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Abstract

Lined ducts are used to reduce noise radiation from ducts in turbofan engines.

In certain conditions they may sustain hydrodynamic instabilities. A local

linear stability analysis of the flow in a 2D lined channel is performed using

a numerical integration of the governing equations. Several model equations

are used, one of them taking into account turbulent eddy viscosity, and a

realistic turbulent mean flow profile is used that vanishes at the wall. The

stability analysis results are compared to published experimental results.

Both the model and the experiments show the existence of an unstable mode,

and the importance of taking into account eddy viscosity in the model is

shown. When this is done, quantities such as the growth rate and the velocity

eigenfunctions are shown to agree correctly.
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1. Introduction

Lined ducts are widely used to reduce noise radiation from ducts, for

example in air conditioning systems and turbofan engines. In the presence

of flow, the interaction of sound and flow above the liner can be complex.

One of the main feature of this interaction are nonlinear effects, which have

an effect on peak absorption frequency and on sound transmission when the

Mach number increases[1, 2]. Another possible effect is the presence of an

instability over the liner, which is the subject of the present paper.

In some circumstances, sound amplification by a liner has been observed

[3, 4, 5]. This has been the case mostly for plane waves, for low-resistance

liners, and for a high enough mean flow velocity. This amplification has been

ascribed to an underlying flow instability. In recent experiments [6] the flow

has been measured over a liner in such a situation when the liner ampli-

fies sound at some frequency close to the resonance frequency of the liner.

The presence of a spatial instability has been confirmed, and quantites such

as growth rate, spatial wavelength, and eigenfunctions have been provided.

Some numerical evidence of instability over a liner also exist [7, 8].

Many analytical works have been performed on propagation modes in

lined ducts with flow [9, 10, 11, 12]. They often rely on a constant mean flow

(or plug flow) assumption. As a result, there is a sheet of vorticity at the

wall, and it becomes necessary to introduce a model for enforcing the liner

impedance at the wall. A widely used model is that by Myers, which enforces

the continuity of particle displacement across the vorticity sheet[13, 14]. Us-
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ing this model, Tester [9] showed that the response of a lined duct to an

impulse contains some modes that are amplified during their propagation.

This instability was found to be of the convective type. In his classification

of modes in lined duct with flow, Rienstra[11], besides acoustic modes, also

predicts some unstable hydrodynamic surface modes. Though, the effect of

the Myers boundary condition has been questioned[9, 15, 16]. In particular,

Brambley[16] has shown that the Myers’ boundary condition is ill-posed. The

use of classical stability criteria such as Briggs-Bers’ [17, 18] then becomes

invalid. Such a criterion was used by Rienstra[11] to prove the existence of

spatially amplified waves. This renders the conclusions about the stability of

flow in lined flow ducts fragile. Fortunately, it is possible to avoid the use of

the Myers’ boundary condition: one has to use a velocity profile that accounts

for the boundary layer and vanishes to zero at the wall. It is then not possible

to tackle the problem analytically and one has to rely on a numerical solver

to calculate the eigenmodes[19, 20, 21, 15, 22, 23], which will be the case here.

The effect of dissipative mechanisms on acoustic propagation and the re-

sulting acoustic damping has been the object of some researches. This effect

is well known in the absence of flow, where the wavenumber becomes com-

plex with an imaginary part given by Kirchoff’s formula[24]. The presence

of flow complicates the matter somewhat[25, 26], and there are still different

models for the wavenumbers with flow when dissipation is present[24, 27, 28].

Few works have focused on the effect of viscosity over the modes above an

acoustic liner, even is some studies have considered the effect of viscosity on

the nature of the boundary condition at a liner[29]. The effect of turbulent
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eddy visosity on the other hand has been taken into account in several studies

dealing with the mechanics of an organized wave in a turbulent shear flow

[30, 31, 32], and the same kind of formalism will be used here.

In the present paper, a local 2D linear stability analysis is performed to

investigate the presence of an unstable mode over a lined wall in a duct with

flow, and the effect of viscous dissipation on the mode is taken into account,

which is new to the author knowledge. The different parameters are taken

to be identical to those in reference [6], so that the models can be tested

against experiments. A brief summary of the experimental results are re-

called in section 2. The modelling of the turbulent flow is provided. Several

models for the stability analysis are then presented in section 3. These are

an inviscid compressible model (Pridmore-Brown), an inviscid incompress-

ible model (Rayleigh), and a viscous incompressible model which takes into

account both the molecular and the turbulent eddy viscosity. The numeri-

cal solution method is also presented. Section 4 presents the results for the

inviscid compressible and incompressible models. These models predict ab-

solute instability and do not match the experiments. Section 5 presents the

results for the incompressible but viscous model. This model predicts spa-

tial instability and provides a correct match with the experiments. Finally

conclusions are given.

2. Summary of experimental results

In Marx et al[33, 6] an instability has been measured in a lined flow duct.

The setup and main results are now briefly recalled, and the modelling of
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the mean turbulent flow is presented.

A 2D cut of the experimental configuration is shown Fig. 1. The channel

has a height 2H̃=0.02m, with a rigid top wall and a partly-lined bottom

wall. In following the tilde˜is used to indicate physical quantities, while no

tilde is used for normalized quantities. Quantities used for normalizing are

introduced in the next section. The duct width (0.08 m) gives an aspect ratio

of 4 which, while not very large, we assume is large enough for a 2D model to

be suitable. The liner on the bottom wall covers the whole span of the section

Figure 1: Studied configuration. The notation˜is for physical quantities

.

and has a length L̃=0.075m in the streamwise direction. It consists of tightly

spaced square resonators and has the normalized normalized admittance:

Y = −iQ tan
[
Ãω̃ + i

ε

2

]
= −iQ tan

[
Aω + i

ε

2

]
(1)

with ε=0.3, Q=0.8, Ã=2.5 x 10−4s, A = Ãc̃0/H̃=8.5. For the stability

analysis performed below, the expression for the impedance needs to be con-

tinued in the complex ω-plane, and this continuation is valid for the present

model[34].
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The flow velocity Ũ(ỹ) is along the x̃-direction and depends on ỹ. The

velocity profile has been measured at several stations above the liner and

its shape changes with streamwise location, with a displacement thickness

changing from about 0.9mm to 1.5mm. While the profile just upstream of

the liner (above the rigid wall) does not represent the flow at all streamwise

stations above the liner, it will be used for the stability analysis. This profile

is given in Fig. 2. The section-averaged mean Mach number is defined as:
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Figure 2: Experimentally measured mean velocity profile; and analytical approximation

obtained by integration of Eq. (3) using Cess’ expression for the total viscosity, Eq. (4).

M0,avg =
1

2

∫ 1

−1

M0(y)dy , (2)

where M0(y) is the Mach number. Its value is: M0,avg=0.27.

When performing the stability analysis, it is desirable to have an analytic

form of the velocity profile. In Marx and Aurégan [22], the profile was fit-

ted by using polynomials: a quadratic polynomials in the near wall region,

smoothly connected to a quadratic one in the central region. Such a fit ig-

nores the physics of the flow in the near wall region. This region is well
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known to exhibit a viscous sublayer, a buffer layer, and a logarithmic layer.

Ignoring these regions seems irrelevant when using a turbulent eddy viscosity

model as will be done below. Thus a profile physically acceptable in the near

wall region will be used in the following even if it is not as good as the fit in

[22] for the central region of the channel. Note that in the literature the flow

in the wall region has been measured mainly for flow over rigid or possibly

rough surfaces, but not for the kind of wall corresponding to the acoustic

liners. This is another reason for using the velocity profile just upstream of

the acoustic material, since it is is measured over a rigid wall.

The mean flow used in the present work is obtained by integrating the

following expression [30, 32]:

dU+
0

dy
= − Reτy

ν+
T (y)

(3)

The + superscript indicates a normalization in wall units. In such a normal-

ization the velocity is normalized by the wall friction velocity, ũτ ; the total

viscosity, ν̃T (y), is normalized by the physical viscosity, ν̃; and the Reynolds

number is given by Reτ = ũτH̃/ν̃. The total viscosity is the sum of the

physical viscosity and of the turbulent eddy viscosity, ν̃t, that is:

ν̃T = ν̃ + ν̃t or ν+
T = 1 + ν+

t

It is given by Cess’ expression [30, 31, 32]:

ν+
T (y) =

1

2
+

1

2

[
1 +

κ2Re2
τ

9
(1 − y2)2(1 + 2y2)2

(
1 − e(|y|−1)Reτ /AV D

)2
]

(4)

κ=0.42 is the von Karman constant, and AV D=25.4 is a constant. This

expression is valid for Reτ up to a few thousand, which is the case here. This
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model is based on a turbulent eddy viscosity using a Prandtl mixing layer

hypothesis and a Van Driest correction. It includes the viscous sublayer,

the buffer layer, the logarithmic layer and a wake correction at the center

of the channel. These features have also been used by Agarwal and Bull

[20] in their study of acoustic modes in a cylindrical duct, while with a

slightly different model. These authors did not include the effect of viscosity

on the perturbation though. The previous expressions allow for a degree

of freedom, which is Reτ , or likewise, ũτ . These are determined so that the

experimental profile and the analytical profile correspond to the same section-

averaged Mach number of 0.27, which provides: Reτ=2760, corresponding to

ũτ=4.14 m.s−1. The analytical velocity profile obtained by integrating Eq. (3)

together with Eq. (4) using this value for Reτ is given in Fig. 2. It matches

correctly the experimentally measured profile. The total eddy viscosity is

given in Fig. 3. It is seen that the turbulence is generating viscosity more

than 200 times that of the molecular viscosity.

For a high enough flow speed, the acoustic transmission by the liner of

acoustic waves in a frequency range around the liner resonance frequency

was abnormally large [6]. Some phase-locked laser measurements of the flow

were performed and structures convected by the flow and growing spatially

were observed above the liner. An example of fluctuating axial velocity, ũ′,

and fluctuating transverse velocity, ṽ′, at one phase is shown in Fig. 4. This

was obtained for a section-averaged mean Mach number M0,avg=0.27 and an

incident acoustic wave with frequency f̃a=1060Hz at sound pressure level

Li= 133 dB. The normalized fluctuating velocity could be put into the form
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Figure 3: Total viscosity, given by Eq. (4) for Reτ=2760.

Figure 4: Maps of the phase-averaged axial (ũ′) and transverse (ṽ′) velocity over the height

of the channel. The liner covers the bottom wall, and the origin x̃=0 is counted from the

position where the liner starts.

of a travelling wave amplifying in the downstream direction. That is:

u′(x, y, t) = û(y,α,ωa)e
i(αx−ωat) v′(x, y, t) = v̂(y,α,ωa)e

i(αx−ωat) (5)

Here α = αr + iαi is the complex wavenumber (−αi is the growth rate). The

normalized angular frequency ωa corresponds to the particular frequency of

the exciting incident acoustic wave (ωa ∼ 0.196). The eigenfunctions û and
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v̂ can also be written:

û(y) = |û(y)|eiφu(y) v̂(y) = |v̂(y)|eiφv(y) (6)

In Marx et al[33, 6], the wave number has been given to be α = 1.3 − 0.3i

(corresponding to α̃r ∼130 m−1 and α̃i ∼ 30 m−1), and the eigenfunctions

|û(y)| and |v̂(y)| have also been given. These will be compared to the result

of the stability analysis in the following.

3. Model and stability analysis

3.1. Compressible inviscid model

A usual model for investigating the modes in duct acoustics are the com-

pressible Euler, the mass conservation, and the entropy conservation equa-

tions, assuming isentropic movement [9, 10, 11, 12]:

∂ρ̃

∂ t̃
+ ∇̃ · (ρ̃ũ) = 0 ρ̃

∂ũ

∂ t̃
+ ρ̃ũ · ∇̃ũ = −∇̃p̃

dp̃

dt̃
= c̃2

0

dρ̃

dt̃
(7)

where ũ = (ũ, ṽ) is the velocity vector, ρ̃ is the density, p̃ is the pressure.

According to the previous section, a 2D model is considered. In order to

perform a linear stability analysis, these equations are linearized. For this

we introduce the following splitting of the variables: ũ(x̃, ỹ, t̃) = Ũ0(ỹ) +

ũ′(x̃, ỹ, t̃); p̃(x̃, ỹ, t̃) = p̃0+p̃′(x̃, ỹ, t̃) ; ρ̃(x̃, ỹ, t̃) = ρ̃0+ρ̃′(x̃, ỹ, t̃). The subscript

0 refers to the base flow and the prime represents a fluctuation upon this base

flow. The mean base flow Ũ0 = (Ũ0(ỹ), 0) is in the x̃-direction. It is allowed

to depend on ỹ so that a mean shear is possibly taken into account. The set

10



of linearized equations for the perturbations ũ′, ṽ′, p̃′ can be reduced to:

∂ũ′

∂ t̃
+ Ũ0

∂ũ′

∂x̃
+ ṽ′dŨ0

dỹ
= − 1

ρ̃0

∂p̃′

∂x̃
(8)

∂ṽ′

∂ t̃
+ Ũ0

∂ṽ′

∂x̃
= − 1

ρ̃0

∂p̃′

∂ỹ
(9)

(
∂p̃′

∂ t̃
+ Ũ0

∂p̃′

∂x̃

)
+ ρ̃0c̃

2
0

(
∂ũ′

∂x̃
+

∂ṽ′

∂ỹ

)
= 0 (10)

For every variable a modal solution of the form ũ′(y) = ˆ̃u(ỹ, α̃, ω̃)ei(α̃x̃−ω̃t̃) is

introduced, where the wavenumber, α̃ = α̃r +iα̃i, and the angular frequency,

ω̃ = ω̃r + iω̃i, are both complex. All variables are then normalized using for

the length scale the channel half-width H̃; for the velocity scale the speed of

sound c̃0 ; for the density scale the mean unperturbed density ρ̃0; and for the

pressure scale ρ̃0c̃2
0. This gives: y = ỹ/H̃ ; x = x̃/H̃ ; α = α̃H̃ ; ω = ω̃H̃/c̃0

; û = ˆ̃u/c̃0 ; v̂ = ˆ̃v/c̃0 ; p̂ = ˆ̃p/(ρ̃0c̃2
0). The normalized modal solution is then

u′(y) = û(y,α,ω)ei(αx−ωt) and the following system is finally obtained for the

modal amplitudes:

i(αM0 − ω)û + v̂
dM0

dy
= −iαp̂ (11)

i(αM0 − ω)v̂ = −dp̂

dy
(12)

i(αM0 − ω)p̂ +

(
iαû +

dv̂

dy

)
= 0 (13)

where M0(y) = Ũ0(y)/c̃0 is the Mach number. Note that it is possible to

combine these equations to obtain the well known Pridmore-Brown equation

for calculating compressible modes uppon a sheared mean flow:

d2p̂

dy2
−

[
2α

(αM0 − ω)

dM0

dy

]
dp̂

dy
−

[
α2 − (αM0 − ω)2

]
p̂ = 0 (14)
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3.2. Incompressible inviscid model

Let us introduce the incompressible equivalent to the compressible model

of the previous section. It is obtained by replacing ∂ρ̃
∂ t̃

+∇̃·(ρ̃ũ) = 0 in Eq. (7)

by ∇̃ · (ρ̃ũ) = 0. This gives for the modal amplitudes:

i(αM0 − ω)û + v̂M ′
0 = −iαp̂ (15)

i(αM0 − ω)v̂ = −dp̂

dy
(16)

iαû +
dv̂

dy
= 0 (17)

The velocity used for the normalization is still the numerical value of the

speed of sound c̃0 of the medium if it were compressible. This is the reason

why the normalized velocity still appears as a Mach number, M0. At first

sight this normalization may appear not very relevant for an incompressible

study but this choice will allow a direct comparison with the inviscid com-

pressible case (and of course it is correct in terms of numerical value).

It is also possible to combine these equations to obtain the Rayleigh equation:

d2p̂

dy2
−

[
2α

(αM0 − ω)

dM0

dy

]
dp̂

dy
− α2p̂ = 0 (18)

Note that the equation given here involves the pressure variable and is a bit

different from the more frequently encountered form involving the stream-

function and a double derivative of the mean velocity with respect to y.

3.3. Incompressible viscous model

As found in [22] and as shown below, it is important to account for

the effect of viscosity on the unstable mode. When dealing with acoustic

modes, viscous and thermal losses are both equally important. Taking into
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account losses requires one to use an energy equation. As will be argued

below, the unstable mode is hydrodynamic in the sense that it is not much

affected by compressibility. This is the reason why an incompressible model

will be used for studying the effect of viscosity, and no energy equation is

required. As in [30, 31, 32], the stability analysis concerns some coherent

modes superimposed on a turbulence whose effect is to add a kinematic

(eddy) viscosity. As seen in Fig. 3, at the high Reynolds number investigated

here this eddy viscosity is large compared to the molecular viscosity except

in the close vicinity to the wall. Of course, the turbulent eddy viscosity

depends on y. Hence, the 2D incompressible viscous linearized Navier-Stokes

equations with a variable viscosity are introduced. For the physical variables,

these are [32]:

∂ũ′

∂ t̃
+ Ũ0

∂ũ′

∂x̃
+ ṽ′dŨ0

dỹ
= − 1

ρ̃0

∂p̃′

∂x̃
+

dν̃T

dỹ

∂ũ′

∂ỹ
+

dν̃T

dỹ

∂ṽ′

∂x̃
+ ν̃T

(
∂2ũ′

∂x̃2
+

∂2ũ′

∂ỹ2

)
(19)

∂ṽ′

∂ t̃
+ Ũ0

∂ṽ′

∂x̃
= − 1

ρ̃0

∂p̃′

∂ỹ
+ 2

dν̃T

dỹ

∂ṽ′

∂ỹ
+ ν̃T

(
∂2ṽ′

∂x̃2
+

∂2ṽ′

∂ỹ2

)
(20)

∂ũ′

∂x̃
+

∂ṽ′

∂ỹ
= 0(21)

where as before ν̃T (ỹ) is the total viscosity, including molecular and turbulent

contributions. By combining these equations, one could obtain the modified

Orr-Sommerfeld equation initially proposed by Reynolds and Hussain [31, Eq

6.1] for calculating the modes of an organized wave in a turbulent medium.

A model is needed for this viscosity, and the expression by Cess, Eq. (4), will

be used. It is recalled that Ũ0 is obtained by integrating Eq. (3), so that the

mean velocity and the total viscosity model are consistent, which was not

the case in [22].
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As before modal solutions are introduced and the previous equations are

normalized. As in the previous section (see remark below Eqs. (15-17)) the

velocity for the normalization is the numerical value of the speed of sound c̃0

if the medium were compressible. By gathering the powers of α the following

set of equations is obtained:

(
−iωû + v̂M ′

0 −
1

Re
ν+

T

d2û

dy2
− 1

Re

dν+
T

dy

dû

dy

)

+ α

(
iM0û + ip̂ − 1

Re

dν+
T

dy
iv̂

)
+ α2

(
1

Re
ν+

T û

)
= 0 (22)

(
−iωv̂ +

dp̂

dy
− 1

Re
ν+

T

d2v̂

dy2
− 2

Re

dν+
T

dy

dv̂

dy

)
+ α (iM0v̂) + α2

(
1

Re
ν+

T v̂

)
= 0(23)

dv̂

dy
+ α (iû) = 0(24)

The Reynolds number is defined by Re = H̃c̃0/ν̃. The total viscosity is

normalized in the same way as in section 2.

3.4. Boundary conditions

To solve the equations governing the flow, boundary conditions are needed.

The liner at the bottom wall is characterized by its admittance Y (ω) (or its

impedance Z(ω)), which provides a relation between the pressure and the

wall normal velocity. Using the same normalization as before, as well as the

following one:

Y = ρ̃0c̃0Ỹ

we have at the bottom wall at y = −1:

v̂(−1,α,ω) = −Y (ω)p̂(−1,α,ω) ∀α,ω (25)
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This relation can be used when the mean flow velocity satisfies M0(−1) = 0.

If there is a slip velocity at the wall, that is if M0(−1) %= 0 (as is the case

when the plug flow assumption, M0=cst, is used), one needs to account for

the vorticity sheet at the wall, and the boundary condition becomes the

Myers’ boundary condition:

ωv̂(−1,α,ω) = Y (ω)(αM0(−1) − ω)p̂(−1,α,ω) ∀α,ω (26)

When M0(−1) = 0 relations (25) and (26) are equivalent. Hence, we can use

only the latter one. But according to the introduction, when M0(−1) %= 0,

the Myers boundary condition is not ”well-posed”, and usual criteria for sta-

bility are not applicable. We will nevertheless use this condition for purposes

of validation.

At the upper rigid wall (at y = 1), the admittance is zero, we have:

v̂(1,α,ω) = 0 ∀α,ω (27)

In the viscous case, a non-slip velocity is enforced at both walls:

û(±1,α,ω) = 0 ∀α,ω (28)

3.5. Stability problem and solution method

3.5.1. Generalized eigenvalue problem

In the inviscid compressible case, we have to solve the system (11-13) with

boundary conditions (26-27). In the viscous incompressible case, we have to

solve the system (22-24) with boundary conditions (26-28). In either case,

the problem is an eigenvalue problem, which can be solved only for some cou-

ples (α,ω), that is, when α and ω satisfy the dispersion relation D(α,ω) = 0.
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As the problem cannot be solved analytically, a numerical solution method

is used. The problem is discretized in the y-direction using a spectral Cheby-

shev collocation method [35, 36] and N+1 collocation points. The collocation

points are of the Gauss-Lobato type[35, 36]: yj = cos(jπ/N) for j = 0...N .

On the grid thus defined, we define the vectors of unknowns:

U = [û0 û1 ... ûN ]t ;V = [v̂0 v̂1 ... v̂N ]t ;P = [p̂0 p̂1 ... p̂N ]t (29)

where [ ]t denotes the transpose. These vectors contain the value of the

variables at the collocation points. Hence, for example, û0 is the value of

û at collocation point y0 = 1, and ûN is the value of û at collocation point

yN = −1. The y-derivative of a vector is obtained by multiplying this vector

by a suitable differentiation square matrix D of size N + 1 [35, 36]. This

procedure yields a generalized eigenvalue problem that is now specified for

the different cases under consideration.

In the inviscid compressible case, discretizing the system (11-13), one

obtains the following generalized eigenvalue problem:








−iωI M′
0

−iωI D

D −iωI





︸ ︷︷ ︸
A

+α





iM0 iI

iM0

iI iM0





︸ ︷︷ ︸
B





·





U

V

P




= 0 (30)

A and B are square matrix of size 3N+3; M0 is the diagonal matrix (of size

N+1) with the values of the mean velocity at the collocation points on the

diagonal; M′
0 is also a diagonal matrix (of size N+1) containing the values of

the derivative of the mean velocity at the collocation points; I is the identity
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matrix (of size N+1). Parts left blank are filled with zeros. One has still to

take into account the boundary conditions (26-27). This is done by replacing

the rows N+2 and 2N+2 of the matrices A and B by the discretized form

of the boundary conditions.

In the inviscid incompressible case, discretizing the system (15-17) gives:









−iωI M′
0

−iωI D

D





︸ ︷︷ ︸
Ainc

+α





iM0 iI

iM0

iI





︸ ︷︷ ︸
Binc





·





U

V

P




= 0 (31)

In the viscous incompressible case, the system given by Eqs. (22-24) be-

comes quadratic in α. To get a system that depends only on the first power

of α, the two following auxiliary variables are introduced[37]:

φ̂u = αû and φ̂v = αv̂

Using the same Chebyshev collocation method as before, the system can then

be put in the form of an eigenvalue problem of the type:

(Av + αBv) [U V P Φu Φv]t = 0 (32)

where Φu and Φv are the vectors containing the φ̂u(yj) and the φ̂v(yj) at the

collocation points. The matrix Av and Bv are now square matrices of size
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5N+5 and are given by:

Av =





−iωI − 1
Re (ND2 + N′D) M′

0

−iωI − 1
Re (ND2 + 2N′D) D

D

I

I





(33)

Bv =





iM0 − 1
Re iN

′ iI 1
ReN

iM0
1

ReN

iI

−I

−I





(34)

The matrix N and N′ are diagonal matrices of size N+1 that contain re-

spectively on their diagonal the values of the viscosity ν+
T (yj) and of the first

derivative of the viscosity dν+
T /dy(yj) at the collocation points. As for the

inviscid compressible case, boundary conditions are enforced by replacing the

suitable entries of the matrices.

3.5.2. Shooting methods

The Chebyshev solution method is a global method that allows obtaining

the full spectrum by solving a matrix system in one go. It is very useful but

may sometimes be unpractical when the interest lies on a particular eigen-

value and on the tracking of this eigenvalue during the variation of a given

parameter. In the later case it is convenient to obtain α(ω) by a shooting
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method. The shooting method has been used in the compressible and incom-

pressible inviscid cases only, using the Pridmore-Brown equation, Eq. (14),

and the Rayleigh equation, Eq. (18), together with boundary conditions (26-

28) expressed in terms of pressure only. For a fixed value of ω the shooting

method determines the branch α(ω) in the vicinity of a guessed value of α

(which is provided by the Chebyshev method). This method will complement

the Chebyshev method occasionally.

3.5.3. Stability analysis

The generalized eigenvalue problems (30), (31) and (32) have been derived

above. These are of the form:

Aωf = αBωf (35)

where Aω and Bω are matrices whose dependence on ω has been stressed.

Solving these problems using standard libraries (in the present case, the

function eig of Matlab is used) provides both the eigenvalues and the eigen-

functions. That is, fixing ω, it is possible to obtain the branches α(n)(ω)

satisfying the dispersion relation. Knowing these, it is possible to apply the

classical methods of stability such as the Briggs-Bers criterion to classify the

modes as stable, convectively unstable, or absolutely unstable [17, 18, 38].

The reader is referred to these references for a detailed discussion of the

method; only the essential material is now outlined. First, let us define in

the ω-plane a contour Lω = {ω; ωi = cst = ωL,i}. Such a contour is a line

parallel to the real axis. For a well-posed problem and a Lω contour having a

sufficiently large and positive value of ωL,i, the branches α(n)(ω) for ω ∈ Lω

are well separated: some are lying entirely in the half-plane αi > 0, the others
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are lying entirely in the half-plane αi < 0. The method consists in tracking

the behaviour of the branches α(n)(ω) when decreasing the value of ωL,i from

its large initial value towards 0. There are two possibilities:

• (C1) If in the process of decreasing ωL,i, and before ωL,i has reached 0, two

opposite spatial branches merge (or pinch) there is an absolute instability

consisting of an exponential growth in time in the whole space. By opposite

spatial branches, it is meant that one branch is lying entirely in the half-space

αi > 0 while the other is lying entirely in the half-space αi < 0 for the initial

value ωL,i.

• (C2) If such a pinch does not occur there is no absolute instability and the

system is at most convectively unstable. It is valid to perform a spatial anal-

ysis whereby ω is real (ω then belongs to the Lω contour having ωL,i=0) and

the wavenumber is complex. One still needs to identify if there are convec-

tively unstable modes. Any mode having αi %=0 is a candidate and stability

is ultimately determined by the direction of propagation of that mode. To

obtain this direction, one has to vary the imaginary part of ω from 0 to a

large value and track by continuity the corresponding branch α(ω). If, for a

very large value of ωi, the mode α(ω) ends up in the half-plane αi >0, this

mode is propagating toward x > 0 (it contributes to the impulse response

only in the region x > 0). If it ends up in the half-plane αi <0 it is propagat-

ing in towards x <0. For example suppose a mode has αi <0 for real ω and

ends up with αi > 0 after increasing the imaginary part of ω to a large value:

then this mode would be a convective instability growing towards x >0.

Both criteria (C1) and (C2) will be used below to determine the kind of

stability predicted by the different models.
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3.5.4. Validation of the numerical solver

Since the focus will be on unstable modes, it is proposed to validate

the method against the solution Rienstra called an unstable hydrodynamic

mode[11], which is one of the different surfaces modes for which he obtained

an asymptotic analytical expression. In the limit ω → ∞, surface waves are

solution to the following equation [11]:

(1 − M0σ)4 =
(1 − M 2

0 )3

Y 2
(1 − σ2) (36)

where σ is the reduced wave-number defined by: α = (σ −M0)ω/(1−M0)2.

One has to keep only solutions that verifies )(γ) > 0, where γ is the reduced

transverse wavenumber defined by γ = Y (1 − M0σ)2/(1 − M 2
0 )3/2, and )

designates the imaginary part. Initially, results were given by Rienstra in

cylindrical coordinates (and for the opposite time convention) but it can be

checked that they remain valid in 2D cartesian coordinates. Note also that

these results are for a plug flow and the Myers’ boundary condition. This is

not a problem since we are not interested here in the validity of the boundary

condition but only in the validation of the numerical solver.

In Fig. 5, the different modes are given for the following conditions: M0=0.5,

ω=2, Y =2.5-2.5i. N=100 modes are used. Two modes are surface modes

as calculated by (36), the one labelled ”HI” represents the hydrodynamic

instability (according to Rienstra). The precise value obtained for the corre-

sponding wavenumber is given in table 1: the value obtained by the present

Chebyshev integration using N +1=101 collocation points is in perfect agree-

ment with the asymptotic analysis (which appears to be valid for a value of

ω as low as 2). The agreement is equally good with the shooting method.

With a more complicated velocity profile such as the Cess profile that will be
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Method α

Asymptotic analysis 7.62064475 - 2.04970330i

(Eq. (36))

Numerical integration 7.62064475 - 2.04970330i

Chebyshev using Eq. (30), N=100

Numerical integration 7.62064475 - 2.04970330i

Shooting method using Eq. (14)

Table 1: Wave-number for the HI mode, as calculated using different methods.

used below, the Chebyshev method requires more points, typically N=200.
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Figure 5: Spectrum for: M0=0.5, ω=2, Y =2.5-2.5i. The plug flow and Myers boundary

condition are used together. Symbols: + present numerical method with N=100 Cheby-

shev modes; o asymptotic approximation for surface waves as given by roots of Eq. (36).

The numerical value for the Hydrodynamic Instability (HI) mode is given in table 1.
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4. Results for the inviscid models

4.1. Spatial analysis

Many studies of modes in ducts have involved a spatial stability analy-

sis [11, 12, 22] whereby the angular frequency is real while the wavenumber

is complex. This approach corresponds to point (C2) in section 3.5.3; it

is a practical one in the sense that it corresponds to the physical situation

whereby one excites the flow at some real frequency. The spatial analysis

provides the spatial modes at this frequency. This approach is valid as long

as there is no absolute instability, which we are now going to suppose for a

moment.

The spatial spectrum is calculated by solving the compressible inviscid

problem, Eq. (30). The conditions are identical to the experiment: the flow

is approximated by the Cess profile as in Fig. 2, and the angular frequency

is the real frequency ω = ωa=0.196 of the incident wave. The wave number

spectrum is complex; it is shown in Fig. 6(a).

Since a convective instability was observed in the experiments, it is ap-

pealing to attempt to identify such an instability by applying the criterion

(C2) given in section 3.5.3. The imaginary part of the angular frequency is

thus increased from 0 to a very large value. Here ω is varied between ωa and

ωa + 0.4i; the later value is not extremely large but is sufficient to observe

the main move of the spectrum (a further increase does not change the sign

of αi). The α-spectra thus obtained are shown in Fig. 6(b). It is seen that

only one branch α crosses the αr-axis. This branch starts from the value

α ∼ 0.79 − 1.1i when ω = ωa and is indicated by an open square symbol
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Figure 6: (a) Spectrum calculated by solving (30) for ω = ωa=0.196. (b) Trajectories

of the modes when the imaginary part of ω is increased from 0 to 0.41i, the real part

been kept constant at ωr=ωa. The symbols + indicate the starting points for ωi=0 (the

same as in (a)); the symbols o indicates the points for ωi=0.41. The gray dots are for the

trajectory in between. The symbol ! indicates the potentially unstable mode. The line

obtained with the shooting method is a further verification of the trajectory of the

potentially unstable mode.

on Fig. 6(b). Hence, if the spatial stability analysis were valid this mode

would be a convective instability growing towards x> 0 with a growth rate

−αi ∼1.1. This reasoning was done in reference [22] assuming that a spatial

analysis was valid, that is, assuming that there is no absolute instability. Such

a kind of reasoning was also done in [11] with the ill-posed Myers boundary

condition. Unfortunately, it is shown below that in our specific case there is

an absolute instability, meaning that the spatial analysis is indeed not valid.

4.2. Spatio-temporal analysis

In the previous section the criterion (C2) was applied directly without

checking condition (C1) (see section 3.5.3). A safer way to investigate sta-
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bility is to start with Lω contours having a high value of ωL,i, as indicated

in condition (C1). Then the value of ωL,i is decreased and the branches α

are monitored. The result is shown in Fig. 7 where only the α-branch that is

suspected to be an instability has been tracked. This figure features a typical

branch swap as ωL,i is decreased from 0.11 to 0.10, indicating the presence

of a saddle point of the mapping α(ω). Moreover the branches that swap

are opposite in the sense given in C1. This reveals the presence of a pinch

point for a positive value of ωL,i ∼0.107. Hence, there is indeed absolute

instability, and the spatial analysis of the previous section was not valid.

Note that the sole trajectory, when the imaginary part of ω is increased, of

0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

αr

α
i

Figure 7: Trajectories of one selected branch α(ω) for ω belonging to Lω contours with:

ωL,i=0.10 ; ωL,i=0.11; ωL,i=0.12 ; ωL,i=0.18; ωL,i=0.41. The curve

is the trajectory of the branch for ωr=ωa and ωi increasing from 0 to positive values

(this is the same as in Fig. 6(b)).

the branch starting at α(ωa) ∼ 0.79 − 1.1i when ω = ωa (square symbol),

does not allow identifying such a branch swap in Fig. 6(b). This trajectory

is again represented in Fig. 7, and combining this with the mappings α(Lω)
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shows that this is indeed the case.

It was shown in [39, 40] using a piecewise linear mean flow profile and an

inviscid model that absolute instability is unlikely in many practical aeronau-

tical applications. A similar kind of study with a piecewise linear flow and

an incompressible inviscid model was performed in a channel for conditions

similar to the present study [44]. It concluded that there was an absolute

instability of the flow in our configuration. This conclusion remains valid

with the present model despite its using a more realistic velocity profile.

4.3. Incompressible case

Below, viscous processes are to be taken into account together with an

incompressible model. In the present section, the use of an incompressible

model is justified by comparing the spectra provided by compressible and

incompressible inviscid models. These are respectively given by the solution

of Eq. (30) and Eq. (31). The spectra for both models obtained for ω = ωa

are provided in Fig. 8(a). It is seen that the general agreement is accept-

able. In particular the branch that is involved in instability, marked by an

arrow, is well described by an incompressible model. Figure 8(b) compares

the branches implied in the pinching. The compressible and incompressible

models compare very well. The incompressible model predicts absolute in-

stability, and the branch obtained for the contour ωL,i=0.12 (that is, before

pinching) are almost indiscernible. This is important since this branch (also

marked by an arrow) is basically responsible for instability. Hence, as far

as the unstable mode is concerned, the incompressible model seems to be a

satisfying approximation.
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Figure 8: (a) Spectra obtained at ω = ωa=0.196: + compressible case Eq. (30) ; • incom-

pressible case Eq. (31). (b) Trajectories of the unstable mode along several Lω contours:

ωL,i=0.10 compressible; ωL,i=0.11 compressible; ωL,i=0.12 compressible;

ωL,i=0.10 incompressible; ωL,i=0.11 incompressible; ωL,i=0.12 incompressible.

5. Results for the viscous incompressible model

In the previous section, the inviscid compressible or incompressible mod-

els applied to our experimental configuration predicts absolute instability.

This conclusion does not match the experiments, the later rather displaying

spatial instability. In the present section, the effect of viscosity is taken back

into account, and this will be seen to change the type of instability, from ab-

solute to convective. The model to be used has been presented in section 3.3.

5.1. Spatially unstable mode

The spectrum obtained at ω=ωa by solving Eq. (32) is given in Fig. 9(a).

Some differences are to be noted compared to the spectra obtained at the

same frequency with the inviscid, incompressible or compressible, spectra
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displayed in Fig. 8(a). First in the viscous approximation, there is no con-

tinuous branch along the αr-axis, since the system is no more singular for

α(ω)U(y) = ω. Second there are additional branches due to viscosity lo-

cated along αr ∼0.8. The evanescent modes along αr=0 are present in all

cases. Finally, there is a mode with αnum ∼0.94-0.22i indicated by the square

symbol, which as before, belongs to an unstable branch. The branch is un-
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Figure 9: (a) Spectrum obtained at ω=ωa=0.196 by solving Eq. (32). The symbol ! indi-

cates the convectively unstable mode. The symbol " indicates the experimental unstable

mode. (b) Trajectories of the unstable mode along several Lω contours: ωL,i=0 (ω

real); ωL,i=0.0009; ωL,i=0.0018. The line represents the trajectory of the

unstable mode when the imaginary part of ω is increased from 0 (! symbol) to 0.41i (o

symbol), the real part being fixed at ωr = ωa. The symbol • is for the mode having

maximal growth rate for ω real.

stable because it lies entirely in the upper α-plane for large values of ωi,

and moves into the lower α-plane when ωi decreases to 0. This is shown in

Fig. 9(b). Contrary to the insviscid case, no pinch has been observed when

tracking mappings of Lω contours in the α-plane. Hence, taking into account

viscosity does indeed change the stability from absolute instability to convec-

28



tive instability. The growth rate −αi for real frequency (contour ωL,i=0 in

Fig. 9(b)) is not maximal for ω = ωa ∼0.196 (! symbol). It has a maximum

at −αi ∼0.44 for ωr ∼0.21 (• symbol). There is a small discrepency here

with the experiment since experimentally one would expect the growth rate

to be maximal at ω = ωa. Indeed, in the measurements the acoustic trans-

mission was maximal at this frequency [6], and this should also correspond

to a maximal growth rate of the instability. This discrepency is probably due

to the idealized modelling as well as to the sensitivity of the growth rate to

both flow velocity and frequency (see next subsection).

Here a turbulence model has been used to account for the turbulent flow.

Calculations done with a uniform molecular viscosity with a value increased

by 30 times gave comparable results. Interestingly, Reynolds and Hussain

[31] also found that their spatial modes calculated either with an eddy vis-

cosity model or with a uniform viscosity multiplied by 30 were very similar.

Hence, for preliminary studies about the effect of viscosity on incompressible

modes in a channel, one could possibly use a molecular viscosity multiplied

by 30.

In conclusion the instability is a spatial one, growing in the x-direction

with a growth rate −αi=0.22. The computed value αnum ∼0.94-0.22i has to

be compared to the experimental value αexp=1.3-0.3i [6]. This is less than

a 30% error, which is acceptable given the approximations that have been

made.
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The numerical eigenfunction corresponding to this unstable mode are also

provided by the solution of Eq. (32). They are compared to the eigenfunctions

measured experimentally[6] in Fig. 10(a-d). The amplitudes are normalized

with respect to the maximum of the transverse velocity and the phase is nor-

malized with respect to the phase of the axial velocity at the channel center.

There is a good agreement between the numerical and experimental eigen-

functions, with an error more pronounced on the axial velocity magnitude.

5.2. Effect of mean flow velocity

The only parameter that could be changed during the experiments re-

ported in reference [6] was the flow Mach number. While the laser velocity

measurements were performed only at M0,avg=0.27, acoustic transmission

were measured over a range of Mach number below this value. Indeed, the

instability was first uncovered from high acoustic transmission rates by the

liner [6, Fig. 5]. Sound transmission by the liner displays a peak for Mach

numbers larger than about 0.2. Above this value, the frequency for maximal

transmission increases with Mach number. If we suppose that the sound

transmission is proportional to the unstable wave amplification rate, this

means that: an unstable wave should exist only above some threshold value

of the Mach number; and past this value the frequency for maximal amplifi-

cation should increase. To test these statements, the effect of velocity is now

investigated. Notice that the model is incompressible, but the mean section-

averaged velocity is normalized by the speed of sound in the compressible

fluid and is thus presented as a section-averaged Mach number, M0,avg. In

the mean velocity range investigated no pinching point has been observed

and the instability is spatial whenever it exists, which legitimates a spatial
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Figure 10: Comparison of numerical ( ) and experimental ( ) eigenfunctions for

the unstable mode at ωr=ωa. (a) Amplitude of the axial component; (b) Phase of the

axial component; (c) Amplitude of the transverse component; (d) Phase of the transverse

component.

stability analysis.

First, the unstable mode wavenumber is tracked when the Mach num-

ber is increased, keeping frequency constant at the baseline experimental

value: ω=ωa=0.196. The trajectory of the mode in the α-plane is shown
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in Fig. 11(a). For low values of the Mach number the wavenumber lies in

the upper α-plane and it moves into the lower α-plane for a sufficiently high

value of the Mach number. It can be shown that the trajectory lies entirely

in the upper α-plane if the frequency is given a large positive imaginary part

value, which means (criterion (C2)) that when αi < 0 the mode is a spatial

instability. The spatial growth rate is shown in Fig. 11(b) as a function of

Mach number. At the chosen frequency, the mode is thus unstable for values

of the Mach number larger than about 0.17.
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Figure 11: (a) Trajectory of the unstable mode and (b) Growth rate as a function of

the section-averaged Mach number, obtained at ω=ωa=0.196 when varying the section-

averaged Mach number from M0,avg ∼0.09 (+ symbol) to ∼0.45 (o symbol). The symbol

! indicates the convectively unstable mode at the baseline value M0,avg=0.27.

A wider picture is obtained by varying the (real) frequency for several

values of the Mach number. The growth rate obtained for the mode is shown

in Fig. 12. For the lowest Mach number, M0,avg=0.16, the growth rate is

negative for all frequencies, and there is no instability. For all Mach number
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above this threshold of about M0,avg ∼0.16, there is spatial instability over

some frequency range. The frequency range sustaining instability is wider for

larger Mach numbers. One observes also that the maximum of the growth

rate is shifting towards higher values of ωr when the Mach number is in-

creased. Hence, the model allows to confirm the experimental observations

mentioned above.
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Figure 12: Spatial growth rate for the spatially unstable branch as a function of ωr for sev-

eral values of the section-averaged Mach number: M0,avg=0.16 ; M0,avg= 0.165 ;

M0,avg=0.18 ; M0,avg=0.21; M0,avg=0.27; M0,avg=0.36 ; M0,avg= 0.45.

The symbol ! indicates the convectively unstable mode at the baseline value M0,avg=0.27

and ω=ωa=0.196.

6. Conclusion

A local, two-dimensionnal, linear stability analysis of the flow in a lined

channel has been performed. The acoustic liner covers the bottom wall of
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the channel and is represented by an impedance model. The mean flow pro-

file is representative of the flow in a turbulent channel. Several models have

been used to compute the modes: an inviscid compressible model, an in-

viscid incompressible model, and finally a viscous incompressible model. In

the later, turbulence is taken into account by an eddy viscosity model. The

inviscid models both show an instability that does not depend much on the

compressibility, and the instability is of the absolute type. When taken into

account, viscosity changes the type of stability, from absolute to convective

instability.

The conditions taken for the analysis are similar to that of a previsouly re-

ported experiment: same geometry, same impedance law, same real frequency

for spatial analyses, same mean flow Mach number. There are necessary sim-

plifications: in particular, the analytical velocity profile corresponds well to

the flow in a channel with rigid walls. An expression for velocity profiles (that

is, equivalently, an expression for the eddy viscosity) over lined wall would be

desirable. Despite these simplifications, the viscous model identifies a spatial

instability whose characteristics does match correctly the experimental ones,

in terms of wavenumber (wavelength, and growth rate) and of eigenfunction

shapes.
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