in Table 2 are listed in Table 13.

From the expression of Ψ given in Table 13, straightforward calculations shows
that, for all s2 ∈

(
s0

2(D), s1
2(D)

)
,

∂2ψ

∂s2
2

(s2, D) =
(1− ω)2K0(D + a0)

m0 −D − a0

L0 + s0
2(D)

(s2 − s0
2(D))

3 +
2K1(KI + s1

2(D))

(s1
2(D)− s2)

3 ,

which is positive since ω < 1 and m0 > D + a0. Thus, the function s2 7→ Ψ(s2, D)
is convex and fulfills Hypothesis 4.1. Hence, model (5.2) has two steady states SS41

and SS42 of the form SS4 (see Figure G.1).

s2s02 s12s∗12 s∗22

φ1(D)

Ψ(s2, D)

(1 − ω)sin0 + sin1 + sin2

s2

Fig. G.1. The curve of the function Ψ(., D), where s∗12 and s∗22 are the solutions of the equation
Ψ(s2, D) = (1− ω)sin0 + sin1 + sin2 .

Appendix H. Proof of Proposition 5.1. We assume that the biological
parameter values in model (5.2) are provided in Table 10. We assume that Sph,in = 0,
SH2,in = 2.67×10−5 as in Fig. 3(a) from [19]. We assume that D = 0.01. As said
in section 5 and Appendix G, Theorem 4.5 applies to model (5.2). Using the change
of variables (G.2), the necessary and sufficient existence and stability conditions of
steady states of (5.2), as stated in Table 4, are summarized in Table 14. Since sin

1 = 0,
SS7 and SS8 do not exist, as shown in Proposition 4.7. Using Table 14, we see that:
• SS1 always exists and is unstable, since the second stability condition in Ta-

ble 14 does not hold, as

µ2 (SH2,in) ' 1.0845 > D + a2 = 0.03.(H.1)

• SS2 exists, since the existence condition in Table 14 holds from (H.1). It is
stable if and only if

Sch,in <
ϕ0(D)

Y3Y4
=: σ2.
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• SS3 exists if and only if µ0 (Sch,inY3Y4, SH2,in) > D+ a0, which is equivalent to

Sch,in >
M0 (D + a0, SH2,in)

Y3Y4
=: σ1.

For Sch,in = σ1, there is a transcritical bifurcation of SS3 and SS1. Consider
the function y = F (Sch,in) defined by:

F (Sch,in) = µ1 (Sch,inY3Y4 − s0, SH2,in + ω (Sch,inY3Y4 − s0)) ,(H.2)

where s0 depends also on Sch,in. Recall that s0 is the unique solution of equation
ψ0(s0) = D + a0 and ψ0 is defined in Table 13. The first stability condition
of SS3 in Table 14 is written F (Sch,in) < D + a1. Figure H.1 shows that this
condition holds for all Sch,in > σ1, since the maximum of the function F is
smaller than 0.0013 and D+ a1 = 0.03. From the second stability condition in
Table 14, SS3 is stable if and only if

Sch,in >
SH2,in −M2(D + a2) + ωϕ0(D)

ωY3Y4
=: σ3.

y

y = F (Sch,in)

Sch,in

σ1

y

y = F (Sch,in)

Sch,in

σ1

Fig. H.1. The curve of the function y = F
(
Sch,in

)
where function F is defined by (H.2),

showing that F
(
Sch,in

)
< 0.0013, for all Sch,in > σ1.

• Recall that ω ' 0.53 < 1 for the set of parameters given in Table 10. Therefore,
equation

Ψ(s2, D) = (1− ω)Y3Y4Sch,in + SH2,in

admits two solutions s∗12 and s∗22 which correspond to two steady states SS41

and SS42, respectively. When it exists, SS41 is unstable, as stated in Re-
mark 4.6. From Table 14, the first existence condition of these steady states
holds if and only if

Sch,in ≥
φ1(D)− SH2,in

(1− ω)Y3Y4
=: σ4.

Figure H.2 shows that the second existence condition of SS41 and SS42 in
Table 14 holds, for all Sch,in ∈ [σ4, 0.11], since the straight line of equation
y = Sch,inY3Y4 is above the curves of the functions y = M0

(
D + a0, s

∗i
2

)
+

M1

(
D + a1, s

∗i
2

)
, for i = 1, 2, respectively. SS42 is unstable, since the third

stability condition does not hold as φ3(D) ' −1996.917 < 0. Therefore, SS41

and SS42 exist and are unstable for all Sch,in ≥ σ4. They disappear for Sch,in <
σ4. For Sch,in = σ4 there is a saddle-node bifurcation. For Sch,in = σ5 there is
a transcritical bifurcation of SS41 and SS6.
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y

y
=
Sch

,i
n
Y3
Y4

y = M0

(
D + a0, s

∗1
2

)
+M1

(
D + a1, s

∗1
2

)

y = M0

(
D + a0, s

∗2
2

)
+M1

(
D + a1, s

∗2
2

)
Sch,in


σ4

Fig. H.2. The green line of equation y = Y3Y4Sch,in is above the red and blue curves of the
functions M0

(
D + a0, s∗i2

)
+ M1

(
D + a1, s∗i2

)
, for i = 1, 2, which correspond to the steady states

SS41 and SS42, respectively.

• From Table 14, SS5 exists if and only if

σ2 :=
ϕ0(D)

Y3Y4
< Sch,in <

SH2,in −M2(D + a2) + ωϕ0(D)

ωY3Y4
=: σ3.

For Sch,in = σ2 there is a transcritical bifurcation of SS5 and SS2. For Sch,in =
σ3 there is a transcritical bifurcation of SS5 and SS3. When it exists, SS5 is
stable since

Sch,in < σ3 ' 0.013985 <
ϕ0(D) + ϕ1(D)

Y3Y4
' 0.02304.

• From Table 14, SS6 exists if and only if

Sch,in >
φ2(D)− SH2,in

(1− ω)Y3Y4
=: σ5 ' 0.033292, Sch,in >

ϕ0(D) + ϕ1(D)

Y3Y4
' 0.02304.

Then, SS6 exists if and only if Sch,in > σ5. For the stability of SS6, we plot
the functions c3, c5, r4 and r5 with respect to Sch,in > σ5. Figure H.3 shows
that c3(Sch,in), c5(Sch,in), r4(Sch,in) and r5(Sch,in) are all positive if and only
if Sch,in > σ6 where σ6 ' 0.1025 is the largest root of equation r5 (Sch,in) = 0.
We give now numerical evidence for a Hopf bifurcation for Sch,in = σ6. To show
that the positive steady state SS6 is destabilized due to Hopf bifurcation, we
determine numerically the eigenvalues of the Jacobian matrix of system (5.2) at
this steady state and we plot them with respect to Sch,in, see Figure H.4. The
Jacobian matrix evaluated at SS6 has two negative eigenvalues and two pairs
of complex conjugate eigenvalues. Figure H.4 shows that eigenvalues 5 and 6
both cross the imaginary axis at the critical value Sch,in = σ6, from positive
half-plane to negative half-plane, and the real parts of all eigenvalues 1, 2, 3
and 4 remain negative. Therefore, the steady state SS6 changes its stability
through a supercritical Hopf bifurcation with the appearance of a stable limit
cycle that we illustrate in the following section.

The plots of Figures G.1 and H.1 to H.4 were performed with Maple [10], which
is used in particular for the computations of coefficients c3, c5, r4 and r5, evaluated at
SS6, and the computations of the eigenvalues of the Jacobian matrix evaluated at SS6.
The plots of Figures 5.1 to 5.3 were performed with Scilab [16] by using the formulas
of the steady state components given in Table 1. The various functions appearing in
these formulas are given in Table 13.

Appendix I. Numerical simulations. In this section, we present in Fig-
ures I.1 to I.7 several numerical simulations which illustrate our findings. The plots
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Fig. H.3. The curves of the functions c3(Sch,in), c5(Sch,in), r4(Sch,in) and r5(Sch,in) for
Sch,in > σ5 show that all these functions are positive if and only if Sch,in > σ6, the largest root
of equation r5 = 0. (a) The curve of c3. (b) The curve of c5. (c) A magnification of the curve of
c5. (d) the curves of r4 and r5. (e) A magnification of the curve of r4. (f) A magnification of the
curve of r5.
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Fig. H.4. Real parts of the eigenvalues as a function of Sch,in ∈ [0.035, 0.11], when D = 0.01,
Sph,in = 0 and SH2,in = 2.67×10−5. On this picture, green and cyan colors for two negative
eigenvalues, blue and red colors for two pairs of complex conjugate eigenvalues.

of Figures I.1 to I.7 were performed with Scilab [16]. The numerical simulations pre-
sented in Figure H.4 in previous section and Figures I.1 to I.7 were performed on the
dimensionless form of (5.2) used in [19]. Indeed, in the original form (5.2), numerical
instabilities arise in numerical schemes. To reduce the number of parameters describ-
ing the dynamics and facilitate numerical simulations, the following rescaling of the
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variables was used in [19]:

X0 = Xch

KS,chYch
, X1 =

Xph

KS,phYph
, X2 =

XH2

KS,H2
YH2

,

S0 = Sch

KS,ch
, S1 =

Sph

KS,ph
, S2 =

SH2

KS,H2
, τ = km,chYcht.

(I.1)

Then, with these changes of variables the system given in (5.2) reduced to system

dX0

dτ = (ν0(S0, S2)− α− k0)X0

dX1

dτ = (ν1(S1, S2)− α− k1)X1

dX2

dτ = (ν2(S2)− α− k2)X2

dS0

dτ = α(uf − S0)− ν0(S0, S2)X0

dS1

dτ = α(ug − S1) + ω0ν0(S0, S2)X0 − ν1(S1, S2)X1

dS2

dτ = α(uh − S2)− ω2ν0(S0, S2)X0 + ω1ν1(S1, S2)X1 − ν2(S2)X2.

(I.2)

The operating parameters are

α =
D

km,chYch
, uf =

Sch,in

KS,ch
, ug =

Sph,in

KS,ph
, uh =

SH2,in

KS,H2

.

The yield coefficients are

ω0 =
KS,ch

KS,ph

224

208
(1− Ych), ω1 =

KS,ph

KS,H2

32

224
(1− Yph), ω2 =

16

208

KS,ch

KS,H2

.

The death rates are

k0 =
kdec,ch

km,chYch
, k1 =

kdec,ph

km,chYch
, k2 =

kdec,H2

km,chYch
.

The growth functions are

ν0(S0, S2) =
S0

1 + S0

S2

KP + S2
, ν1(S1, S2) =

φ1S1

1 + S1

S2

1 +KIS2
, ν2(S2) =

φ2S2

1 + S2
,

where the biological parameters are given by

φ1 =
km,phYph

km,chYch
, φ2 =

km,H2YH2

km,chYch
, KP =

KS,H2,C

KS,H2

, KI =
KS,H2

KI,H2

.

The trajectories in Figures I.1 to I.7 were presented according to the variables of
model (5.2) using the change of variables (I.1). In Figures I.1 to I.3, the projections
of the orbits of the six-dimensional phase space into the three-dimensional space
(Xch, Xph, XH2

) shows the appearance and disappearance of a stable limit cycle for
different values of Sch,in > σ5 where the steady states in blue are unstable and those
in red are stable. The plot of the limit cycle was obtained by solving the ordinary
differential equations using the default solver “lsoda” from the ODEPACK package in
Scilab.

Tables 11 and 12 present the components of the stable steady states SS3 and SS6,
and all the initial conditions chosen to trace the different trajectories of model (5.2)
in Figures I.1 to I.7 in the following three cases where the steady states SS1, SS2,
SS41 and SS42 are unstable :
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• For Sch,in ∈ (σ5, σ
∗), the numerical simulations done for various positive initial

conditions permit to conjecture the global asymptotic stability of SS3 (see
Figure I.1).

• For Sch,in ∈ (σ∗, σ6), the system exhibits a bistability with two basins of attrac-
tion: one toward the stable limit cycle and the second toward SS3. Figure I.2
illustrates that the trajectories in pink and cyan converge toward the stable
limit cycle in red, while the green trajectory converges toward the steady state
SS3. For the initial condition in Table 12, the time course in Figure I.4 illus-
trates the positive, periodic solution representing the coexistence of the three
species. The sustained oscillations prove the stability of the limit cycle. How-
ever, Figure I.5 shows the time course of the green trajectory in Figure I.2.

• For Sch,in > σ6, the system exhibits a bistability between SS6 and SS3. Fig-
ure I.3 shows that the cyan trajectory converges to the stable focus SS6, while
the green trajectory converges to SS3. Figures I.6 and I.7 illustrate the time
courses corresponding to the cyan and the green trajectories in Figure I.3,
respectively.
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Fig. I.1. Case Sch,in = 0.098 < σ∗: the solution of (5.2) converges to SS3.
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Fig. I.2. Case σ∗ < Sch,in = 0.0995 < σ6 : bistability with convergence either to the stable
limit cycle (in red) or to SS3.

Appendix J. Tables. In this section, we give the tables that are used in
the previous sections. In Table 10, we provide the biological parameter values. In
Tables 11 and 12, we provide the components of SS3 and SS6, and the initial conditions
used in Figures I.1 to I.7, respectively. In Table 13, we present the auxiliary functions
in the case of the growth functions given by (G.3). In Table 14, we provide the
necessary and sufficient conditions for the existence and the local stability of steady
states.
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for Sch,in = 0.0995 (in kgCOD/m3):
Convergence to the stable limit cycle.
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(5.2) converges to the nonzero Xch-component of SS3.
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for Sch,in = 0.11 (in kgCOD/m3):
Convergence to the positive steady state SS6.
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for Sch,in = 0.11 (in kgCOD/m3):
Convergence to the stable steady state SS3. (b) A magnification of (a) showing that the solution of
(5.2) converges to the nonzero Xch-component of SS3.

Table 10
Nominal parameter values, where i = ch,ph,H2. Units are expressed in Chemical Oxygen

Demand (COD).

Parameters Nominal values Units
km,ch 29 kgCODS/kgCODX/d
KS,ch 0.053 kgCOD/m3

Ych 0.019 kgCODX/kgCODS

km,ph 26 kgCODS/kgCODX/d
KS,ph 0.302 kgCOD/m3

Yph 0.04 kgCODX/kgCODS

km,H2
35 kgCODS/kgCODX/d

KS,H2
2.5×10−5 kgCOD/m3

KS,H2,c 1.0×10−6 kgCOD/m3

YH2 0.06 kgCODX/kgCODS

kdec,i 0.02 d−1

KI,H2
3.5×10−6 kgCOD/m3
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Table 11
The steady states SS3 and SS6 of model (5.2) corresponding to Figures I.1 to I.7. The biological

parameters are provided in Table 10. The operating parameters are D = 0.01, Sph,in = 0, SH2,in =
2.67×10−5 and Sch,in given in the second column.

Figure Sch,in
SS3 = (Xch, 0, 0, Sch, Sph, SH2)
SS6 = (Xch, Xph, XH2

, Sch, Sph, SH2
)

I.1 0.098

(
2.19 10−6, 0, 0, 9.77 10−2, 3.65 10−4, 9.17 10−8

)(
5.34 10−4, 1.06 10−3, 8.80 10−5, 1.36 10−2, 9.93 10−3, 3.62 10−7

)
I.2
I.4
I.5

0.0995

(
2.19 10−6, 0, 0, 9.92 10−2, 3.65 10−4, 9.12 10−8

)(
5.44 10−4, 1.08 10−3, 9.00 10−5, 1.36 10−2, 9.93 10−3, 3.62 10−7

)
I.3
I.6
I.7

0.11

(
2.19 10−6, 0, 0, 1.10 10−1, 3.65 10−4, 8.79 10−8

)(
6.10 10−4, 1.22 10−3, 1.04 10−4, 1.36 10−2, 9.93 10−3, 3.62 10−7

)

Table 12
The initial conditions of solutions of model (5.2) in Figures I.1 to I.7 are obtained from the

initial conditions of the solutions of model (I.2) by using the change of variables (I.1). The initial
conditions of (I.2) are given by Xi(0) = X∗i + ε and Si(0) = S∗i + ε, i = 0, 1, 2 where X∗i and S∗i are
the components of SS6 and ε is given in the second column. When there is more than one trajectory
in the figure, its color is indicated in the first column.

Figure
Color

ε (Xch(0), Xph(0), XH2(0), Sch(0), Sph(0), SH2(0))

I.1 9.7 10−3
(
5.44 10−4, 1.17 10−3, 8.80 10−5, 1.42 10−2, 1.29 10−2, 6.05 10−7

)
I.2
Pink
Cyan
Green

10−2

3.2 10−2

3.5 10−2

(
5.54 10−4, 1.20 10−3, 9.00 10−5, 1.42 10−2, 1.29 10−2, 6.12 10−7

)(
5.76 10−4, 1.46 10−3, 9.00 10−5, 1.53 10−2, 1.96 10−2, 1.16 10−6

)(
5.79 10−4, 1.50 10−3, 9.00 10−5, 1.55 10−2, 2.05 10−2, 1.24 10−6

)
I.3
Cyan
Green

6 10−2

7 10−2

(
6.71 10−4, 1.95 10−3, 1.04 10−4, 1.68 10−2, 2.80 10−2, 1.86 10−6

)(
6.81 10−4, 2.07 10−3, 1.04 10−4, 1.74 10−2, 3.11 10−2, 2.11 10−6

)
I.4
I.5
I.6
I.7

2 10−3

3.5 10−2

6 10−2

7 10−2

(
5.46 10−4, 1.10 10−3, 9.00 10−5, 1.37 10−2, 1.05 10−2, 4.12 10−7

)(
5.79 10−4, 1.50 10−3, 9.00 10−5, 1.55 10−2, 2.05 10−2, 1.24 10−6

)(
6.71 10−4, 1.95 10−3, 1.04 10−4, 1.68 10−2, 2.80 10−2, 1.86 10−6

)(
6.81 10−4, 2.07 10−3, 1.04 10−4, 1.74 10−2, 3.11 10−2, 2.11 10−6

)
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yK1(KI + s2)

m1KI − y(KI + s2)
0 ≤ y < m1KI

KI + s2
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yK2
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s0
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s1
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KI(m1 −D − a1)

D + a1
D + a1 < m1
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2(D)
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+ s2
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D ∈ I1 : s0
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2(D)
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Ψ(s2, D) D ∈ I1

φ2(D) = Ψ (M2(D + a2), D) D ∈ I2

φ3(D) =
∂Ψ

∂s2
(M2(D + a2), D) D ∈ I2

ψ0(s0) =
m0s0

(
sin

2 − ω
(
sin

0 − s0

))
(K0 + s0)

(
L0 + sin

2 − ω
(
sin

0 − s0

)) s0 ∈
[
max

(
0, sin

0 −sin
2 /ω

)
,+∞

)
ψ1(s1) =

m1s1KI

(K1 + s1)
(
KI + sin

1 + sin
2 − s1

) s1 ∈
[
0, sin

1 + sin
2

]
ϕ0(D) = M0(D + a0,M2(D + a2))

{
D ≥ 0 : s0

2(D) < M2(D + a2)
}

ϕ1(D) = M1(D + a1,M2(D + a2))
{
D ≥ 0 : M2(D + a2) < s1

2(D)
}
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