
HAL Id: hal-02540333
https://hal.science/hal-02540333v1

Submitted on 10 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FLOWER, an innovative Fuzzy Lower-than-Best-Effort
transport protocol

Si Quoc Viet Trang, Emmanuel Lochin

To cite this version:
Si Quoc Viet Trang, Emmanuel Lochin. FLOWER, an innovative Fuzzy Lower-than-Best-Effort
transport protocol. Computer Networks, 2016, 110, pp.18-30. �10.1016/j.comnet.2016.09.008�. �hal-
02540333�

https://hal.science/hal-02540333v1
https://hal.archives-ouvertes.fr

To link to this article: DOI: 10.1016/j.comnet.2016.09.008
URL: http://dx.doi.org/10.1016/j.comnet.2016.09.008

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

 This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 16135

To cite this version: Trang, Si Quoc Viet and Lochin, Emmanuel FLOWER, an
Innovative Fuzzy Lower-than-Best-Effort Transport Protocol. (In Press: 2016)
Computer Networks, vol. 110. pp. 18-30. ISSN 1389-1286

FLOWER, an Innovative Fuzzy Lower-than-Best-Effort Transport Protocol

Si Quoc Viet Tranga,b, Emmanuel Lochina,b,∗

aUniversité de Toulouse; ISAE-SUPAERO; Toulouse, France
bTéSA, Toulouse, France

Abstract

We present a new delay-based transport protocol named FLOWER, that aims at providing a Lower-than-Best-Effort
(LBE) service. The objective is to propose an alternative to the Low Extra Delay Background Transport (LEDBAT)
widely deployed within the official BitTorrent client. Indeed, besides its intra-fairness problem, known as latecomer
unfairness, LEDBAT can be too aggressive against TCP, making it ill suited for providing LBE services over certain
networks such as constrained wireless networks. By using a fuzzy controller to modulate the sending rate, FLOWER
aims to solve LEDBAT issues while fulfilling the role of a LBE protocol. FLOWER operates to a modification of the
standard LEDBAT protocol implementation by replacing its proportional controller by a fuzzy controller. Thanks to
this modification, our simulation results show that FLOWER can carry LBE traffic in network scenarios where LEDBAT
cannot while solving the latecomer unfairness problem. The presented algorithm is simple to implement and does not
require complex computation that would prevent its deployment. Finally, we show that FLOWER remains compliant
when used over an AQM-based network and remains LBE while not increasing the bufferbloat.

Keywords: Congestion Control, Lower-than-Best-Effort, LEDBAT, Fuzzy Logic

1. Introduction

While standard TCP and its variants endeavor to achieve
a fair share of the network bottleneck capacity between
flows, the service provided by the network remains best-
effort. There exists another service named Lower-than-
Best-Effort (LBE) which aims at providing a second pri-
ority class inside the network traffic. The rationale is to
propose a service for background traffic (e.g. peer-to-peer
file transfers, data backup, software updates, . . .) or non
delay sensitive signaling traffic. This kind of traffic might
tolerate a high latency and should not disturb the traffic
carried out by the best-effort service itself or other ser-
vices that would propose advanced QoS architecture for
time-constrained application such as DiffServ [1]. Today,
the LBE service, also called “scavenger” service, is per-
ceived as a potential solution to fetch the unused, some-
times wasted capacity in public network. One of the objec-
tive is, for instance, to provide a free Internet access based
on this LBE principle, as illustrated by the objectives of
GAIA1 or PAWS2 project. Last but not least, the LBE
service should not exacerbate the bufferbloat issue [2].

∗Corresponding author. Address: ISAE-SUPAERO, 10 avenue
Edouard Belin, BP 54032, 31055 Toulouse Cedex 5
Part of these results has been presented at IEEE LCN 2015.

Email addresses: si-quoc-viet.trang@isae.fr (Si Quoc Viet
Trang), emmanuel.lochin@isae.fr (Emmanuel Lochin)

1Global Access to the Internet for All
(https://sites.google.com/site/irtfgaia).

2Public Access WiFi Service (http://publicaccesswifi.org).

Among the different transport protocols providing a
LBE service [3], Low Extra Delay Background Transport
(LEDBAT) [4] is the most used. LEDBAT is a delay-
based congestion control protocol that has been standard-
ized by the Internet Engineering Task Force (IETF). LED-
BAT aims to exploit the remaining capacity while limiting
the queuing delay around a predefined target τ , which may
be set up to τ = 100 ms according to RFC 6817 [4]. Con-
sequently, LEDBAT flows limits the amount of queuing
delay introduced in the network and thus lower their im-
pact on best-effort flows such as TCP. As an example of
application, the official BitTorrent client is using LEDBAT
for data transfer [4].

Despite being a widely deployed protocol, the two main
LEDBAT parameters (i.e., target and gain) have been re-
vealed to be complex to determine [5, 6] as their tuning
highly depends on the network conditions and not dynam-
ically configurable. Indeed, LEDBAT may become more
aggressive than TCP in case of misconfiguration [5, 6].
As an illustration, in a recent study, the authors of [7]
conclude that the LEDBAT target parameter should not
be higher than 5 ms in a large bandwidth-delay product
(BDP) network. At last, the authors of [8] show that
LEDBAT can greatly increase the network latency mak-
ing its impact on the network not transparent anymore.

Our protocol, FLOWER (Fuzzy LOWer-than-Best-
EffoRt Transport Protocol), is a promising alternative to
LEDBAT. FLOWER overcomes LEDBAT shortcomings
and provides an LBE service that is more transparent to
the network. The principal difference with LEDBAT is

September 23, 2016

that FLOWER replaces the linear P-type controller (pro-
portional controller) of LEDBAT by a fuzzy controller to
modulate the congestion window. Compared to a recent
solution named fLEDBAT [9] that proposes to solve the
latecomer issue and to the best of our knowledge, there
is no universal scheme allowing intra-fair LEDBAT flows
to remain LBE compliant, that is, non-aggressive when
competing with TCP flows.

We first review in Section II the LEDBAT algorithm
and its problems that motivate our work. Section III de-
tails the design of FLOWER, while Section IV clearly ex-
plains its core component, that is the fuzzy controller. Sec-
tion V evaluates our new protocol and gives a side-by-side
comparison with LEDBAT using the network simulator
ns-2.35. We also demonstrated that FLOWER is more
LBE-compliant than LEDBAT in the presence of AQM
schemes in Section VI. We finally conclude our work in
Section VII.

2. Contextual background and motivation

While many transport protocols that have been de-
signed to carry LBE traffic, such as NICE [10] or TCP-
LP [11], only LEDBAT has been reported to be actually
deployed [12]. Our work therefore focus on LEDBAT and
its design issues that are described in this section.

2.1. LEDBAT in a nutshell

LEDBAT congestion control is based on queuing de-
lay variations (i.e., the queuing delay is used as a primary
congestion notification). LEDBAT is characterized by sev-
eral parameters: target queuing delay τ , gain γ, minimum
one-way delay owdmin (also called base delay), and current
one-way delay owdack. The target queuing delay τ embod-
ies the maximum queuing time that a LEDBAT connec-
tion is allowed to introduce in the network. The gain γ
corresponds to the reactivity of LEDBAT to queuing de-
lay variations. The bigger γ is, the faster LEDBAT con-
gestion control increases or decreases its congestion win-
dow. LEDBAT infers the queuing delay q by calculating
(owdack−owdmin) obtained from one-way delays measured
by exploiting the ongoing data transfer. To keep the queu-
ing delay around the predefined target, LEDBAT uses a
linear P-type controller to modulate the congestion win-
dow according to the derived queuing delay. For each ACK
received at discrete time k, the new congestion window size
cwnd is updated as follows:

∆cwnd(k) =
γ(τ − (owdack(k)− owdmin(k)))

cwnd(k − 1)
(1)

cwnd(k) = cwnd(k − 1) + ∆cwnd(k) (2)

where ∆cwnd(k) is the change of the congestion window
size.

2.2. Two main LEDBAT issues

2.2.1. Aggressiveness of LEDBAT

RFC 6817 [4] states that, if a compromised target is
set to infinity, “the algorithm is fundamentally limited in
the worst case to be as aggressive as standard TCP”. Ac-
tually, it corresponds to the case where the buffer size is
too small in comparison to the target. Thus, the queuing
delay sensed by LEDBAT never reaches the target. There-
fore, LEDBAT always increases its sending rate until a loss
event is reported.

However, there are circumstances “worse than the worst
case mentioned in RFC 6817” in which hostile LEDBAT
makes TCP back off, even in an unfavorable situation for
LEDBAT when it starts after TCP. The issue occurs when
the buffer size is around the target. In this case, LED-
BAT does not have enough time to react to queuing delay
before TCP causes a buffer overflow. After that, TCP
halves its congestion window, resulting in a reduction of
the queuing delay. Since the queuing delay is now below
the target, LEDBAT raises again its congestion window
conjointly with TCP. Consequently, after several cycles,
LEDBAT exploits more capacity than TCP.

To illustrate why the problem is important and the
impact of the aggressiveness of LEDBAT on TCP flows,
Fig. 1a shows an ns-2 simulation of 5 TCP NewReno and 5
LEDBAT flows sharing the same bottleneck with a capac-
ity of 10 Mb/s. The buffer size is 84 packets (about 100 ms
of delay) and the LEDBAT target is set to 100 ms. The re-
sult is unequivocal and demonstrates the aggressiveness of
LEDBAT flows against TCP flows. Although we present
measurements with TCP NewReno, the problem remains
the same with Cubic as shown later in the paper.

2.2.2. Latecomer unfairness

When LEDBAT flows start at different times, they may
suffer from the latecomer unfairness problem. This prob-
lem arises because latecomer flows may sense different min-
imum one-way delays. In the worst case, when the buffer
size is large enough, latecomer flows can starve ongoing
flows.

Fig. 1b demonstrates the latecomer unfairness prob-
lem. In this case, three LEDBAT flows start consecutively
every 50 s and share the same bottleneck with a capacity
of 10 Mb/s. The buffer size is 167 packets (about 200 ms
of delay). The LEDBAT target is set to 100 ms. As can
be observed in Fig. 1b, latecomer flows gradually take all
the capacity of ongoing flows.

2.3. Motivation of FLOWER

Up to this point, we have recalled and illustrated two
important LEDBAT issues. We now present our motiva-
tion to develop the new congestion control named FLOWER.

Both LEDBAT key parameters — target and gain —
are fixed and do not cope with the diversity of network
configurations. Consequently, LEDBAT becomes more ag-
gressive than TCP under some circumstances. One possi-
ble solution is to adapt the target/gain to the change of

2

 0

 2

 4

 6

 8

 10

 0 40 80 120 160 200

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

New Reno 1
New Reno 2
New Reno 3
New Reno 4
New Reno 5
LEDBAT 1
LEDBAT 2
LEDBAT 3
LEDBAT 4
LEDBAT 5

(a) Aggressiveness

 0

 2

 4

 6

 8

 10

 0 40 80 120 160 200 240 280

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

(b) Latecomer unfairness

Figure 1: LEDBAT problems.

network conditions [7, 13]. However, such adaptive con-
trol scheme requires a fine-grained mathematical network
model. To prevent the use of such too complex model, we
design a new congestion protocol based on the fuzzy logic.
Two main advantages of this approach are:

1. a fuzzy control system is a solution that prevents
the use of a mathematical model. Such approach is
particularly interesting when the model is not trivial,
difficult to derive or too complex to be implemented;

2. the fuzzy logic allows to incorporate our heuristic
knowledge about how to control the system. In other
words, we can use our previous findings [6] as an
entry for the fuzzy controller.

An in-depth analysis [6] gives us an insight to overcome
the LEDBAT problems, or more specifically, to control
the queuing delay. Hence, by means of the fuzzy logic,
we integrate our understanding gathered into the fuzzy
controller of FLOWER. We also point out that, by using a
fuzzy control system, we seek a generic solution that works
in several and various network conditions. It means that
we are seeking an average use-case and not the “optimal”
one.

3. Design and implementation

3.1. FLOWER overview

FLOWER is a novel delay-based transport protocol
which aims at providing an effective LBE service. So, as
a potential LEDBAT alternative, FLOWER must tackle
its issues while keeping the same goals in terms of LBE
service as listed in [4]:

1. to utilize end-to-end available bandwidth and to main-
tain low queuing delay when no other traffic is present;

2. to add limited queuing delay to that induced by con-
current flows, and;

3. to yield quickly to standard TCP flows that share
the same bottleneck link.

To achieve these goals, FLOWER implements a fuzzy
controller to manage the target queuing delay algorithm
instead of the P-type controller as proposed in [4]. This
non-zero target queuing delay allows FLOWER to fetch
the available capacity, and thus to saturate the bottle-
neck link, when no other traffic is present. Meanwhile, the
queuing delay needs to be kept as low as possible to make
FLOWER non-intrusive to standard TCP traffic.

We can represent FLOWER congestion control as a
feedback control system depicted in Fig. 2a. The essential
components of FLOWER are:

1. Fuzzy controller, which is an artificial decision maker
that operates based on a set of “If–Then” rules. By
using the fuzzy logic, the fuzzy controller determines
the congestion window size cwnd such that the future
estimated queuing delay eventually matches the tar-
get queuing delay τ . The fuzzy controller takes two
inputs: queuing delay error e and change of queuing
delay error ∆e;

2. Queuing delay estimator, which exploits measured
one-way delays to estimate the current queuing delay
q;

3. Peak-valley detector, which keeps track of the max-
imum queuing delay qmax observed in the network.
This maximum queuing delay is then used to nor-
malize the queuing delay error.

Basically, FLOWER operates as follows: after each
round-trip time (RTT), FLOWER uses the minimum queu-
ing delay observed during the RTT as the current queuing
delay. Queuing delays in an RTT are obtained using the
queuing delay estimator. Then, the fuzzy controller com-
pares the target queuing delay with the current queuing

3

(a)

(b)

Figure 2: Block diagram of FLOWER and LEDBAT as feedback
control systems.

delay. The error is positive when the current queuing de-
lay is below the target. In this case, the fuzzy controller
increases the congestion window, and thus the sending rate
until the queuing delay reaches the target. When the er-
ror is negative, meaning that the current queuing delay
is beyond the target, the fuzzy controller slows down its
sending rate.

In the rest of this section, we give a brief comparison
of LEDBAT and FLOWER, then describe the peak-valley
detector component. Finally, we discuss about the slow-
start mechanism which is part of FLOWER. The main
FLOWER component, i.e., the fuzzy controller, is described
in detail in Section 4.

3.2. Comparison of FLOWER and LEDBAT

Fig. 2 shows in blue the differences between FLOWER
and LEDBAT. Notably in FLOWER, we replace the P-
type controller with the fuzzy controller that, besides the
queuing delay error e, also utilizes the error trend ∆e.
We highlight the fact that while being more robust, the
implementation of a fuzzy controller is simple and adds a
little complexity to computation compared to the P-type
controller of LEDBAT.

Another feature added to FLOWER is the peak-valley
detector. This detector determines the maximum queuing
delay, which is important for the operation of the fuzzy
controller. Note that FLOWER uses the same LEDBAT
queuing delay estimator, which is fully described in RFC
6817 [4].

3.3. Peak-valley detection algorithm

To effectively react to congestion events, FLOWER
needs to determine the maximum queuing delay qmax. For

On initialization:
findingPeak ← true
n← 5; α← 1

8 ; S ← 0

After the RTT k:
if we have enough (n+ 1) samples then

slidingWnd = {qk−n, qk−n+1, qk−n+2, . . . , qk−1, qk}
currentV alue← qk−n

rightMax← max(qk−n+1, qk−n+2, . . . , qk−1, qk)
rightMin← min(qk−n+1, qk−n+2, . . . , qk−1, qk)
if findingPeak then

if currentV alue > rightMax then
A peak is found: findingPeak ← false
Calculate the new threshold S:
S ← (1− α)× S + α× currentV alue
if currentV alue > S then

A new qmax is found:
qmax ← currentV alue

else
if currentV alue < rightMin then

A valley is found: findingPeak ← true

Figure 3: Peak-valley detection algorithm.

this purpose, we must identify the peaks of queuing delays
(local maximum) and filter out the maximum queuing de-
lay (global maximum) using a threshold S, which is com-
puted following an exponentially weighted moving average
(EWMA) of peaks. For the sake of remaining as simple
as possible and not complexifying our implementation, we
develop a simple on-line peak-valley detection algorithm
as shown in Fig. 3.

Let us consider a time series of estimated queuing de-
lays q = {qk} where k represents the discrete time in
RTT. Basically, an element qk is a peak/valley if it is
greater/smaller than its neighbors, respectively. As our
algorithm works in an on-line manner, at the current time
k, we only need to consider a sliding window consisting of
qk−n and its n right neighbors, i.e,

{qk−n, qk−n+1, qk−n+2, . . . , qk−1, qk}.

The bigger is n, the more robust is the algorithm. We
stress that there is a delay of (n + 1) RTT in the detec-
tion process of qmax because the algorithm needs to collect
enough queuing delay samples.

The algorithm alternatively identifies the peaks and
valleys of queuing delays. Indeed, we have a peak/valley
if qk−n is greater/smaller than the maximum/minimum
of its n right neighbors, respectively. Each time a peak
is detected, it is then used to calculate a new threshold
to filter out qmax. Finally, when a new qmax is found,
FLOWER discards the old value.

In our implementation, we let n = 5 to keep a small
delay while still having a robust maximum queuing delay
detection. The EWMA parameter α is set to 1/8, which is

4

the value typically used for computing the smoothed RTT
for TCP.

3.4. Slow-start: to do or not to do?

Similarly to LEDBAT, FLOWER might suffer from the
latecomer unfairness problem. During our experiments, we
notice that the use of the slow-start helps to mitigate the
latecomer issue (without solving it for LEDBAT). This
has also been noted by [14]. FLOWER uses slow-start
as a synchronization signal which also allows to get a first
measure of the maximum queuing delay refined afterwards
with the peak-valley algorithm. The purpose of slow-start
is to create a spike in the queuing delay since in the slow-
start phase, the congestion window increases exponentially
until causing a loss event. If other FLOWER connections
also experience a loss, they reset their congestion window.
As a consequence, the queuing delay is reduced allowing all
flows to sense almost the same base delay. All flows will
then raise again at the same time and share the capac-
ity equally. We highlight that slow-start of the newcomer
flow does not necessarily cause loss to other ongoing flows.
However, in this situation, the congestion detection func-
tionality of the FLOWER fuzzy controller helps ongoing
flows to detect the slow-start signal of the latecomer flow,
and hence to resynchronize all flows.

4. FLOWER fuzzy controller

At the core of FLOWER congestion control is the fuzzy
controller composed by the following modules [15]:

1. A rule base, which contains a set of “If–Then” rules
that describes how to achieve good control;

2. An inference mechanism, which emulates the human
expert’s decision making about how best to control
the system based on the information stored in the
rule base;

3. A fuzzification interface, which converts controller
inputs, e and ∆e, into fuzzy values that the inference
mechanism can use for its fuzzy reasoning process;

4. A defuzzification interface, which converts the con-
clusions of the inference mechanism into numerical
output ∆cwnd.

In the remainder of this section, we briefly introduce
these modules and illustrate their operation.

4.1. Choosing the controller inputs and output

To make a decision at the sampling instance k, the
controller uses as inputs the queuing delay error:

e(k) = τ − q(k) (3)

and the change of queuing delay error:

∆e(k) = −(q(k)− q(k − 1)) = −∆q(k) (4)

The queuing delay error is the difference between the
target queuing delay and the estimated queuing delay. If
the error is big, the control action must be large to quickly
drive the error to zero. In contrast, if the error is small,
the control action must be small to prevent oscillation.
Therefore, the controller modulates its actions with the
queuing delay error.

The change of queuing delay error is the error trend.
For a same degree of error, the control actions should dif-
fer depending on whether the error trend is increasing or
decreasing. If the error trend is increasing, the controller
needs to take stronger action to correct the error, but when
the error trend is decreasing, the controller must reduce
the control action to avoid over-reaction. Thus, the er-
ror trend is used to amplify or dampen the actions of the
controller.

The controller output is the change of congestion win-
dow ∆cwnd(k), that is, the pace at which the controller
must increase/decrease the congestion window to match
the queuing delay to the target queuing delay. The con-
gestion window size cwnd(k) is then calculated by:

cwnd(k) = cwnd(k − 1) + ∆cwnd(k) (5)

4.2. The rule base

The rule base models the relationship between inputs
and outputs of the system. It serves as a repository to store
the available knowledge about how to solve the problem in
the form of linguistic “If–Then” rules. To establish a rule,
we use linguistic variables and their linguistic values [15].

The linguistic variables describe each of the fuzzy con-
troller inputs and outputs, so they usually are the names
of inputs and outputs. For FLOWER, the linguistic vari-
ables are:

• “queuing delay error” or “e(k)”;

• “change of queuing delay error” or “∆e(k)”;

• “change of congestion window” or “∆cwnd(k)”.

Each linguistic variable assumes different linguistic val-
ues to give informative description about a numerical (real)
value. The linguistic variables of FLOWER take on the
following linguistic values:
{NVVL, NVL, NL, NM, NS, NVS, Z, PVS, PS, PM, PL,
PVL}
where the meaning is: N: negative; P: positive; V: very; Z:
zero; S: small; M: medium; L: large.

Hence, the linguistic value PVS stands for positive very
small and so forth.

To clarify how this controller operates, let’s take for
example the following linguistic rules:

If e(k) is PVL and ∆e(k) is Z Then ∆cwnd(k) is PVL

This rule describes the situation where the queuing de-
lay is very small and does not raise. In consequence, we
must increase the congestion window by a very large value.

5

Δcwnd
Δe

-5 -4 -3 -2 -1 0 1 2 3 4 5

e

-5 -5 -5 -5 -5 -5 -5 -4 -3 -2 -1 -6

-4 -5 -5 -5 -5 -5 -4 -3 -2 -1 0 -6

-3 -5 -5 -5 -5 -4 -3 -2 -1 0 1 -6

-2 -5 -5 -5 -4 -3 -2 -1 0 1 2 -6

-1 -5 -5 -4 -3 -2 -1 0 1 2 3 -6

0 -5 -4 -3 -2 -1 0 1 2 3 4 -6

1 -4 -3 -2 -1 0 1 2 3 4 5 -6

2 -3 -2 -1 0 1 2 3 4 5 5 -6

3 -2 -1 0 1 2 3 4 5 5 5 -6

4 -1 0 1 2 3 4 5 5 5 5 -6

5 0 1 2 3 4 5 5 5 5 5 -6

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Legend

-6 = NVVL, -5 = NVL, -4 = NL, -3 = NM,
-2 = NS, -1 = NVS, 0 = Z, 1 = PVS, 2 = PS,
3 = PM, 4 = PL, 5 = PVL

(P: Positive, N: Negative, V: Very,
Z: Zero, S: Small, M: Medium, L: Large)

Increasing Decreasing

Above
the target

Below
the target

The
 qu

eu
ing

 de
lay

Figure 4: The rule base of the FLOWER fuzzy controller.

If e(k) is NVS and ∆e(k) is NVS Then ∆cwnd(k) is NS

This rule describes the situation where the queuing
delay is slightly beyond the target delay and raises very
slowly. In consequence, we must decrease the congestion
window by a small value to counteract the movement.

For a system with two inputs and one output like FLOWER,
we can list all rules using tabular representation as shown
in Fig. 4. Note that in the rule table in Fig. 4, we use
linguistic-numeric values to shorten the description of lin-
guistic values [15] (e.g., -5 represents NVS; 0 represents Z;
3 represents PM; . . .).

To better understand the fuzzy controller dynamics, we
divide the rule table into six zones as follows:

Zone 1: Rules of this zone maintain the steady-state queu-
ing delay around the target. Both e(k) and ∆e(k)
remains very close to zero. In consequence, the fuzzy
controller must slightly increase or decrease the con-
gestion window (denoted ∆cwnd in Fig. 4) to rectify
small deviations from the target.

Zone 2: In this zone, e(k) is positive or zero, which means
that the queuing delay is respectively either below or
equal to the target. In addition, since ∆e(k) is neg-
ative or zero, the queuing delay tends to raise and
thus moves in the direction of the target. Therefore,
based on the increase trend magnitude of the queuing
delay, the fuzzy controller must either increase (i.e.
∆cwnd > 0) or decrease (i.e. ∆cwnd < 0) the conges-
tion window to accelerate or decelerate the queuing
delay motion to match the target.

Zone 3: In this zone, since e(k) is negative, the queuing
delay is above the target. On the other hand, ∆e(k)

is negative or zero, which means that the queuing de-
lay tends to increase and hence, in this case, moves
away from the target. Consequently, the fuzzy con-
troller must decrease the congestion window to com-
pensate the increase of the queuing delay.

Zone 4: For this zone, e(k) is negative and ∆e(k) posi-
tive, which corresponds to the situation where the
queuing delay is above and is decreasing towards the
target. As a result, to match the queuing delay to
the target, the fuzzy controller needs to accelerate
or decelerate the queuing delay motion based on the
magnitude of its decrease trend.

Zone 5: Rules of this zone represent the situation where
the queuing delay is either below or equal to the tar-
get. Moreover, the queuing delay is decreasing away
from the target. Thus, e(k) is either positive or zero
and ∆e(k) is positive. The fuzzy controller must
therefore increase the congestion window to reverse
the decrease trend of the queuing delay.

Zone 6—Congestion Detection Zone: An important
feature of FLOWER is its capability to react quickly
to congestion events caused by TCP. This feature is
integrated in the rule base and can be observed in
the last column of the rule table called the conges-
tion detection zone (see Fig. 4). Concretely, when
FLOWER detects a very large decrease in the queu-
ing delay (∆e(k) is 5 or PVL), it must immediately
reduce to its minimum congestion window (e.g, set to
one packet). This case corresponds to the following
output: ∆cwnd(k) is -6 or NVVL.

6

4.3. Membership functions

A membership function defines the semantic of a lin-
guistic value. Let’s A denote a linguistic value and X be
a universe of discourse for an input or output of a fuzzy
system, i.e, the range of numerical values that the inputs
and outputs can take as values. Each linguistic value A
is associated with a membership function. This member-
ship function quantifies the certainty or membership de-
gree that a numerical value x ∈ X can be classified lin-
guistically as A. The set of numerical values of X that a
membership function describes as being a linguistic value
A is called a fuzzy set.

In this paper, we use the most common triangle mem-
bership function defined by the three parameters {a, b, c}
as follows:

µA(x) : X 7→ [0, 1]

µA(x) =

0 if x ≤ a,
x− a
b− a

if a < x ≤ b,
c− x
c− b

if b < x < c,

0 if x ≥ c
(6)

where a < b < c and b is the center of the triangle mem-
bership function (i.e., where it reaches its peak) [15].

Consider, for example, the membership function µPV S

that quantifies the meaning of the linguistic value positive
very small for any numerical value x ∈ X:

• if µPV S(x) = 0 then we are certain that x is not
PVS;

• if µPV S(x) = 0.5 then we are only half certain that
x is PVS. It could also be Z with some degree of
certainty;

• if µPV S(x) = 1 then we are absolutely certain that
x is PVS.

Fig. 5 shows all the membership functions for the in-
puts and the output of the FLOWER fuzzy controller.

4.3.1. Membership functions of e(k)

Since the queue size varies continuously as a function
of the network traffic, we need to make the input error e(k)
independent of the network state. For this purpose, before
introducing e(k) into the fuzzy controller, we express it as
follows:

e(k) =

e(k)

τ
× 100 if q(k) ≤ τ,

e(k)

qmax − τ
× 100 if q(k) > τ

(7)

where qmax is the maximum queuing delay observed on
the network. Consequently, the membership functions of
e(k) is linearly distributed on the universe of discourse
[−100, 100] %.

4.3.2. Membership functions of ∆e(k)

The queuing delay is ranging from 0 to the maximum
value qmax. Thus, we have

∆e(k) = −(q(k)− q(k − 1)) = −∆q(k) (8)

where
q(k) ∈ [0, qmax]

Then, the universe of discourse for ∆e(k) is [−qmax, qmax] ms.
The variation of the queuing delay, and thus ∆e(k),

highly depends on the network state. Hence, we need
to dynamically adapt the distribution for the membership
functions of ∆e(k). In addition, as seen in the rule table
in Fig. 6, the congestion detection zone of FLOWER relies
only on ∆e(k). Therefore, we must determine a threshold
to define this zone. To this end, we use the exponentially
weighted moving average (EWMA) of values of ∆e(k). As
EWMA has higher weights on recent data than on older
data, sudden network condition changes are further taken
into account in this average. Consequently, the distribu-
tion for the membership functions of ∆e(k) is as follows:

−qmax, sde−,−3,−2,−1, 0, 1, 2, 3, sde+, qmax

where sde− and sde+ are the EWMA of the negative and
positive values of ∆e(k), respectively. {−qmax, sde−, sde+, qmax}
are respectively initialized with {−5,−4, 4, 5}. These val-
ues are updated only when the absolute value of a new
value is greater than the absolute value of the initial value.

Finally, we underline that, as an effect of the congestion
detection zone, when ∆e(k) > sde+, even if the certainty
µPV L(∆e(k)) is small, FLOWER reduces the congestion
window to its initial value.

4.3.3. Membership functions of ∆cwnd(k)

Outside the congestion detection zone, the distribu-
tion of ∆cwnd(k) is linear on the universe of discourse
[−1, 1] packet. As a consequence, the maximum ramp-up
speed of FLOWER is the same as TCP, i.e., one packet per
RTT. When operating in the congestion detection zone,
∆cwnd(k) is set to negative infinity to signal FLOWER to
reduce to minimum its sending rate. Otherwise, FLOWER
will ramp-down at maximum one packet per RTT.

4.4. Fuzzification

Fuzzification is the process of making a numerical value
fuzzy so that it can be used by the fuzzy system. When-
ever the fuzzification module receives a numerical value x,
it converts this value into a corresponding linguistic value
by associating a certainty that is quantified by the mem-
bership function µA(x).

4.5. Inference mechanism

The inference mechanism derives the fuzzy outputs from
the fuzzy inputs obtained by fuzzification, according to the
relation defined through fuzzy rules. The main matter is
how to interpret the meaning of each rule, i.e., how to

7

-1-2-3-4-5 1 2 3 4 50

-1-2-3-4-5 1 2 3 4 50

-1-2-3-4-5 1 2 3 4 50

e(t) (%)

Δe(t) (ms)

Δcwnd(t)

20

sde+ q
max

sde- -1-2-3 1 2 3

40 60 80 100-20-40-60-80-100

.6 .8 1.0.4.2-.2-.4-.6-.8-1.0-∞

-6

-q
max

Figure 5: The membership functions of the FLOWER fuzzy controller.

determine the influence produced by the premise on the
conclusion of the fuzzy rule. To assess this influence, the
inference process generally involves in two steps:

1. The certainty of the premise is determined using the
fuzzy conjunctive operator (AND);

2. The certainty of the conclusion, influenced by the
premise, is determined using the fuzzy implication
operator.

To illustrate the general idea of the inference mecha-
nism, we consider a simple fuzzy system with two inputs
x1 and x2 and one output y. The system is described by
the following rule base of the form:

Ri : If x1 is Ai
1 and x2 is Ai

2 Then y is Bi,

for i = 1, 2, . . . , r

where Ai
1, Ai

2, and Bi are the linguistic values of the lin-
guistic variables x1, x2, and y in the i-th rule Ri. We use
the minimum operator to represent both fuzzy conjunctive
and implication operators. Therefore, the certainty of the
premise of rule Ri is determined as follows:

µAi(x0) = µ(Ai
1 AND Ai

2)(x1, x2)

= min(µAi
1
(x1), µAi

2
(x2)) (9)

where x0 = (x1, x2). Then, the certainty of rule Ri is
determined as follows:

µRi
(y) = min(µAi(x0), µBi(y)) (10)

where µBi(y) is the membership function of the consequent
of rule Ri. The membership function µRi(y) quantifies
how certain rule Ri is when the output y should take on
certain values. In Eq. 10, the minimum operation trun-
cates the membership function of the consequent µBi(y)
to produce the membership function µRi

(y) (for graphical
representation, see example in Section 4.7).

4.6. Defuzzification

Defuzzification is the process of combining results of
the inference mechanism to obtain a numerical output
value y. We use the “center-average” defuzzication method
which calculates the weighted average of the output mem-
bership function centers bi:

y =

∑
i bisupy{µRi(y)}∑
i supy{µRi

(y)}
(11)

where supy{µRi
(y)} is the highest value of µRi

(y).
We have finished the description of the three processes

fuzzification, inference and defuzzification in a general con-
text. For FLOWER, we have x1 = e(k), x2 = ∆e(k) and
y = ∆cwnd(k).

4.7. Example of fuzzy controller operations

Consider the example in Fig. 6. Suppose that e(k) = 35
after being converted to the percentage form and ∆e(k) =
1. The fuzzification process using Eq. 6 gives µPV S(e(k)) =
0.25 and µPS(e(k)) = 0.75, whereas µPV S(∆e(k)) = 1.

8

PS PM

Δcwnd(k).6 .8.4.2

Δcwnd = 0.55

PVS

e(k) (%)0 40

PS

Δcwnd(k).6.4.2

PVS

0 2 Δe(k) (ms)

μ
PVS

(Δe(k)) = 1

μ
PVS

(e(k)) = 0.25 min

μ μ μ

PVS

0 2

PS

e(k) (%)20 60 Δe(k) (ms)

PM

Δcwnd(k).6 .8.4

μ
PVS

(Δe(k)) = 1

μ
PS

(e(k)) = 0.75

min

μμμ

R
1
: If e(k) is PVS and Δe(k) is PVS Then Δcwnd(k) is PS

R
2
: If e(k) is PS and Δe(k) is PVS Then Δcwnd(k) is PM

μ

Figure 6: Graphical representation of fuzzy controller operations.

Fig. 6 shows the certainties of the membership functions
for the inputs and indicates with black vertical lines the
numerical values of e(k) and ∆e(k). In this case, by con-
sulting the rule table in Fig. 4, we have the following cor-
responding rules:

R1: If e(k) is PVS and ∆e(k) is PVS Then ∆cwnd(k) is
PS

R2: If e(k) is PS and ∆e(k) is PVS Then ∆cwnd(k) is
PM

Now, consider the first rule R1. Let x0 = (e(k),∆e(k)),
and thus, using Eq. 9 of the inference mechanism, the cer-
tainty of the premise of the rule R1 is:

µA1(x0) = min(µPV S(e(k)), µPV S(∆e(k)))

= min(0.25, 1) = 0.25

and then, according to Eq. 10, we have:

µR1
(∆cwnd(k)) = min(0.25, µPS(∆cwnd(k)))

The membership function µR1
(∆cwnd(k)), which is the

conclusion reached by rule R1, is shown in Fig. 6 as the
blue region of the output membership function µPS(∆cwnd(k))
defining the linguistic value PS. As mentioned in Section 4.5,
this blue region is a result from the truncation of the mem-
bership function µPS(∆cwnd(k)) by the minimum opera-

tor. As a conclusion for rule R1, we are at most 25% cer-
tain that the ouput ∆cwnd(k) should be a positive small
value.

In the same way, for the second rule R2, we have:

µA2(x0) = min(µPS(e(k)), µPV S(∆e(k)))

= min(0.75, 1) = 0.75

and

µR2
(∆cwnd(k)) = min(0.75, µPM (∆cwnd(k)))

The membership function µR2(∆cwnd(k)) is shown as the
red region of the output membership function µPM (∆cwnd(k))
defining the linguistic value PM in Fig. 6. Here, we are at
most 75% certain that the ouput ∆cwnd(k) should be a
positive medium value. Therefore, we are more certain of
the conclusion reach by rule R2 than the conclusion reach
by rule R1.

To convert the conclusions of the inference process to a
numerical output, we use Eq. 11 of the defuzzification pro-
cess. As shown in Fig. 6, the highest values of µR1

(∆cwnd(k))
and µR2

(∆cwnd(k)) is 0.25 and 0.75, respectively. Thus,
we have:

sup∆cwnd{µR1
(∆cwnd(k))} = 0.25

and
sup∆cwnd{µR2(∆cwnd(k))} = 0.75

9

Then, with the output membership function centers b1 =
0.4 and b2 = 0.6, we have:

∆cwnd(k) =
0.4× 0.25 + 0.6× 0.75

0.25 + 0.75
= 0.55

5. Evaluation of FLOWER

We use the network simulator ns-2.35 to validate our
new protocol. For this purpose, we have implemented an
ns-2 prototype of FLOWER based on LEDBAT module
developed by Valenti et al. [16]. The prototype is imple-
mented as a Linux congestion control module on top of
the TCP-Linux framework [17]. Therefore, simulation re-
sults are much closer to a real implementation in the Linux
kernel and would allow to easily port our implementation
inside the Linux kernel (this also been the case for the
LEDBAT module [16]).

We specifically focus on the FLOWER performance in
terms of respect to a LBE traffic and latecomer unfairness
which are the two major drawbacks of LEDBAT.

5.1. Simulation setup

We use a dumbbell topology where a TCP flow shares
a single bottleneck link with a LBE flow (either FLOWER
or LEDBAT). Note that to test our protocol, we follow the
scenario used in [12] for the sake of comparison. All sources
send packets with a size of P = 1500 B. The bottleneck link
has a capacity set to C = 10 Mb/s and a one-way prop-
agation delay owd ∈ [10, 50, 100, 150, 200, 250] ms. The
bottleneck router is a FIFO drop-tail queue with a size
of B packets. For convenience, we express the bottleneck
buffer B as a ratio to the bandwidth-delay product BDP
in terms of packets. Hence, we have B = dn ·BDP e = dn ·
C ·2 ·owd/(8 ·P)e, where the ratio n ∈ [0.2, 0.4, 06, 0.8, 1.0]
and dxe is the ceiling function. Since B must be an integer,
we use the ceiling function to get the smallest integer not
less than B. We also convert the target τ from millisec-
onds to packets as follows: τ (packets) = τ (ms) ·C/(8 ·P).
In this paper, we use the target queuing delay τ = 100 ms
for all simulations. Therefore, τ = 100 ms corresponds to
83.3 packets and is rounded to 84 packets.

5.2. Interaction with TCP

In this section, we study the behavior of FLOWER in
the presence of TCP and more specifically, the interac-
tion between the FLOWER fuzzy controller and the TCP
AIMD (Additive Increase/Multiplicative Decrease) algo-
rithm.

5.2.1. Scenario and metrics

Two TCP and LBE flows start at t = 0 s and stop at
t = 75 s. In this scenario, owd = 50 ms and B = BDP .
To investigate the behavior of one LBE flow in coexistence
with one TCP flow, we consider their congestion windows
and the queue length of the bottleneck buffer.

5.2.2. Results

Fig. 7 shows both congestion windows (top) as a func-
tion of time conjointly with the queue length and the target
queuing delay expressed in packets (bottom). The interac-
tion between TCP and FLOWER is shown in Fig. 7a. In
the slow-start phase, TCP and FLOWER increase expo-
nentially their congestion window. Thus, the bottleneck
queue fills up quickly until loss. Unlike TCP, FLOWER
reduces its congestion window to its initial value which
equals to one packet in our implementation. After the
slow-start phase, approximatively before t = 3 s, as the
bottleneck queue is half-filled but the resulting queuing de-
lay is small compared to the target, FLOWER and TCP
congestion windows conjointly grow. As the queue still
increases because TCP keeps sending packets, FLOWER
reduces its sending rate (the target is almost reached) and
finally stabilizes its congestion window. After t = 7.5 s,
when the queuing delay is close to the target, FLOWER
reacts by decreasing its sending rate. Finally, FLOWER
reaches the minimum sending rate of one packet per RTT
at t = 9.3 s. Slightly afterwards, TCP gets losses and en-
ters in its recovery phase. As a consequence, TCP halves
its congestion window and the bottleneck queue is drained.

TCP re-enters in the congestion avoidance phase at
t = 10 s while FLOWER grows at its maximum speed as
the queue is not fully filled. FLOWER prevents bottleneck
overflow by reducing its sending rate before the knee phase
[18] (i.e. when the rate increases gradually but slower than
the delay). When TCP halves its congestion window at
t = 21.8 s, we observe an abrupt decrease of the queuing
delay. Shortly afterwards, FLOWER detects this decrease
with the help of the congestion detection scheme, hence it
drops to the minimum its congestion window. Therefore,
the queue is drained and FLOWER enters in a new cycle.
Henceforth, both FLOWER and TCP are in steady state.

This first experiment illustrates the good LBE behav-
ior of FLOWER in the presence of TCP. Clearly, the fuzzy
controller with the congestion detection scheme allows FLOWER
to be LBE compliant. In this standard configuration (we
recall that B = BDP), LEDBAT does not behave as a
LBE protocol and is too aggressive as shown in Fig. 7b.
This figure also illustrates that the LEDBAT P-type con-
troller does not react correctly to congestion events. We
refer the reader to previous studies [6, 14] for further de-
tails on the LEDBAT defective behavior.

In the next section, we extend these measurements to
several general networking use-cases in order to exhaus-
tively illustrate the good performance of our fuzzy con-
troller scheme.

5.3. FLOWER versus LEDBAT performance in coexis-
tence with TCP NewReno and TCP Cubic

In this section, we evaluate the impact of FLOWER
flows on TCP flows (either NewReno or Cubic) in different
network conditions.

10

 100

 200

 300

Co
ng

es
tio

n
w

in
do

w
 (p

kt
s) New Reno

FLOWER

 0
 40
 80

 120
 160
 200

0 10 20 30 40 50 60 70

Q
ue

ue
le

ng
th

 (p
kt

s)

Time (s)

Target
Queue length

(a) FLOWER vs. TCP NewReno

 100

 200

 300

Co
ng

es
tio

n
w

in
do

w
 (p

kt
s) New Reno

LEDBAT

 0
 40
 80

 120
 160
 200

0 10 20 30 40 50 60 70

Q
ue

ue
le

ng
th

 (p
kt

s)

Time (s)

Target
Queue length

(b) LEDBAT vs. TCP NewReno

Figure 7: TCP and LBE congestion windows and bottleneck queue length as a function of time.

5.3.1. Scenario and metric

We consider x long-lived TCP flows with x LBE flows
where x ∈ {2, 5, 10}. The simulation lasts 1200 s where
TCP flows start consecutively every 10 s from t = 0 s and
keep sending data until the end of simulation. LBE flows
start randomly between t = 350 s and t = 450 s in order
for TCP to reach the full capacity.

To assess the impact of LBE on TCP, we define the
metric rate distribution (X) as the total throughput achieved
by all flows Fk where k ∈ {TCP,LBE} over the total
throughput of all flows on the link:

Xk =
Fk

FTCP + FLBE
(12)

For each combination of network configuration {owd,B},
we run the simulation 10 times. After each run, we calcu-
late the rate distribution over the last 600 seconds. Then,
the mean of the 10 metric values is taken as the measured
value.

5.3.2. Results

In Fig. 8, using histogram, we group the simulation
results into different categories of one-way delay (denoted
owd in Fig. 8), and then into subclasses of buffer size given
as a ratio to the BDP. For information purpose, note that
at the top of the histogram, the equivalent ratio to the
BDP is converted as the ratio to the target value given in
packets as explained in Section 5.1. This means we express
B as the ratio to the target τ in the same way as with the
BDP . For instance, looking at Fig. 8, a buffer sized 0.4
of the BDP at owd = 100 ms corresponds to 0.7 of target
value in packets. For each buffer size, each stacked column
gives the sum of the normalized rates obtained by both
TCP and LBE flows. Then, each slice inside a column
represents the part obtained by x TCP and x LBE flows
given by (12).

Fig. 8a, 8c and 8e show the performance of LEDBAT
and FLOWER in the presence of TCP NewReno. We have

selected a set of network configurations following our previ-
ous study on the LEDBAT performance issues [6]. These
network configurations illustrate a large number of use-
cases where LEDBAT performs (in Fig. 8a, 8c and 8e,
when the ratio of the bottleneck buffer size to the target
τ is largely greater than 1) or does not perform correctly
(resp. the reverse). As shown in Fig. 8a, 8c and 8e, LED-
BAT obtains sometimes more than TCP NewReno and
crosses the fair-share line represented by a dotted line. We
then compare the results obtained by FLOWER in these
configuration. Fig. 8a, 8c and 8e allow to easily compare
the performance of both protocols in identical situation.
The results are unequivocal and illustrate that FLOWER
behaves as a LBE protocol where LEDBAT fails in realistic
cases.

Using the same network configurations as above, we
now study the performance of LEDBAT and FLOWER in
coexistence with TCP Cubic in Fig. 8b, 8d and 8f. TCP
Cubic is more aggressive than TCP NewReno but in those
cases, the performance of FLOWER is better than LED-
BAT in respect of the LBE principle.

5.4. Intra-protocol fairness

We finally study the interaction between two FLOWER
flows to assess their intra-fairness and determine whether
FLOWER is not impacted by the latecomer issue.

5.4.1. Scenario and metric

In this scenario, the buffer size B is set to twice the
BDP . This configuration is favorable to get the LED-
BAT latecomer unfairness phenomenon. The bottleneck
link has a one-way delay owd = 50 ms. The first LBE
flow starts at t = 0 s and the second starts at t = 20s.
Both flows last 150 s. As in 5.2, we draw their congestion
windows and the queue length of the bottleneck buffer.

5.4.2. Results

Fig. 9b shows the LEDBAT latecomer issue [16]. The
first LEDBAT flow starts when the bottleneck queue is

11

 0.2
 0.4
 0.6
 0.8

 1

0.
04

0.
07

0.
1

0.
1

0.
2

0.
2

0.
3

0.
5

0.
7

0.
8

0.
3

0.
7

1.
0

1.
3

1.
7

0.
5

1.
0

1.
5

2.
0

2.
5

0.
7

1.
3

2.
0

2.
7

3.
3

0.
8

1.
7

2.
5

3.
3

4.
2

Buffer size (ratio to τ in pkts)

TC
P

vs
. F

LO
W

ER

FLOWER New Reno

 0.2
 0.4
 0.6
 0.8

 1

0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1

R
at

e
di

st
rib

ut
io

n

Buffer size (ratio to BDP in pkts)

TC
P

vs
. L

ED
B

A
T

LEDBAT

250 ms200 ms150 ms100 ms50 msowd=10 ms

(a) 2 flows TCP NewReno vs. 2 flows LBE

 0.2
 0.4
 0.6
 0.8

 1

0.
04

0.
07

0.
1

0.
1

0.
2

0.
2

0.
3

0.
5

0.
7

0.
8

0.
3

0.
7

1.
0

1.
3

1.
7

0.
5

1.
0

1.
5

2.
0

2.
5

0.
7

1.
3

2.
0

2.
7

3.
3

0.
8

1.
7

2.
5

3.
3

4.
2

Buffer size (ratio to τ in pkts)

TC
P

vs
. F

LO
W

ER

FLOWER New Reno

 0.2
 0.4
 0.6
 0.8

 1

0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1

R
at

e
di

st
rib

ut
io

n

Buffer size (ratio to BDP in pkts)

TC
P

vs
. L

ED
B

A
T

LEDBAT

250 ms200 ms150 ms100 ms50 msowd=10 ms

(b) 2 flows TCP Cubic vs. 2 flows LBE

 0.2
 0.4
 0.6
 0.8

 1

0.
04

0.
07

0.
1

0.
1

0.
2

0.
2

0.
3

0.
5

0.
7

0.
8

0.
3

0.
7

1.
0

1.
3

1.
7

0.
5

1.
0

1.
5

2.
0

2.
5

0.
7

1.
3

2.
0

2.
7

3.
3

0.
8

1.
7

2.
5

3.
3

4.
2

Buffer size (ratio to τ in pkts)

TC
P

vs
. F

LO
W

ER

FLOWER New Reno

 0.2
 0.4
 0.6
 0.8

 1

0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1

R
at

e
di

st
rib

ut
io

n

Buffer size (ratio to BDP in pkts)

TC
P

vs
. L

ED
B

A
T

LEDBAT

250 ms200 ms150 ms100 ms50 msowd=10 ms

(c) 5 flows TCP NewReno vs. 5 flows LBE

 0.2
 0.4
 0.6
 0.8

 1

0.
04

0.
07

0.
1

0.
1

0.
2

0.
2

0.
3

0.
5

0.
7

0.
8

0.
3

0.
7

1.
0

1.
3

1.
7

0.
5

1.
0

1.
5

2.
0

2.
5

0.
7

1.
3

2.
0

2.
7

3.
3

0.
8

1.
7

2.
5

3.
3

4.
2

Buffer size (ratio to τ in pkts)

TC
P

vs
. F

LO
W

ER

FLOWER Cubic

 0.2
 0.4
 0.6
 0.8

 1

0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1

R
at

e
di

st
rib

ut
io

n

Buffer size (ratio to BDP in pkts)

TC
P

vs
. L

ED
B

A
T

LEDBAT

250 ms200 ms150 ms100 ms50 msowd=10 ms

(d) 5 flows TCP Cubic vs. 5 flows LBE

 0.2
 0.4
 0.6
 0.8

 1

0.
04

0.
07

0.
1

0.
1

0.
2

0.
2

0.
3

0.
5

0.
7

0.
8

0.
3

0.
7

1.
0

1.
3

1.
7

0.
5

1.
0

1.
5

2.
0

2.
5

0.
7

1.
3

2.
0

2.
7

3.
3

0.
8

1.
7

2.
5

3.
3

4.
2

Buffer size (ratio to τ in pkts)

TC
P

vs
. F

LO
W

ER

FLOWER New Reno

 0.2
 0.4
 0.6
 0.8

 1

0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1

R
at

e
di

st
rib

ut
io

n

Buffer size (ratio to BDP in pkts)

TC
P

vs
. L

ED
B

A
T

LEDBAT

250 ms200 ms150 ms100 ms50 msowd=10 ms

(e) 10 flows TCP NewReno vs. 10 flows LBE

 0.2
 0.4
 0.6
 0.8

 1

0.
04

0.
07

0.
1

0.
1

0.
2

0.
2

0.
3

0.
5

0.
7

0.
8

0.
3

0.
7

1.
0

1.
3

1.
7

0.
5

1.
0

1.
5

2.
0

2.
5

0.
7

1.
3

2.
0

2.
7

3.
3

0.
8

1.
7

2.
5

3.
3

4.
2

Buffer size (ratio to τ in pkts)

TC
P

vs
. F

LO
W

ER

FLOWER New Reno

 0.2
 0.4
 0.6
 0.8

 1

0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1 0.
2

0.
4

0.
6

0.
8

1

R
at

e
di

st
rib

ut
io

n

Buffer size (ratio to BDP in pkts)

TC
P

vs
. L

ED
B

A
T

LEDBAT

250 ms200 ms150 ms100 ms50 msowd=10 ms

(f) 10 flows TCP Cubic vs. 10 flows LBE

Figure 8: Rate distribution of TCP and LBE flows.

empty, and as a result, senses a base delay. When the sec-
ond LEDBAT flow starts at t = 20 s, the queue is filled
with ≈ 50 packets. Consequently, the second flow esti-
mates a higher base delay including the queuing delay of
the first one. Since its estimated queuing delays are below
the target delay, the second flow raises its sending rate. As
a result, the first one senses an increasing queuing delay

and begins to decelerate. Finally, it reaches its minimum
rate at t = 131 s as shown in Fig. 9b. On the contrary,
FLOWER does not inherit this latecomer issue thanks to
the congestion detection scheme described in Section 4 as
shown in Fig. 9a. This experiment demonstrates that two
FLOWER flows can now share fairly the link capacity.

To better understand this experiment, we recall that

12

 100

 200

 300

 400

 500

Co
ng

es
tio

n
w

in
do

w
 (p

kt
s) FLOWER 1

FLOWER 2

 0
 40
 80

 120
 160
 200

0 20 40 60 80 100 120 140

Q
ue

ue
le

ng
th

 (p
kt

s)

Time (s)

Target
Queue length

(a) FLOWER

 0

 100

 200

 300

Co
ng

es
tio

n
w

in
do

w
 (p

kt
s) LEDBAT 1

LEDBAT 2

 0
 40
 80

 120
 160
 200

0 20 40 60 80 100 120 140

Q
ue

ue
le

ng
th

 (p
kt

s)

Time (s)

Target
Queue length

(b) LEDBAT

Figure 9: LBE congestion windows and bottleneck queue length as a function of time.

the goal of slow-start is to create a spike in queuing delay
when a new FLOWER flow enters in the network. This
queuing delay spike should be detected by other ongoing
FLOWER flows with the help of the congestion detection
zone in the rule table of the fuzzy controller. However,
when the bottleneck buffer size is not large enough or
when the bottleneck is heavily congested, this queuing de-
lay spike (caused by the slow-start) might be too small to
be detected by FLOWER. In general and in this context
(i.e. bottleneck heavily congested or small buffer size),
the performance of delay-based congestion control proto-
cols heavily suffer from the inaccuracy of the estimated
delay as discussed [3].

6. Coexistence of FLOWER and AQM

Active Queue Management (AQM) has been an active
research field starting from the QoS epoch. While many
schemes have been proposed, their deployment seems very
limited although many of them are available in the GNU/Linux
kernel. However, recent concern about the excessive net-
work end-to-end delay makes AQM an up to date and hot
topic at the IETF today. AQM is usually considered as
the best solution to solve this bufferbloat problem [19, 20].
Unfortunately, LBE transport protocols are designed to
work mainly under a DropTail queuing discipline.

In the presence of AQM, LEDBAT loses its LBE char-
acteristic and behaves like standard TCP as shown by the
authors of [21] and of [22, 12]. LEDBAT RFC also admits
this fact [4]: “If Active Queue Management is configured
to drop or ECN-mark packets before the LEDBAT flow
starts reacting to persistent queue buildup, LEDBAT re-
verts to standard TCP behavior rather than yielding to
other TCP flows”. Therefore, when designing a new LBE
protocol (or any kind of novel transport protocol), it is
important to study its coexistence with AQM schemes.

In this section, we evaluate the impact of AQM such as
RED [23], CoDel [24] and PIE [25] on the LBE-compliance
of FLOWER in the presence of standard TCP connections.

We chose to limit our study to these three AQMs as they
currently compete at the IETF as a potential solution for
the bufferbloat problem [20, 19]. To ease the comparison,
we directly employ the scripts used by the authors of this
excellent study [12], which are available at [26].

6.1. Active Queue Management Schemes

Before diving into the results, we briefly review and
recall the principle behind each AQM tested.

6.1.1. Random Early Detection (RED)

RED randomly dropped packets with a probability p,
calculated based on the Exponential Weighted Moving Av-
erage (EWMA) qavg of the instantaneous queue length as
follows:

p(qavg) =

0 0 ≤ qavg ≤ minth,
qavg −minth
maxth −minth

pmax minth < qavg ≤ maxth,

1 qavg > maxth
(13)

where

minth: the minimum threshold,

maxth: the maximum threshold,

pmax: the maximum probability for packet dropping at
the maximum threshold.

In this study, we use the default version of RED in ns-
2. In this version, the gentle mode is enabled to make
RED more robust; the minth and maxth are automati-
cally configured as a function of the target average delay
targetdelay , which has a default value of 5 ms.

6.1.2. Controlled Delay (CoDel)

The goal of CoDel is to keep the minimum queuing
delay (or sojourn delay) experienced by packets in a fixed
interval (100 ms by default) below a target delay (5 ms by
default). Therefore, CoDel starts to drop selected packets

13

when the minimum queuing delay is higher than the target
delay. Each time CoDel drops a packet, it sets the next
dropping time based on the number of drops since the
beginning of the dropping state, as follows:

nextDropT ime = lastDropT ime+
interval√

numOfDrops
(14)

For our test, we use the ns-2 CoDel implementation
provided by the scripts of [12].

6.1.3. Proportional Integral Controller Enhanced (PIE)

Similar to CoDel, PIE keeps the queuing delay around
a target delay, which has a default value of 20 ms. How-
ever, instead of monitoring the real delay for each packet
like CoDel, PIE estimates the current queuing delay based
on the queue draining rate using Little’s law. To determine
the dropping probability every tupdate time units, PIE em-
ploys a PI-type controller that takes into account both the
current queuing delay and its trend:

p = p+ α · (queuingDelay − targetDelay)

+ β · (queuingDelay − lastQueuingDelay) (15)

where the factors α and β are respectively set to 0.125 and
1.25 by default. The ns-2 implementation of PIE used can
be found at [27].

6.2. Scenario and Metrics

We consider five long-lived standard TCP flows con-
jointly with five LBE flows. All flows start at time t = 0.
In this scenario, owd = 50 ms and B = 250 pkts = 3 ×
BDP to reproduce the bufferbloat.

To evaluate the interaction between LBE protocols (LED-
BAT, FLOWER) and AQM schemes (RED, CoDel, PIE),
we measure the rate distribution of TCP XTCP , the aver-
age queue length E[Q] in terms of packet, and the bufferbloat
intensity defined as E[Q]/B. Note that in [12], the authors
denote XTCP as TCP%.

For each combination of LBE protocols and AQM schemes,
we run the simulation ten times and each run lasts for 60 s.
The mean of the metric values is then taken as the mea-
sured values.

6.3. Impact of AQM Schemes on LBE Protocols

We present the simulation results in Figure 10 using
a parallel coordinate plot. The left and right y-axes cor-
respond to the bufferbloat intensity E[Q]/B and the rate
distribution of TCP, respectively. In the parallel coordi-
nate plot, a line connecting these two metrics represents
the interaction of each combination of AQM schemes and
LBE protocols. The ideal interaction is illustrated by the
green oblique region in Figure 10, in which the queuing
delay is low while the LBE traffic remains low-priority.

Under DropTail (denoted DT in Fig. 10), TCP con-
tinuously fills up the buffer until loss and therefore maxi-
mizes the bufferbloat intensity, as shown in Figure 10. As

Figure 10: Impact of AQM on LBE protocols.

for LEDBAT and FLOWER, in this case, they are both
LBE-compliant, which are represented by TCP shares ap-
proaching one. We recall that the goal of LEDBAT and
FLOWER is to keep the queuing delay around a fixed tar-
get. Nevertheless, this choice of design only limits the
exacerbation of bufferbloat but does not solve it.

Figure 10 clearly shows that employing an AQM scheme
solves the bufferbloat issue. However, such an AQM scheme
also compromises the low-priority characteristic of LBE
protocols and raises their aggressiveness towards TCP. In
this case, LEDBAT competes quite fairly with TCP. The
results for LEDBAT are actually in accordance with the
study in [12]. Regarding the new protocol, in all cases,
FLOWER is always more LBE-compliant than LEDBAT
and tends towards the ideal region. There are two reasons
behind this outcome. First, FLOWER has a congestion
detection zone in its fuzzy rule base that allows it to re-
act better than LEDBAT in front of congestion. Second,
FLOWER resets its congestion window to minimum in
case of loss to alleviate its impact on higher priority flows.
Both allows to make FLOWER compliant to perform with
AQM schemes.

7. Conclusion

We propose FLOWER, a new delay-based congestion
control protocol designed to provide a LBE service us-
ing results from the fuzzy logic area. The main goal of
FLOWER is to overcome both major LEDBAT drawbacks:
aggressiveness and latecomer unfairness, while being LBE
compliant. Our simulation study over a wide range of
network use-cases shows that FLOWER performs better
than LEDBAT in case where it usually fails. To the best of
our knowledge, FLOWER is the first solution that solves
both the aggressiveness issue inherent to LEDBAT pro-
tocol and the fairness issue. Last but not least, we fi-
nally showed that FLOWER remains compliant with AQM
schemes that aim to mitigate the bufferbloat issue.

14

Acknowlegdements

The authors wish to thank CNES and Thales Alenia
Space for funding and Cédric Baudoin, Emmanuel Dubois,
Patrick Gélard for numerous discussions on this study.

References

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss,
An Architecture for Differentiated Services, RFC 2475 (Dec.
1998).

[2] V. Cerf, V. Jacobson, N. Weaver, J. Gettys, BufferBloat:
What’s Wrong with the Internet?, Queue, ACM 9 (12) (2011)
10–20.

[3] D. Ros, M. Welzl, Less-than-Best-Effort Service: A Survey of
End-to-End Approaches, Commun. Surveys Tutorials, IEEE
15 (2) (2013) 898–908.

[4] S. Shalunov, G. Hazel, J. Iyengar, M. Kuehlewind, Low Ex-
tra Delay Background Transport (LEDBAT), RFC 6817 (Dec.
2012).

[5] G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, A hands-on
Assessment of Transport Protocols with Lower than Best Effort
Priority, in: IEEE LCN, 2010.

[6] S. Q. V. Trang, N. Kuhn, E. Lochin, C. Baudoin, E. Dubois,
P. Gelard, On the existence of optimal LEDBAT parameters,
in: IEEE ICC, 2014.

[7] N. Kuhn, O. Mehani, A. Sathiaseelan, E. Lochin, Less-than-
Best-Effort Capacity Sharing over High BDP Networks with
LEDBAT, in: IEEE VTC Fall, 2013.

[8] D. Ros, M. Welzl, Assessing LEDBAT’s Delay Impact, Com-
mun. Lett., IEEE 17 (5) (2013) 1044–1047.

[9] G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, S. Valenti,
Rethinking the Low Extra Delay Background Transport (LED-
BAT) Protocol, Comput. Netw. 57 (8) (2013) 1838–1852.

[10] A. Venkataramani, R. Kokku, M. Dahlin, TCP Nice: a mecha-
nism for background transfers, SIGOPS Oper. Syst. Rev. 36 (SI)
(2002) 329–343.

[11] A. Kuzmanovic, E. W. Knightly, TCP-LP: low-priority ser-
vice via end-point congestion control, IEEE/ACM Trans. Netw.
14 (4) (2006) 739–752.

[12] Y. Gong, D. Rossi, C. Testa, S. Valenti, M. Täht, Fighting
the bufferbloat: on the coexistence of AQM and low priority
congestion control, Comput. Netw. 65 (2014) 255–267.

[13] A. Abu, S. Gordon, A Dynamic Algorithm for Stabilising LED-
BAT Congestion Window, in: ICCNT, 2010.

[14] D. R. Giovanna Carofiglio, Luca Muscariello, S. Valenti, The
Quest for LEDBAT Fairness, in: IEEE GLOBECOM, 2010.

[15] K. Passino, S. Yurkovich, Fuzzy Control, Addison-Wesley, 1998.
[16] D. Rossi, C. Testa, S. Valenti, L. Muscariello, LEDBAT: The

New BitTorrent Congestion Control Protocol, in: ICCCN, 2010.
[17] D. X. Wei, P. Cao, NS-2 TCP-Linux: An NS-2 TCP Imple-

mentation with Congestion Control Algorithms from Linux, in:
Proc. Workshop Ns-2: The IP Network Simulator, 2006.

[18] D.-M. Chiu, R. Jain, Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks,
Comput. Netw. ISDN Syst. 17 (1) (1989) 1–14.

[19] N. Khademi, D. Ros, M. Welzl, The new aqm kids on the block:
An experimental evaluation of codel and pie, in: IEEE Con-
ference on Computer Communications Workshops (INFOCOM
WKSHPS), 2014, pp. 85–90.

[20] N. Kuhn, E. Lochin, O. Mehani, Revisiting old friends: Is
codel really achieving what red cannot?, in: Proceedings of the
2014 ACM SIGCOMM Workshop on Capacity Sharing Work-
shop, CSWS ’14, ACM, New York, NY, USA, 2014, pp. 3–8.
doi:10.1145/2630088.2630094.
URL http://doi.acm.org/10.1145/2630088.2630094

[21] J. Schneider, J. Wagner, R. Winter, H. Kolbe, Out of my way -
evaluating Low Extra Delay Background Transport in an ADSL
access network, in: Teletraffic Congress (ITC), 2010 22nd In-
ternational, 2010, pp. 1–8.

[22] Y. Gong, D. Rossi, E. Leonardi, Modeling the interdependency
of low-priority congestion control and active queue manage-
ment, in: 2013 25th International Teletraffic Congress (ITC),
2013, pp. 1–9.

[23] S. Floyd, V. Jacobson, Random early detection gateways for
congestion avoidance, IEEE/ACM Transactions on Networking
1 (4) (1993) 397–413. doi:10.1109/90.251892.

[24] K. Nichols, V. Jacobson, Controlling queue delay, Communica-
tions of the ACM 55 (7) (2012) 42–50.

[25] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian,
F. Baker, B. VerSteeg, PIE: A lightweight control scheme to ad-
dress the bufferbloat problem, in: IEEE 14th International Con-
ference on High Performance Switching and Routing (HPSR),
2013, pp. 148–155.

[26] http://perso.telecom-paristech.fr/ drossi/index.php?n=Dataset.LEDBATAQM.
[27] https://heim.ifi.uio.no/ naeemk/research/PIE/ns-2/.

15

