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ABSTRACT
The light curves of mutual eclipses and occultations between the natural satellites of a planet
allow us to obtain high-precision position and relative motion from differential photometry,
enough to detect weak orbital disturbing forces, such as tidal forces. The observations are
made during the equinoxes of the planet.

We studied 25 light curves observed in Brazil during the 2009 campaign of the Galilean
satellites’ mutual phenomena. A narrow-band filter centred at 890 nm was used, strongly
attenuating the Jupiter’s scattered light. We fitted the occultation and eclipse light curves using
semi-analytical models that take into account the gradual decrease of light over the shadow,
the solar limb darkening and the solar phase angle. The Oren–Nayar reflexive model was used
to map the inhomogeneous light scattering on the surface of the satellites. For the first time it
is used in a work about mutual events. Here, we include the study that made us decide for this
model.

We measured the impact parameter, relative velocity and central instant with average pre-
cisions of 7.46 km (2.2 mas), 0.08 km s−1 (0.02 mas s−1) and 0.42 s (6.13 km), respectively.
The fit precision of the normalized light-curve fluxes ranged between 0.4 and 4.4 per cent.

Key words: methods: analytical – methods: data analysis – techniques: photometric –
eclipses – occultations – planets and satellites: individual: Io, Europa, Ganymedes, Calisto.

1 IN T RO D U C T I O N

A thorough study of the nature of the giant planet systems involves
a refined comprehension of the dynamic evolution of their satellites.
This requires the use of more sophisticated orbital evolution models,
that take into account very weak disturbing forces, such as tidal
forces, for example. In turn, the study of such models demands
cinematic data bases (positions, velocities), which should cover
large periods of time and should contain highly accurate astrometric
measurements of the satellites (Aksnes & Franklin 2001; Vienne
2008; Lainey et al. 2009).

� Based on observations made at the Laboratório Nacional de Astrofı́sica
(LNA), Itajubá-MG, Brazil.
†E-mail: aoliveira@obspm.fr

In this context, the photometric observations of mutual phenom-
ena have an important advantage over traditional astrometric obser-
vations. Although such observations can only be done from time
to time, during the equinox of the planet, they provide much bet-
ter precisions. Indeed, for the Galilean satellites, the precision ob-
tained with the current astrometric techniques, for a single satel-
lite position, ranges between 134 and 170 mas (milliarcsecond)
(Kiseleva et al. 2008). For relative distances between satellite pairs,
the 30 mas error level can be achieved (Peng et al. 2012). On the
other hand, for past mutual phenomena, the errors can easily reach
the 20–30 mas range, and many times not exceed 5 mas (Emelyanov
2009). In this work, the average precision was even better,
3.10 mas.

Mutual phenomena between the Jovian satellites were observed
for the first time in 1973 (Aksnes & Franklin 1976), and again in
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1979, followed by the observation of the mutual events of the Satur-
nian satellites in 1979–1980 (Aksnes et al. 1984). A detailed history
of all the past campaigns of mutual events between the satellites of
the giant planets, as well as a compilation of past reduction methods
and recent improvements in the fit of light curves can be seen in
Emelyanov (2009) and in the references therein.

Because of the importance of mutual phenomena, many re-
searchers have worked in their prediction and organized observa-
tional campaigns to study both of these systems (see Aksnes &
Franklin 1990; Thuillot & Arlot 1996; Arlot, Lainey & Thuillot
2006; Arlot & Thuillot 2006 for the more recent works). In 2007,
mutual phenomena between the Uranian satellites were observed
for the first time with CCD technology (since they occur every
42 yr), and provided important astrometric results (see, for example
Birlan et al. 2008; Assafin et al. 2009 and Christou et al. 2009).

Based on the prediction of the events between the Galilean satel-
lites for 2009 (Arlot 2008), a Brazilian campaign was organized,
involving researchers from four institutes. Observations were car-
ried out at the Observatório do Pico dos Dias (OPD), managed by
the Laboratório Nacional de Astrofı́sica (LNA), Itajubá, Brazil (IAU
code 874). We successfully observed and analysed 25 events (13
occultations and 12 eclipses). Here, we present the observational
procedures, the data reduction and the analysis of these events.

In Section 2, we describe the campaign’s programme and ob-
servations. In Section 3, we present the photometry and the light-
curve fitting procedure, with a complete description of the analyti-
cal models used. We give the results in Section 4. Section 5 brings
a discussion about the available light reflectance models, and the
introduction of the Oren–Nayar’s model, adopted in this work. Con-
clusions are set in Section 6. In Appendices A and B, we detail the
calculations involved in the light-curve fits, related to the adopted
analytical models. In Appendix C, we display the fits to the entire
set of 25 light curves analysed in this work.

2 PRO G R A M M E A N D O B S E RVATI O N S

2.1 Programme

The observational campaign in Brazil was the result of a collab-
oration between four national institutes. The predicted events for
2009–2010 (Arlot 2008) were available at the portal of the ‘Insti-
tut de Mécanique Céleste et de Calcul des Éphémérides’ (IMCCE)1

from the Observatoire de Paris. We selected all the visible events for
the OPD/LNA observatory2 with a predicted non-zero flux drop and
elevation above 30 degrees. This resulted in 50 events distributed in
45 nights spread over nine months. We attempted observations for
all these events.

2.2 Observations

We lost 23 events due to bad weather conditions. Also, from the
remaining 27 mutual phenomena successfully observed in 23 nights,
two were quasi-simultaneous, superposed in the same light curve.
These two events will not be studied in this work. The resulting
25 events analysed in this work are divided into 12 eclipses and
13 occultations. The satellites Io, Europa and Ganymede were all
eventually observed in an occultation or in an eclipse and Callisto
was observed only in eclipses.

1 ftp://ftp.imcce.fr/pub/ephem/satel/phemu09/phemu09_132ts.txt
2 ftp://ftp.imcce.fr/pub/ephem/satel/phemu09/visibility/vtri-itajuba.txt

Figure 1. Image of Jupiter, Io, Europa and Calisto (left to right) obtained
with the 0.6 m diameter Zeiss telescope, equipped with a methane filter. The
planet and the satellites present about the same brightness. Due to the use of
this filter, centred at λ = 890 nm with 20 nm width, the scattered light from
Jupiter is severely minimized.

The events were observed at the OPD/LNA (λ = +450 32′ 57′′,
φ = −220 32′ 22′ ′, h =1860 m, IAU code = 874). The observations
were carried out using the 0.6 m diameter Zeiss telescope, f/12.5.
For one night (20/06), the 1.6 m diameter Perkim–Elmer telescope,
f/10, was used.

Owing to methane in the Jupiter’s atmosphere, the planet has a
strong absorption of light between 880 and 900 nm, which causes
the planet albedo to drop to 0.1 in this region (Karkoschka 1994,
1998). As it does not occur with the satellites, a narrow-band filter
at these wavelengths was used to strongly minimize the scattered
light of Jupiter. The effect is shown in Fig. 1. The planet and its
satellites present about the same brightness. This ‘methane’ filter is
centred at 890 nm with a bandwidth of 20 nm.

We used two back illuminated CCD detectors. The EEVCCD
detector (model 02-06-1-206) with 385 × 578 square pixels of
22 μm, hereafter CCD 301, was used in 23 out of the 25 events
studied in this work. The EDVCCD detector (model 47-20) with
1024 × 1024 pixels of 13.5 μm was used in the two events observed
at the Perkim-Elmer telescope (2006CeI-1 and 2006CeI-2, see
Table 1). Since mutual phenomena are short-term events (typically
a few minutes long) with relative satellite velocities above 6 km s−1,
they demand short exposures for achieving a time resolution cor-
responding to a spatial resolution of a few kilometres. In practice,
depending on the specific relative speed and on the weather condi-
tions, the exposure times ranged between 1 and 3 s. This granted
satellite’s ADU (analogic-to-digital unit) peak counts of about half
the CCD maximum, allowing for high signal-to-noise ratios (S/N)
at the optimal linear count ranges of the CCDs. The electronics of
the detectors were set to do simultaneous integration and charge
transfer (frame-transfer mode), eliminating the readout overhead
between acquisitions.

Observations were made in order to always keep the same photo-
metric calibrator in the field of view (FOV). In eclipses, sometimes
the eclipsing satellite was the calibrator. In the absence of suitable
satellites, Jupiter – and sometimes a spot on its surface – was used
instead. Yet, due to the large separation of the targets, two events
were observed without a calibrator: an occultation of Io by Europa
on August 07 and an occultation of Ganymede by Europa on August
12.
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Table 1. Mutual events and observation conditions.

Date Event Cal. Seeing No. of z Solar
(d-month) (arcsec) images (◦) phase (◦)

27-04 2704GoI E 2.3 1800 52.69 10.97
09-05 0905EoI C 1.7 1401 34.26 11.41
21-05 2105IoE G 1.9 1302 53.31 11.48
28-05 2805IoE G 1.9 802 14.70 11.33
10-06 1006GeC G 2.0 1301 9.81 10.64
16-06 1606GeI G, E 1.8 2701 22.54 10.18
19-06 1906CeE C 2.1 1201 29.21 9.90
19-06 1906CeI C, E 1.6 1201 22.12 9.89
20-06 2006CeI-1 S 1.2 2500 28.89 9.80
20-06 2006CeI-2 C 1.7 2273 28.65 9.78
22-06 2206IoE J 1.2 2500 50.29 9.59
29-06 2906IoE J 2.2 1000 14.83 8.73
04-07 0407IeG J 2.2 1801 9.85 8.02
06-07 0607IeE I 1.9 2000 9.9 7.72
06_07 0607IoE J 1.9 1200 27.54 7.71
08-07 0807GeI G, E 1.8 1800 39.05 7.40
13-07 1307IeE E 1.9 2000 40.75 6.56
07-08 0708IeE S 2.0 1800 23.67 1.64
07-08 0708IoE N 2.0 1700 28.82 1.64
12-08 1208GoE N 2.4 1400 7.45 0.63
22-08 2208IoE J 2.4 2500 23.33 1.62
16-09 1609IoE J 2.5 1400 6.15 6.57
16-09 1609IeE I 2.0 1100 22.19 6.57
24-10 2410GoE I 3.8 2600 34.33 10.94
25-10 2510IoE J 3.8 600 45.96 10.98

Note. All observations were made in 2009. For each event, we have the
day and month, the target satellites designated by their initials (capital
letters), and the event type (‘e’ and ‘o’ stand for eclipse and occultation,
respectively). Also indicated are the objects used as calibrators (Cal.) in the
differential photometry: J stands for Jupiter, S for a spot on Jupiter and N
means no calibrator available. We also give the seeing, the total number of
images used, the zenith distance z and the solar phase angle. There was no
prediction in (Arlot 2008) for the event 1208GoE.

The FOV was 4 arcmin × 4 arcmin, with a pixel of 0.6 arcsec
size. Seeing was typically in the range 1–2 arcsec.

Observations started 30 min before and ended 30 min after the
predicted instants provided, respectively, for the start and end of the
event. This procedure aimed to obtain well resolved images of the
satellites involved, with enough angular separation to measure their
individual fluxes, as close as possible to the event, to determine the
ratio of albedos (see discussion in Section 3.2).

Table 1 gives information for the 25 events analysed in this work,
indicating the targets, calibration object, seeing, zenith distance,
number of images and solar phase angle.

3 PH OTO M E T RY, L I G H T- C U RV E F I T T I N G

In this section, we will describe: (a) the differential aperture photom-
etry applied to generate the observed light curves; (b) the technique
used for determining the ratio of albedos; (c) the analytic models
and numerical computations utilized to fit the observed light curves.

3.1 Photometry

All images were corrected by bias and flat-field using the IRAF pack-
age (Butcher & Stevens 1981). Differential aperture photometry
was performed using the PRAIA package described in Assafin et al.
(2009). The flux of the target was measured relative to a calibra-
tor, usually another satellite or satellites, sometimes the eclipsing

one (in eclipses). The resulting measured target/calibrator flux ra-
tio is practically free from the sky transparency variations owing
to anomalous atmospheric extinction, as this affects all objects in
almost the same manner in the FOV. The S/N, the flux ratio error
and the seeing are calculated and stored together with the mid-time
instant of the measurements. After measuring the flux ratio for all
the images, we obtained the observed light curve of the event.

In order to maximize the S/N, for each event we tested the opti-
mum size of the aperture radius for the flux determination of each
object, and for the sky background annulus. We varied their sizes
for each series of observations, and plotted the resulting sets of
provisional light curves. We choose the aperture values and sky
background annulus which resulted in the light curve with the least
flux dispersion. Typically, the sky background annulus around the
objects had an internal radius 5 pixels larger than that of the aper-
ture circle, and a width of 5 pixels. We did not verify a clear linear
relation between the best aperture radius size and the seeing of the
night for the events of this campaign.

From Table 1, we notice that for some events, Jupiter or a spot
on its surface were used as calibrator. We verified the validity of
such calibrators by comparing the light curve of an event that had a
satellite as calibrator, with the light curve of the same event obtained
with Jupiter or a spot as the calibration object. Although we add a
certain amount of noise in the flux ratio, the procedure proved to be
effective.

In two cases, no calibrator at all was available in the FOV. For
these events, we fitted a polynomial to the light curve outside the
flux drop, and flatted the entire curve to eliminate the continuous
variation of the flux, due to the atmospheric extinction. The proce-
dure proved to be satisfactory, since the sky conditions were very
stable. In both cases, the light curves were thus directly obtained
from the fluxes of the targets.

As a final step, all observed light curves were normalized by
fitting a polynomial curve of nth degree (usually n = 1) outside the
flux drop, so that the flux ratio was set to 1 outside the events.

3.2 Ratio of albedos

The ratio of albedos is not relevant for eclipses when the satel-
lites’ photometric fluxes are separately measured, as is our case.
Therefore, the following discussion concerns only to occultations.

The ratio of albedos is a physical parameter that is related to the
reflectivity of the satellites. Since the albedo is the ratio between
the received and reflected light by the satellites, the ratio of albedos
has great influence on the flux ratio shape of the light curve of an
occultation. In particular, it has a high correlation with the impact
parameter, which is the minimum distance at apparent closest ap-
proach. Because of this correlation, it is highly recommended that
we determine the ratio of albedos independently from the reduction
process, instead of trying to fit it from the light curve, together with
the other parameters.

There are maps of albedos for the Galilean satellites provided by
the Voyager and Galileo probes (see, for example, Vasundhara et al.
2003). But they were not generated in the same bandpass (filter) as
our observations. And there is no reliable process to convert these
albedos to our methane bandpass, or to other wavelengths, because
of photoclinometry effects, such as shadows cast by the relief at
the time of the probe’s measurements, which are not present in the
ground-based observations, and vice-versa.

Instead, using the procedure first mentioned in Assafin et al.
(2009) (see Section 5), also followed by Emelyanov et al. (2011),
we determined the ratio of albedos directly from the observations,
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using images before and after the occultations, with the involved
satellites fully resolved in the images. Since the albedo is the ratio
between the satellite’s photometric flux and area, we can write the
ratio of albedos of satellites 1 (A1) and 2 (A2) as:

A1

A2
= F1S2

F2S1
, (1)

where F1 and F2 are the photometric flux of occulted and occulting
satellites, respectively, obtained from the images taken near the
event, and S1 and S2 are their areas. We did not use the generalized
form of equation (1) proposed by Emelyanov et al. (2011), because
it increases the error in the determination of the albedo ratios, by
(unnecessarily) introducing one more flux quantity (the sum of
satellite fluxes F12 or F21 measured together), which in turn cannot
be measured without avoiding large contributions of sky background
and Poisson noise.

3.3 Light-curve fitting procedure

We rigorously reproduced the geometry of the mutual events by
formulating theoretical models and performing numerical compu-
tations. We then could determine the apparent configuration of the
satellites and of the Sun (including shadows), and thus be able to in-
fer the amount of light received by the observer at any instant. This
flux in turn was compared and fitted to the observed light curves
in an iterative procedure. As a result, we determined the observed
apparent relative orbital paths of the target satellites, described in
terms of known parameters: the impact parameter (the minimum
apparent distance between the geometric centre of the satellites,
at the apparent closest approach in the sky plane), the relative ve-
locity (tangent to the point associated with the impact parameter,
measured in the sky plane) and the central instant (instant of time
associated with the impact parameter). It is important to emphasize
that the impact parameter is defined by using the geometric centre
of the satellites which, unlike the photocentre, do not depend on the
solar phase angle. The satellites’ ephemeris can also be represented
by these parameters, so that we could compare the results from the
observations with the current established ephemeris for the Galilean
satellites.

We assume an apparent linear path for the relative motion be-
tween the target satellites, during the short time interval of the
events. We model the light curves of the events based on a rigorous
formulation of the geometry of the relative orbits and of the effects
of light reflectance over the satellites’ surfaces. The normalized flux
ratio cannot be directly expressed in terms of a simple analytical
function. For each instant of observation, we calculate the flux by
numerically simulating the two-dimensional luminosity profile of
the satellites’ discs, projected on to the sky plane perpendicular to
the line of sight. These profiles depend on the type of the event
(occultation or eclipse), and on the positions of the satellites and
of the Sun. As a result, we derive a simulated light curve, which
works as the model. This light curve is parametrized by the relative
orbital parameters described above. The observed light curve is then
fitted to this simulated light-curve model by an iterative non-linear
least-squares procedure, which follows the Levenberg–Marquardt
method. The derivatives of the simulated light-curve model with re-
spect to the orbital parameters are numerically computed by varying
the parameters. In the process, as the flux of the simulated light-
curve model converges to the flux of the observed light curve, so do
the values of the orbital parameters being adjusted. After a conver-
gence of 1 per cent is reached in the chi-square (flux) between the
simulated and observed light curves, we obtain the desired orbital

parameters. The spatial resolution of the luminosity profile is set
(limited) by the time resolution and photometric measuring errors
of the observations, thus at the same time avoiding loss of precision,
and optimizing computation speed. Typically, we used resolutions
corresponding to 10 × 10 km areas in the sky plane.

We fit the projected relative velocity, the central instant, and
the impact parameter with this procedure. Initial guess values for
these parameters are necessary to start the procedure. They are
solely obtained from the observed light curve itself, which makes
the process ephemeris independent. On the other hand, we use the
formalism above to rigorously compute relative velocity, central
instant and impact parameter, based on a given ephemeris. This
translation allows for a direct and unbiased comparison between
the ephemeris-based and the fitted parameters, which model the
observed light curves of the mutual events (see Section 3.4).

The initial guess values are calculated from the observed light
curve as follows. The central instant is obtained from the instant
associated with the observation with minimum flux. The rela-
tive velocity is computed by considering the diameter of the oc-
culted/eclipsed body and the time interval from ingress to egress,
estimated from the observed light curve. The impact parameter is
derived in an iterative process. We increment the impact param-
eter values from zero to a given limit, which is the sum of both
satellites’ radius for occultations, or the penumbra size plus the
radius of the eclipsing satellite, in the case of eclipses. For each
incremented value, we compute the simulated flux associated with
the estimated central instant and to four other points, uniformly
located between ingress and egress. Then, we store the chi-square,
which is the square root of the ratio between the sum of the differ-
ences between the computed and observed fluxes, and the degrees
of freedom (N points minus the number of parameters). We keep
the impact parameter value corresponding to the least chi-square
found.

In the following, we detail the modelling and calculations nec-
essary for the numerical simulation of the light curves, separately
carried out for occultations and eclipses.

3.3.1 Light-curve simulation for occultations

Three factors have great importance on the theoretical modelling
of occultations: the ratio of albedos, the reflectance law and the
solar phase angle. The first two determine the luminosity intensity
profile of each point in the projection, while the third one shapes
the apparent discs at the sky plane.

We adopt the simplified version of the model proposed by Oren
& Nayar (1994), which consists of a generalization of Lambert’s
law, with the surface roughness seen as a set of facets with different
inclinations. We use the simplified version because, according to
the authors, it describes well the problem and, for the purposes of
this work and achieved precisions, there was no need to consume
the additional processing time, required to use the complete version.

The Oren–Nayar’s model has been used in works on three-
dimensional reflective surfaces since its formulation (see Yinlong
2007). This model is close to the actual reflection profile of an il-
luminated curved surface, providing a satisfactory fit to the light
curves. To our knowledge, it is the first time that this model is used
in a work about occultations and eclipses in mutual events.

We must know the geometric orientations of the incident and
reflected (emergent) rays, respectively Li and Le, which are deter-
mined by four angles, as shown in Fig. 2. Here, ψi and ψe represent
the angles between the normal vector η1 to the surface, respectively,
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Figure 2. The spacial orientation of the incident and reflected (emergent)
radiances, geometrically represented by the light rays Li and Le, for a point
in the satellite’s surface. ψi and ψe represent the angles between the normal
vector to the surface, η1, respectively, with Li and Le. φi and φe are obtained
by projecting the rays at the plane tangent to the satellite’s surface and taking
the angles between these projections and the vector η2, parallel to the tangent
plane and in the north–south direction (see Appendix A and Fig. A1).

with Li and Le. φi and φe are obtained by projecting the radiances
at the plane tangent to the satellite’s surface, and taking the angles
between these projections and the vector (η2), parallel to the tan-
gent plane and in the north–south direction (see Appendix A and
Fig. A1).

Thus, considering the albedo A of the body, and given the incom-
ing and reflected radiances, geometrically represented by the light
rays Li and Le, according to this model we have

Le = A

π
cos ψi(B + (C max[0, cos(φi − φe)] sin αtanβ))Li, (2)

where

B = 1 − 0.5
σ 2

σ 2 − 0.33
(3)

C = 0.45
σ 2

σ 2 − 0.09
(4)

α = max(ψi, ψe) and β = min(ψi, ψe). (5)

The surface roughness is represented by the variable σ , which
is the aperture angle between the facets. It ranges between 0 (per-
fectly smooth surface) and π/2 (entirely rough surface). Here, we
used σ = π/2. In Section 5, we discuss the choice of the re-
flectance model, and the choice of σ in the fitting of the light
curves.

The Oren–Nayar’s model requires the determination of the spatial
orientation of the incident and reflected radiances stated in equation
(2). This requires the computation of the angles shown in Fig. 2.
To determine these angles, we used state vectors V , consisting
of the topocentric and heliocentric position and velocity of the
satellites and of the Sun (see Fig. 3). They were generated using the
DE418, combined with the file NOE–5–2010–GAL.a.bsp through
the SPICE information system (Acton 1996). This file, available on

Figure 3. The state vectors of the topocentric position and velocity of the
satellites and of the Sun. V1 is the occulted satellite 1 topocentric position
vector. V2 is the occulting satellite 2 topocentric position vector. VST is
the Sun’s topocentric position vector. VS1 = (VST − V1) is the satellite 1
heliocentric position vector. VS2 = (VST − V2) is the satellite 2 heliocentric
position vector. For clarity, the velocity components were omitted.

the web,3 provided the IMCCE’s ephemeris (theory NOE–5–2010)
used in this work for the four Galilean satellites (Lainey et al. 2009).
Note that the errors in the state vectors from the current ephemeris
have a negligible propagation effect in the computed quantities, and
can be virtually ignored.

From Figs 2 and 3, we have Lij = VS j and Lej = Vj , where j
is 1 for the occulted satellite (satellite 1), and 2 for the occulting
satellite (satellite 2). Thus, from the cross product and dot product
between the state vectors, we have

ψij = arccos
VS j · η1 j

|VS j · η1 j | (6)

ψej = arccos
Vj · η1 j

|Vj · η1 j | (7)

φij = arccos
(η1 j × η2 j ) · (VS j × η1 j )

|(η1 j × η2 j ) · (VS j × η1 j )| (8)

φej = arccos
(η1 j × η2 j ) · (Vj × η1 j )

|(η1 j × η2 j ) · (Vj × η1 j )| . (9)

We show in Appendix A how to compute the normal and tangent
vectors η1 and η2. The topocentric and heliocentric state vectors
provide, for each instant, the direction of the incident and scattered
light rays (radiances). The orientation of the vectors η1 and η2

depends of the position of the point in the satellite’s surface.
We use these expressions with the Oren–Nayar model to deter-

mine the luminous intensity of each point of the disc projected in the
sky plane. Note that the effect of the solar phase angle in the projec-
tion is naturally accounted for by the reflectance model. Also, the
procedure easily identifies when a point in the disc of the occulted
satellite lays behind a point in the occulting satellite in front of it.
The integration of the (normalized) flux over the two discs gives
the total simulated flux of the target satellites for a given instant.
We then have the flux of a single point in the simulated light curve.

3 ftp://ftp.imcce.fr/pub/ephem/satel/galilean/L2/
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We finally obtain the entire simulated light curve by repeating the
procedure for all the instants corresponding to an actual observation.

Importantly, all geometry involving state vectors takes place in a
timeless space. Thus, the instants used to generate the state vectors
of each satellite and the sun are the instants of each image corrected
by the light travel time for each position.

3.3.2 Light-curve simulation for eclipses

The shadow of an eclipse is composed by two regions, the umbra and
the penumbra. The flux is zero for points inside the umbra. Inside
the penumbra, the flux is attenuated, as compared to a ‘no-eclipse’
situation. Therefore, it is fundamental to rigorously determine the
umbra and penumbra regions, for a very precise fitting to the ob-
served light curve of an eclipse.

We geometrically determined the radius of the umbra and penum-
bra, and semi-analytically derived the gradual decrease of light
along the penumbra.

The radii of the umbra (RU) and penumbra (RP) at the path of
the eclipsed satellite were determined from the state vectors, using
basic geometry (see Fig. 4):

RU = RS|VS2|(|VS2| − VS1VS2) − R2VS1VS2

|VS2|
√

|VS2|2 − (R2
S − R2

2)2
(10)

RP = VS1VS2(RS − R2) − RS|VS2|2
|VS2|

√
|VS2|2 − (RS + R2)2

, (11)

where RS and R2 are the radii of the Sun and of the eclipsing satellite,
respectively.

Figure 4. Geometric layout illustrating the radius of the penumbra and
umbra, defined at the path GEO1 of the eclipsed satellite. Here, EF = RU

(umbra radius), EG = RP (penumbra radius) and OSA = OSB = RS (Sun
radius). OSO2 = |VS2| and OSO1 = |VS1|, so that the angle between the
heliocentric vectors VS1 and VS2 (see Fig. 3) is arccos VS1·VS2

|VS1·VS2| . Also, OSE =
VS1·VS2
|VS2| . The solar plane along AOSB contains the Sun, and is normal to

the heliocentric vector of the eclipsing satellite. See also the discussion in
Appendix B.

Figure 5. Geometry of a partial occultation. The discs SSS and SS, with
radii RSS and RS, respectively, separated by the distance d, overlap each
other by the common area Sc.

We obtained the flux profile of the penumbra by determining the
fraction of extinct sun’s light along the path of the eclipsed satellite.
This was made in two steps.

First, we consider a fictitious observer placed at a point in the
penumbra looking towards the Sun, and analytically determine
the fraction of the disc of the Sun, which is covered by the disc of
the eclipsing satellite. For that, we used the expressions from
Assafin et al. (2009), which determine the common area (Sc) be-
tween two discs of radii RS and RSS overlapping each other, as a
function of the distance d between their centres (see Fig. 5):

Sc = R2
SSαSS + R2

SαS − dRS sin αS, (12)

where

cos αSS = R2
SS − R2

S + d2

2RSSd
and cos αS = R2

S − R2
SS + d2

2RSd
. (13)

Here, RS (the Sun radius) and RSS are taken at the solar plane,
which is the plane containing the Sun, perpendicular to the helio-
centric vector of the eclipsing satellite (see Fig. 4). RSS is the radius
of the eclipsing satellite, projected at this plane from the fictitious
observer point of view at the penumbra. The calculation of RSS, and
the use of RSS, RU and RP in the determination of the actual eclipse
shadow cast in the observation plane, including the effect of solar
phase, are explained in Appendix B.

The second step consists in taking into account the solar limb
darkening, at the uncovered fraction of the solar disc, to calculate
the amount of light that is actually received by the satellite. For that,
the uncovered solar disc radial profile is numerically represented
by rings. Each ring has a light intensity value coherent with the
darkening profile proposed by Hestroffer & Magnan (1998). The
number of rings was chosen so that the light intensity difference
between two consecutive rings was less than 1 per cent, resulting in
a smooth limb darkening profile.

Thus, from the obtained penumbra light profile, we determined
the incoming and outcoming fluxes Li and Le with the reflectance
model, for any point of the eclipsed satellite in the sky plane.

The points of the eclipsed satellite disc projected in the sky, bathed
by the umbra, have zero flux. The projected satellite points inside
the penumbra have intermediate fluxes, computed by the procedure
explained in this section and in Appendix B. Those satellite points
outside the penumbra (if any) have fluxes computed by the same
procedure described in the previous section. In this way, we derive
the luminosity intensity at each point of the satellite disc projected
in the sky plane. Integration of all fluxes furnish the (normalized)
simulated flux for a given instant. Similarly as before, after consid-
ering all the instants, we obtain the entire simulated light curve for
the eclipse.
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Figure 6. Light-curve fit for the eclipse of Europa by Io in 2009 July 06.
Top: the observed light curve (dots), the fitted light curve (solid line) and the
computed ephemeris-based light curve (dashed line). Bottom: the difference
between the observed and the fitted curves (O − C), showing the quality of
the adjustment. Time is in UTC.

3.4 Ephemeris offsets and ephemeris-based light curves

From state vectors, applying basic plane geometry, we can obtain
the impact parameter, the central instant and the relative velocity
between two given satellites. Since the state vectors are generated
from the ephemeris, these values may be regarded as ephemeris
based, and can be compared to the values obtained from actual fits
to the observed light curves. A simple transformation translates the
differences found into right ascension and declination ‘observed
minus ephemeris’ offsets. In fact, this information is stored in the
fitting procedures.

The fitting software constructs a light curve from values for the
impact parameter, relative velocity and central instant. This allows
for a visual inspection during the fitting procedure, from starting
values to the final results themselves. The ephemeris-based com-
puted values are also used to generate ephemeris-based light curves,
that can be compared to the observed and fitted ones.

All this allows for both a qualitative and quantitative comparison
between observation and ephemeris.

4 R ESU LTS

We fitted the light curves of 25 events and obtained the values and
error estimates for the impact parameter, the relative velocity and the
central instant, following the procedures described in Section 3. We
also calculated these parameters from the ephemeris, as explained
in Section 3.4. This allowed us to compare the expected results from
the ephemeris with the observed ones. Figs 6 and 7 illustrate two
examples of adjustment of light curves from an eclipse and from an
occultation. The ephemeris-based light curves are also displayed. In
Appendix C, we illustrate all the events. Figs C1 to C3 (occultations)
and C4 to C6 (eclipses) sample the events according to the quality
of the observations and adjustments, i.e. ‘excellent’, ‘good’ and
‘regular’.

We show in Table 2 (for occultations) and in Table 3 (for eclipses)
the parameters and respective errors obtained from the light-curve
fits of all the events. For the impact parameter and the velocity,
values are listed in kilometres and kilometres per second, and in
milliarcseconds and milliarcseconds per second, respectively. For

Figure 7. Light-curve fit for an occultation of Europa by Io in 2009 June
29. Top: the observed light curve (dots), the fitted light curve (solid line)
and the computed ephemeris-based light curve (dashed line). Bottom: the
difference between the observed and the fitted curves (O − C), showing the
quality of the adjustment. Time is in UTC.

the central instant, in UTC (Universal Time Coordinated), the label
of each event indicates the day and month. We list the instant in
hours, minutes and seconds, and the error in seconds and in kilome-
tres (by the use of the relative velocity in kilometres per second).
We also list in Tables 2 and 3 the photometric error, based on the
dispersion of light-curve points outside the events, and the mean
error in flux ratio, computed from the light-curve fits. The ratio
of albedos (and errors) used for the light-curve reduction of the
occultations (see Section 3.2) are also given in Table 2.

We compared the results with the ephemeris published by the
IMCCE, currently considered the most accurate representative for
the Jovian system. We list in Tables 2 and 3 the differences be-
tween the fitted and the ephemeris-based parameter values. We also
list the (	αcos δ, 	δ) orbital offsets in the sense ‘observation −
ephemeris’.

5 T H E R E F L E C TA N C E L AW

The choice of the reflectance law has great influence in the light-
curve fit of the mutual events. This is because the satellite’s pho-
tocentre is significantly offset relative to its geometric centre, if
the solar phase angle is not negligible. Therefore, the choice of the
reflectance model affects the relationship between the impact pa-
rameter and the light-curve’s depth. Another possible side effect is
the bad determination of the central instant. Thus, the choice of a
simple or incorrect reflectance model may lead to a less precise, pos-
sibly inaccurate determination of the parameters, depending on the
photometric quality of the light curve. As a consequence, the mean
error of the fits in flux ratio may increase. We used the computed
mean errors of some selected light curves as a guide to measure the
adequateness of some tested reflectance models. The final choice
was made according to the quality of the fit obtained from these
light curves.

Knowing that the Poisson noise is proportional to the square root
of the intensity of the object’s light flux, a decrease in brightness, as
observed close to the central instant of some events (mostly central
eclipses), causes a decrease in the noise, and hence, in the dispersion
of the points near the bottom of the light curve. A narrowing is
observed in the light curve near the central instant for such events.
Fig. 8 displays an example.
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Table 2. Results for the occultations.

Event Impact 	IP Relative 	RV Central 	MI 	αcos δ 	δ Photo. σ fit Ratio of
parameter velocity instant error Albedos

(km) (km) (km s−1) (km s−1) (h m s) (s) (km) (km) ×10−2 ×10−2

(mas) (mas) (mas s−1) (mas s−1) σMI(km) (km) (mas) (mas)

2704GoI 381.2 (33.2) −93.5 23.77(0.08) −0.025 06 42 43.24(0.22) −6.89 146.7 −118.5 1.09 1.11 1.67(0.08)
99.8 (8.7) −24.5 6.22(0.019) −0.01 5.22 −164.0 38.4 −31.8

0905EoI 2060.7 (10.4) 46.97 28.86(0.37) 1.48 07 21 48.34(0.56) −8.03 37.6 −220.9 4.46 1.5 0.88(0.01)
554.5 (2.7) 12.7 7.81(0.10) 0.4 15.7 −230.0 10.2 −59.9

2105IoE 229.2 (29.1) 183.83 22.65(0.10) 0.10 05 29 35.71(0.29) −10.6 −82.4 −290.5 2.29 1.51 1.04(0.14)
64.5 (8.2) 51.8 6.38(0.029) 0.03 6.6 −240.6 −23.2 −81.8

2805IoE 602.2 (6.1) −15.28 21.95(0.05) 0.31 07 44 08.73(0.16) −10.9 101.7 −213.7 1.12 0.8 1.01(0.01)
173.5 (1.8) −4.41 6.32(0.015) 0.09 3.5 −239.6 29.3 −61.6

2206IoE 1805.6 (8.9) 13.3 19.27(0.18) 1.00 03 27 46.91(0.60) −8.05 42.10 −141.7 0.11 1.3 0.98(0.007)
562.9 (2.8) 4.1 6.01(0.054) 0.31 11.6 −155.3 13.1 −44.1

2906IoE 1867.6 (2.9) −27.5 17.44(0.053) 0.19 05 38 20.71(0.22) −10.2 90.2 −153.1 0.07 0.4 0.97(0.005)
594.2 (0.9) −8.8 5.54(0.017) 0.06 3.9 −177.4 28.7 −48.7

0607IoE 1861.2 (4.0) −38.5 15.55(0.064) −0.66 07 48 27.18(0.34) −6.32 73.3 −81.3 0.05 0.6 1.00(0.006)
603.3 (1.3) −12.4 5.04(0.021) −0.21 5.3 −98.3 23.7 −26.3

0708IoE 818.7 (4.4) −87.1 10.45(0.022) −0.52 05 37 45.58(0.31) −7.25 109.5 −44.3 0.56 0.8 0.93(0.011)
279.4 (1.5) −29.7 3.56(0.007) −0.2 3.2 −75.8 37.3 −15.9

1208GoE 3132.4 (2.5) −27.8 7.94(0.031) 0.12 2 11 2.54(0.63) 14.3 −15.0 114.4 0.46 0.4 1.68(0.000)
1066 (0.8) −9.5 2.70(0.011) 0.04 5.0 113.6 −5.1 39.1

2208IoE 1938.7 (2.0) −19.7 5.45(0.012) 0.18 04 07 55.99(0.52) 6.85 4.75 40.8 0.05 0.5 0.93(0.011)
661.1 (0.7) −6.7 1.84(0.004) 0.06 2.8 37.4 1.6 13.9

1609IoE 1685.2 (5.9) −68.6 11.04(0.059) −0.19 00 46 13.50(0.64) 5.38 42.9 80.8 0.01 1.1 1.01(0.008)
556.2 (1.9) −22.6 3.64(0.019) −0.06 7.0 59.4 14.2 26.6

2410GoE 2259.9 (4.6) −58.2 13.72(0.049) −0.20 00 35 47.84(0.42) 19.2 −34.4 271.4 13.5 0.8 1.68(0.087)
670.5 (1.3) −17.2 4.07(0.015) −0.01 5.8 263.3 −10.2 80.5

2510IoE 1892.0 (17.1) −55.7 19.47(0.358) 1.48 01 21 43.70(1.20) 14.1 −34.8 258.0 0.01 1.4 1.01(0.008)
558.9 (4.7) −16.5 5.70(0.105) 0.44 23.4 275.3 −10.3 76.3

Note. The results are arranged in two rows for each event. The values in parentheses are their respective errors. The impact parameter and the relative velocity
are listed in the first line, respectively, in kilometres and kilometres per second, and in the second line in milliarcseconds and milliarcseconds per second. For
the central instant, in UTC, the label of each event indicates the day and month, and the first line gives the instant in hours, minutes and seconds. The second
line (σMI) lists the mid-time instant error in kilometres, by the use of the relative velocity in kilometres per second. 	IP, 	RV and 	MI are the respective
differences between the fitted parameters and the ephemeris-based values in the sense ‘observation − ephemeris’. In columns 8 and 9, we also list the (	αcos δ,
	δ) orbital offsets in the sense ‘observation − ephemeris’. The photometric errors are based in the dispersion of the light-curve points outside the events.
The σ fit values are the mean error in the flux ratio, computed from the light-curve fits. The listed ratio of albedos were computed following the procedures
described in Section 3.2. For 1208GoE, the ratio of albedos was not directly determined from observations before and after the event. Instead, we computed it
by multiplying the values of the ratio of albedos of the event 2704GoI, and the average value for Io/Europa ratio of albedos obtained from the events 0708IoE,
2208IoE and 1609IoE. These events were observed close to the 1208GoE occultation.

In the Poisson noise regime (as is the case of our observations),
we should expect that the photometric error is minimum at the
bottom of the light curve, thus making this part of the light curves
suitable for the analysis of the reflectance model. If the reflectance
model does not provide a good fit, the bottom part of the theoretical
light curve should be slightly offset from the observed one, due to
the bad determination of the impact parameter and, possibly, also
of the central instant. This effect is shown in Fig. 9. Therefore,
besides the inspection of the mean error of the flux ratio, computed
from the light-curve fits, this behaviour is another factor that helps
in the choice of the reflectance model.

The most basic and commonly used light scattering model is
the simple Lambert’s scattering law. It assumes an infinite-sized
source of light, and a reflecting surface that scatters the incident
light equally in all directions. Therefore, the satellite’s surface
luminosity can be represented by a homogeneous grey disc. In
this case, one way to account for the solar phase angle is to de-
scribe the format of the apparent disc as a combination of a semi-

circle with a semi-ellipse. However, the high photometric qual-
ity of the observed events makes this model too simplistic and,
therefore, inappropriate to provide a high-quality fit to our light
curves.

In this work, we considered the most complex and complete
reflectance models used in the literature, that take into account the
direction of the incident light for a finite-sized source, for example.
First, we studied the generalized version of Lommel-Seelinger’s
law, where the ratio between the radiance of the incident light (Li)
and the observed object’s radiance (Le) is given by (Buratti &
Veverka 1984)

Le

Li
= A

cos ψi

cos ψi + cos ψe
f (α) + (1 − A) cos ψ. (14)

Here, f(α) = 1 + Bα + Cα2 is the phase function of the surface,
where α is the phase angle, ψi and ψe are the same as in Fig. 2,
A is a function of α and the parameters B and C depend of the
satellites surface features. Unfortunately, in the literature, there was
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Table 3. Results for the eclipses.

Event Impact 	IP Relative 	RV Central 	MI 	αcos δ 	δ Photo. σ fit

parameter velocity instant error
(km) (km) (km s−1) (km s−1) (h m s) (s) (km) (km) ×10−2 ×10−2

(mas) (mas) (mas s−1) (mas s−1) σMI(km) (km) (mas) (mas)

1006GeC 1151.5 (5.5) 85.7 14.62(0.02) 0.19 07 29 40.25(0.21) 14.9 −160.9 166.39 0.57 1.0
345.6 (1.7) 25.7 4.39(0.005) 0.06 3.1 217.9 −48.3 50.0

1606GeI 3422.8 (1.8) 108.2 5.50(0.016) 0.08 08 45 4.17(0.73) −41.6 14.83 249.7 0.79 0.9
1050 (0.5) 33.2 1.69(0.005) 0.02 3.0 −228.8 4.5 76.6

1906CeE 1783.0 (2.6) −23.6 19.09(0.026) −0.55 05 11 37.02(0.14) 5.46 −16.65 102.74 1.53 0.7
551.0 (0.8) −7.3 5.90(0.008) −0.17 2.7 104.4 −5.14 31.7

1906CeI 3393.2 (3.0) 8.3 18.94(0.072) −0.39 08 32 50.77(0.34) 6.50 −55.3 113.3 0.95 0.6
1049 (0.9) 2.5 5.85(0.022) −0.12 6.4 123.2 −17.1 39.9

2006CeI 1926.4 (1.6) −1.5 4.89(0.005) 0.36 05 09 49.65(0.38) −20.4 −36.9 84.7 2.06 0.9
597.9 (0.5) −0.5 1.52(0.002) 0.11 1.9 −99.9 −11.4 26.3

2006CeI 1517.4 (3.9) −15.5 5.06(0.007) 0.008 09 37 20.90(0.51) 22.0 −27.4 109.2 4.69 1.4
471.1 (1.1) −4.8 1.57(0.002) 0.002 2.6 111.6 −8.5 33.8

0407IeG 1486.9 (6.3) −15.42 26.70(0.068) 0.07 06 25 14.90(0.19) 1.97 −5.49 54.4 0.08 0.7
479.1 (2.0) −4.97 8.59(0.021) 0.02 5.1 52.6 −1.7 17.5

0607IeE 2487.8 (3.4) −167.8 19.01(0.122) 1.33 06 17 16.94(0.39) 0.16 154.8 64.9 0.56 0.6
806.3 (1.1) −54.3 6.16(0.040) 0.43 7.4 3.00 50.2 21.0

0807GeI 777.8 (4.1) −58.4 22.23(0.018) 0.28 08 31 15.12(0.07) 9.2 −21.9 208.7 0.15 0.7
253.5 (1.4) −19.0 7.25(0.006) 0.09 1.6 204.2 −7.13 68.0

1307IeE 2312.8 (3.9) 21.9 17.04(0.104) 0.54 08 38 47.04(0.43) 1.02 −26.6 7.63 1.19 1.2
762.1 (1.3) 7.2 5.62(0.003) 0.01 7.3 17.5 −8.7 2.51

0708IeE 1656.7 (5.2) 178.9 11.21(0.052) −0.21 05 14 55.88(0.58) 3.16 −180.1 −29.4 0.02 2.3
568.6 (1.7) 61.0 3.77(0.017) −0.07 6.5 35.5 −61.5 −10.0

1609IeE 576.2 (14.0) −67.6 13.34(0.065) 0.36 02 15 9.96(0.54) −0.66 66.3 15.7 0.60 4.4
190.1 (4.5) −22.3 4.40(0.022) 0.11 7.2 −8.84 21.9 5.2

Note. Read definitions in Table 2. We do not list the ratio of albedos, as this is not used in the reductions of eclipses.

Figure 8. Bottom part of the light curve of the event 0807GeI (from Fig. C4)
showing the narrowing observed due to a noise reduction, as a consequence
of the flux drop from the target, due to the passage of the shadow (central
eclipse).

no information about these parameters for the Galilean satellites
(except for Europa), for the wavelength range covered by this study.
Therefore, this model could not be further tested.

We then tested the non-generalized version of Lommel-
Seelinger’s law (equation 15) (Aksnes, Franklin & Magnusson
1986), in an attempt to eliminate the need of information about
the features of the satellites. The law can be described as

d(Le/Li) = B
cos ψi cos ψe

cos ψi + cos ψe
ds (15)

where, d(Le/Li) is the amount of radiance scattered from a sur-
face element ds, ψi and ψe are the same as in Figs 2 and B is

Figure 9. Light-curve fit for the eclipse of Io by Ganymedes in 2009 July
08 using the Lommel-Seelinger reflectance model (0807GeI - LS). Top: the
observed light curve (dots) and the fitted light curve (solid line). Bottom:
the difference between the observed and the fitted curves (O − C), showing
the failure to determine the central instant which causes a horizontal offset
between the fitted and the observed light curve. Time is in UTC.

a normalization constant that, for this work, is assumed to be the
value of the ratio of albedos, aiming to maintain the aspect ratio
between the satellites fluxes. This alternative did not satisfacto-
rily solve the problem of the poor determination of the central
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Figure 10. Small zoom near the mid-time instant in the curve (O − C) of
the event 0807GeI comparing the three reflection models tested. Top: (a)
Lambert’s simple law and (b) Lommel-Seelinger’s law in the right. Bottom:
(c) Oren–Nayar’s model. Time is in UTC.

instant, evidenced by Fig. 9 and, therefore, a different model was
needed.

Hapke’s scattering law (Hapke 1981, 1984) is a sophisticated
model that has been used in some works. Unfortunately, we
could not apply it, due to the severe lack of information on
many of the parameters of that law, for the wavelength band
of our observations – as was the case with the generalized
version of Lommel-Seelinger’s law. We notice, however, that
Emelyanov (2009) (see Section 4, table 2 in that article), reports
that both the Hapke’s and Lommel-Seelinger’s laws have a similar
performance.

We finally found the solution as a generalization of Lambert’s law
(Oren & Nayar 1994), that takes into account not only the direction
of the radiances, like the other models, but also the surface rough-
ness. The roughness is represented by a factor of σ , which ranges
between 0 and π/2, with π/2 equivalent to the surface roughness
of a full Moon. The Oren–Nayar’s model proved to be efficient in
describing the profile of spherical surfaces illuminated by a finite
source, and then we decided to test it.

The first test was to verify the model’s capacity to solve the
problem pointed out in Fig. 9. The results were highly satisfactory,
as shown in Fig. 10.

We then verified if there were a strong dependence of the model
with the parameter σ describing the surface roughness. If we found
a high dependence, we should consider fitting this parameter too.
However, changing the value of σ did not produce significant
changes in the parameters of the light curve. Also, no significant
changes occurred in the mean error of the flux ratio (σ fit). This
indicates that the Oren–Nayar’s model is a very robust reflectance
model, even for high-precision photometric light curves. One ad-
vantage of this model is that no ad hoc albedo-wavelength-related
parameters need to be set for the satellites, as is the case of other re-
flectance laws used in the literature. Thus, the Oren–Nayar’s model
is a very interesting alternative, that can be used in the light-curve
fit of mutual events of any giant planet, without a priori photometric
knowledge in the satellites. Taking into account the recommenda-
tions in Oren & Nayar (1994), we used σ = π/2 in our fits. The
simplified version of the model was used. Due to our photometric
precision, it furnishes the same results as the complete model, in
much less computing time.

6 C O N C L U S I O N S

We presented the results obtained from the observation, reduction
and analysis of 25 mutual events registered during the Brazilian
campaign for the observation of mutual phenomena between the
Galilean satellites.

The narrow-band filter at 890 nm, combined with the differential
photometry and the refined procedures in the fitting of the light
curves developed in this work, resulted in average precisions of
80.1 m s−1 (0.023 mas s−1) and 7.46 km (2.19 mas) for the relative
velocity and impact parameter (relative positions), respectively, and
0.42 s (6.13 km) for the central instant.

The extensive use of numerical procedures with analytical and
semi-analytical models, allowed for a complete, rigorous imple-
mentation of the complex geometry involved in describing the flux
drop in occultations and eclipses. The modelling of the solar limb
darkening and the implementation of the computation of the grad-
ual decrease of light over the shadow in an eclipse are examples.
This also allowed for the analysis of different reflective laws and
models in a fast and direct way. Through this analysis, we were able
to highlight and study the relation between the impact parameter
and the reflective model. From this study, we could finally adopt
a generalized reflectance model – the Oren–Nayar’s model, used
for the first time in a work on occultations and eclipses in mutual
events. This model is well suited for fitting high-precision light
curves, and does not depend on wavelength and other a priori pho-
tometric knowledge of the satellites, contrary to some reflectance
models currently in use. We emphasize that our developed light-
curve fitting procedures are ephemeris-independent, thus allowing
for an unbiased comparison with the current orbit implementations
available for the Galilean satellites.

The tools and techniques developed and used in this work, al-
lowed for a comprehensive analysis of the many factors inherent
to the nature of these events. They will be of great utility in fu-
ture campaigns, not restricted to the Jupiter system. The use of
more powerful detectors will possibly make it easier to study new
refinements in the analysis.
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A P P E N D I X A : C O M P U T I N G V E C TO R S η1 A N D
η2 F O R SI M U L ATI N G LI G H T C U RV E S

In the occultation case, and outside the umbra and penumbra in the
eclipse case, we sweep the two-dimensional sky plane, integrating
the reflected (emergent) radiance Le, in order to determine the flux
value at each (x, z) point in that plane. In this way, we obtain the
light intensity profile of the satellite discs projected in the sky plane
– a necessary step in the simulation of the light curves. We obtain
Le by equation (2), following the Oren–Nayar’s reflectance model.
The angles in equation (2) are computed from equations (6) to 9,
which depend on the normal and tangent vectors η1 and η2. Here,
we show how we obtained η1 and η2 using spherical geometry.

Let us consider a spherical coordinate system with origin at the
centre of the satellite (Fig. A1). The xz plane of the associated
Cartesian coordinate system coincides with the sky plane (Fig. A2).
Thus, a point (x, y, z) in the spherical surface of the satellite has
spherical coordinates:

θ = arccos
z

R
(A1)

ϕ = arccos
x

R sin θ
(A2)

r =
√

x2 + (R sin θ sin ϕ)2 + z2, (A3)

where R is the satellite’s radius. The Cartesian components of the
vectors η1 (r̂) and η2 (θ̂ ) are, thus:

η1 = r = xx̂ + R sin θŷ + zẑ (A4)

η2 = θ = cos θ cos ϕx̂ + cos θ sin ϕŷ + sin θ ẑ. (A5)

Now, we conveniently write η1 and η2 in topocentric coordinates,
using the state vectors defined in Section 3.3.1. First, we define the
x-axis parallel to the projection of the relative velocity vector on
the sky plane. Then, we set the y-axis antiparallel to the satellite’s

Figure A1. The spherical coordinate system with origin at the centre of the
satellite. The vectors η1 and η2, from Fig. 2, point in the direction of r̂ and
θ̂ , respectively.

Figure A2. The xz plane of the associated Cartesian coordinate system of
Fig. A1 coincides with the sky plane. x̂, ŷ and ẑ are the unitary vectors in x,
y and z directions, respectively.

position vector, to ensure the perpendicularity to the sky plane (see
Fig. A2). Finally, the z-axis results from the cross product between
them. Thus, for each satellite j (j = 1, 2), we have

η1 j = x

(
Vj × VRel × Vj

|Vj × VRel × Vj |
)

+ R sin θ

(
− Vj

|Vj |
)

+ z

(
VRel × Vj

|VRel × Vj |
)

(A6)

η2 j = cos θ cos ϕ

(
VRel

|VRel|
)

+ cos θ sin ϕ

(
− Vj

|Vj |
)

+ sin θ

(
VRel × Vj

|VRel × Vj |
)

, (A7)

where VRel is the relative velocity vector, obtained from the dif-
ference between the topocentric velocity vectors of the satellites.
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Equations (A6) and (A7) allow for computing the (x, y, z) Cartesian
components of the vectors η1 and η2, as a function of topocentric
state vectors, and by inputting (x, z) values. This allows for sweep-
ing the (x, z) coordinates of the satellite’s circular discs projected in
the sky plane. This sweeping is done by choosing a (x, z) resolution
for the construction of the light profile of the discs, in a compromise
between computational efficiency and accuracy.

A P P E N D I X B: C O M P U T I N G T H E FR AC T I O N
O F S U N L I G H T I N E C L I P S E S

We compute the fraction of sunlight in eclipses by solving equation
(12). For that, we must determine the radius RSS of the eclipsing
satellite disc projected in the solar plane, for a fictitious observer
placed at a point within the penumbra. We also need to calculate
the distance d between the centres of this disc and the Sun’s disc.
For that, we use the shadow cones represented by the triangles
AHpEBHp and IDJ (see Fig. 4; see also the discussion at the end of
this appendix). Thus, we have

RSS = R2VS1VS2

VS1VS2 − |VS2|2 (B1)

d = RCP|VS2|2
VS1VS2 − |VS2|2 , (B2)

where RCP is the distance of the fictitious observer to the umbra
centre, along the path of the eclipsed satellite. It is convenient to
express this distance as a function of the corresponding projected
(x, y) coordinates in the observation plane, which is the sky plane
perpendicular to the topocentric vector and containing the umbra
centre. For that, it is necessary to consider two key angles. One is the
solar phase angle 
 between this plane and the solar plane. The other
is � , the angle between the observation plane coordinate system
(x, y) and the relative orbital plane of satellites containing VRel (see
Fig. B1). Thus, in terms of these observation plane quantities, RCP

can be expressed as

RCP = [x2(cos2 � cos2 
 + sin2 � )

+ y2(sin2 � cos2 
 + cos2 � )]1/2 (B3)

where,


 = |V1 × VS1|
|V1||VS1| and � = |(VS1 × V1)(VRel × V2)|

|VS1 × V1||VRel × V2| . (B4)

The (x, y) are the coordinates of a point in the penumbra with
respect to the umbra centre at the observation plane. Using equations

Figure B1. Coordinate system at the observation plane where the y-axis is
normal to the plane containing the solar phase angle.

(B1) to B4, we sweep the (x, y) coordinates of this plane, considering
the regions delimited by the computed umbra and penumbra radii,
RU and RP. Taking the solar limb darkening into account, we then
determine the effective light Li received by the eclipsed satellite, for
each point in the sky. We then use the reflectance model to obtain
the reflected light Le.

Comparing the shadow cones represented by the triangles
AHpEBHp and IDJ in Fig. 4, we note that, for a fictitious observer
located inside the umbra and penumbra (point D), the radius RSS

of the disc projected in the solar plane undergoes a small variation,
as we move along the segment EG. The amount of this variation
depends on the distance between the satellites and the Sun, and on
their radii. For all the events of this work, the maximum variation
of RSS remained below 0.15 per cent, after considering the two ex-
treme cases: observer located at the centre of the umbra (point E),
and located at the edge of the penumbra (point G). This negligible
effect was thus ignored, and we adopted the simple calculation of
RSS using the triangle AHpEBHp alone (see Fig. 4).

A P P E N D I X C : L I G H T C U RV E S
O F T H E EV E N T S

Here, we present the reduced light curves of the events treated in
this work. The figures are divided by the quality of the light curves
and respective events’ codes are indicated in each figure.
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Figure C1. Five occultations’ light curves classified as excellent. For each curve, Top: the Observed light curve (dots) and the fitted curve (solid line). Bottom:
the difference between the observed and fitted curves (O − C), showing the quality of the adjustment. The x-label of each curve indicates the time unit (in
UTC), where P.M.I stands for predicted central instant.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/432/1/225/1117425 by guest on 28 January 2022



238 A. Dias-Oliveira et al.

Figure C2. Four occultations’ light curves classified as good, with the same layout of Fig. C1.
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Figure C3. Four occultations’ light curves classified as regular, with the same layout of Fig. C1.
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Figure C4. Six eclipses’ light curves classified as excellent. For each curve, Top: the Observed light curve (dots) and the fitted curve (solid line). Bottom: the
difference between the observed and fitted curves (O − C), showing the quality of the adjustment. The x-label of each curve indicates the time unit (in UTC),
where P.M.I stands for predicted central instant.
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Figure C5. Three eclipses’ light curves classified as good, with the same layout of Fig. C4.
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Figure C6. Three eclipses’ light curves classified as regular, with the same layout of Fig. C4.
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