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We discuss sampling constants for dominating sets in Bergman spaces. Our method is based on a Remez-type inequality by Andrievskii and Ruscheweyh. We also comment on extensions of the method to other spaces such as Fock and Paley-Wiener spaces.

Introduction

Let A p,α (D), 1 ≤ p < ∞, α > -1 be the weighted Bergman space on the unit disk D in the complex plane defined by A p,α (D) = {f ∈ Hol(D) : f p p = (α + 1)

D |f (z)| p (1 -|z| 2 ) α dA(z) < +∞}. (1.1) 
Here dA denotes normalized Lebesgue area measure on D. We will also use the notation dA α (z) = (α + 1)(1 -|z| 2 ) α dA(z) (see [START_REF] Hedenmalm | Theory of Bergman spaces[END_REF] for more information on Bergman spaces). The unweighted Bergman space is denoted by A p = A p,0 . In this paper we are interested in measurable sets E ⊂ D for which we have We will occasionally write L p,α (F ) for the Lebesque space on a measurable set F ⊂ D with respect to dA α . A set satisfying (1.2) will be called dominating for A p,α . We mention that dominating sets are closely related to so-called reverse Carleson measures for which we refer to the survey [START_REF] Fricain | A survey on reverse Carleson measures, Harmonic Analysis, operator theory, function theory, and applications[END_REF] for more information. The question of dominating sets in the Bergman space has been studied first by Luecking [START_REF] Luecking | Inequalities on Bergman spaces[END_REF]- [START_REF] Luecking | Dominating measures for spaces of analytic functions[END_REF] who completely characterized these dominating sets in A p in terms of relative density, which morally speaking means that every pseudohyperbolic disk of a certain minimal fixed radius (depending on E) meets the set E with uniformly positive density (precise definitions will be given below). We mention the closely related question of sampling sequences which have been characterized by Seip (see the monograph [START_REF] Seip | Interpolation and sampling in spaces of analytic functions[END_REF] for a general reference on sampling and interpolation).

A question which arises quite naturally is whether it is possible to estimate the constant C appearing in (1.1) in terms of the underlying density. A prominent example where this question has been studied is the Paley-Wiener space. Dominating sets in this space go back to work by Logvinenko-Sereda [START_REF] Logvinenko | Equivalent norms in spaces of entire functions of exponential type[END_REF] and Panejah [START_REF] Panejah | On some problems in harmonic analysis[END_REF]- [START_REF] Panejah | Some inequalities for functions of exponential type and a priori estimates for general differential operators[END_REF]. We mention also some recent work on so-called Paley-Wiener measures (see e.g. [START_REF] Poltoratski | Toeplitz methods in completeness and spectral problems[END_REF]Theorem 15]). Having precise estimates on the sampling constants is important in applications when one has to decide on the trade-off between the cost of the sampling and the accuracy of the estimates. In the early 2000's Kovrijkine [START_REF] Kovrijkine | Some results related to the Logvinenko-Sereda theorem[END_REF] considered the Paley-Wiener space and gave a precise and optimal estimate on C in terms of the underlying density. His method is quite clever and based on the Bernstein inequality which does not hold in Bergman or Fock spaces but for instance in model spaces where the proof was adapted in [START_REF] Hartmann | Quantitative estimates of sampling constants[END_REF]. It was brought to our attention that very recently, Jaming and Speckbacher [START_REF] Ph | Planar sampling sets of the short-time Fourier transform[END_REF] considered the case of polyanalytic Fock spaces using a strong result by Brudnyi -which holds for plurisubharmonic functions -and a clever trick allowing to switch from polyanalytic functions to analytic ones in 2 variables. Since the Fock space is a special case of the polyanalytic Fock space, they in particular get an estimate of the sampling constant in Fock spaces. Our method is more elementary and uses holomorphy. While our result is presented for the Bergman space, for which the geometry is different, the method applies quite directly to consider the case of the (analytic) Fock space. It should also be noted that our intermediate step (Proposition 1) allows to turn around the Bernstein inequality in a large set of situations, including of course Fock spaces but also the Paley-Wiener space. We will comment on these observations in the last section.

We need to introduce some notation. Let ρ(z, w) = z -w 1 -zw be the pseudohyperbolic distance between two points z, w ∈ D. We consider the associated pseudohyperbolic balls: D phb (z, r) = {w ∈ D : ρ(z, w) < r}, where 0 < r < 1. A measurable set E ⊂ D is called (γ, r 0 )-dense for some γ > 0 and 0 < r 0 < 1, if for every

z ∈ D |E ∩ D phb (z, r 0 )| |D phb (z, r 0 )| ≥ γ.
Here |F | denotes planar Lebesgue measure of a measurable set F . We will just say that the set is relatively dense if there is some γ > 0 and some 0 < r < 1 such that the set is (γ, r)-dense.

Luecking's result on dominating sets can be stated as follows ( [START_REF] Luecking | Inequalities on Bergman spaces[END_REF], and in particular condition (2') in [11, p.4]).

Theorem 1 (Luecking). A (Lebesgue) measurable set E is dominating in A p (p > 0) if and only if it is relatively dense.

Looking closely at the proof proposed by Luecking -who was not interested in the magnitude of the sampling constant -it turns out that his sampling constant behaves like C p ≥ γe -cp/γ . A more general result concerning sampling measures in a large class of spaces of analytic funtions has been discussed again by Luecking in [START_REF] Luecking | Dominating measures for spaces of analytic functions[END_REF], and in particular in Bergman spaces [START_REF] Luecking | Dominating measures for spaces of analytic functions[END_REF]Theorem 1]. Even if the density appears explicitely in his proof, a compactness argument used in [START_REF] Luecking | Dominating measures for spaces of analytic functions[END_REF]Lemma 4] introduces an implicit dependence on the density.

Our main result is the following Theorem 2. Let 1 ≤ p < +∞. There exists L such that for every measurable set E ⊂ D which is (γ, r)-dense, we have

f L p,α (E) ≥ γ c L f A p,α (1.3) 
for every f ∈ A p .

The constants c and L depend on r. For L we can choose

L = c 1 1 + α p 1 (1 -r) 4 ln 1 1 -r ,
where c 1 is some universal constant.

It should be noted that there is a competing relation between γ and r. The density γ can be very small for a given r (because E has holes which have pseudohyperbolic radius close to r), but it can become rather big when we choose a bigger radius (e.g. pseudohyperbolic doubling of r: 2r/(1 + r 2 )). In a sense one needs to optimize L ln γ, and L depends on r.

Here is another observation. Though this might be obvious, it should be observed that there is no reason a priori why a holomorphic function for which the integral E |f | p dA α is bounded for a relative dense set E should be in A p,α . Outside the class A p,α relative density is in general not necessary for domination (see also a remark in [11, p.11]).

The discussion of the necessary condition of relative density in [11, p.5], involving testing on reproducing kernels, shows that given a sampling constant C in (1.2), then γ C p , i.e. C γ 1/p . There are three main ingredients in the proof of Theorem 2. The first one is a Remeztype inequality, which allows to get the local estimate depending on the density. These have been studied in a large set of situations. We refer to [START_REF] Borwein | Polynomials and polynomial inequalities[END_REF] for a general source on polynomials and Remez-type inequalities, and to [START_REF] Erdélyi | Remez-type inequalities and their applications[END_REF] for a survey. In our situation, we need a Remez-type inequality for planar domains, which can be found in [START_REF] Andrievskii | Remez-type inequalities in the complex plane[END_REF]. The second ingredient is to decompose the integration domain into good and bad parts. Good meaning here that the Remez-type inequality applies. In Kovrijkine's work, as well as in many of the succeeding work using his method, the separation in good and bad parts was achieved via a Bernstein-type inequality. Such an inequality holds for instance in Paley-Wiener spaces and more generally in so-called model spaces. However, it is no longer true in Fock or Bergman spaces. So a different approach has to be found to get the good intervals (rather disks in Fock or Bergman spaces). The way of turning around Bernstein's inequality given in this paper is one of the new features and applies to many other situations, including the Paley-Wiener space itself (see the last section). The third ingredient will be a translation allowing to translate the good parts to a reference situation (the "origin") where we apply the Remez-type inequality. Such translations are known to be well-behaved for instance in Fock spaces and Paley-Wiener spaces so that our construction easily carries over to those situations. Since in those spaces the result is already known ([9] for the Paley-Wiener space and [START_REF] Ph | Planar sampling sets of the short-time Fourier transform[END_REF] for the Fock space), in this paper we focus on the case of the Bergman spaces.

As a matter of fact, the method proposed here can also be seen as a new way of proving sampling results in the Bergman space (also e.g. in Fock or Paley-Wiener spaces). It essentially exploits locally the Remez-type inequalities, the proofs of which often involve heavy machinery. But once these inequalities established they prove being powerful tools in sampling problems.

Remez-type inequalities

In this section we start recalling some results of the paper [START_REF] Andrievskii | Remez-type inequalities in the complex plane[END_REF]. Let G be a (bounded) domain in C. Let 0 < s < |G| (Lebesgue measure of G). Denoting Pol n the space of complex polynomials of degree at most n ∈ N, we introduce the set

P n (G, s) = {p ∈ Pol n : |{z ∈ G : |p(z)| ≤ 1}| ≥ s}. Next, let R n (z, s) = sup p∈Pn(G,s) |p(z)|.
This expression gives the biggest possible value at z of a polynomial p of degree at most n and being at most 1 on a set of measure at least s. In particular Theorem 1 from [START_REF] Andrievskii | Remez-type inequalities in the complex plane[END_REF] claims that for z ∈ ∂G, we have

R n (z, s) ≤ c s n . (2.1) 
This result corresponds to a generalization to the two-dimensional case of the Remez inequality which is usually given in dimension 1. In what follows we will essentially consider G to be a disk or a rectangle. By the maximum modulus principle, the above constant gives an upper estimate on G for an arbitrary polynomial of degree at most n which is bounded by one on a set of measure at least s. Obviously, if this set is small (s close to 0), i.e. p is controlled by 1 on a small set, then the estimate has to get worse.

Remark 1. Let us make another observation. If c is the constant in (2.1) associated with the unit disk G = D = D(0, 1), then a simple argument based on homothecy shows that the corresponding constant for an arbitrary disk D(0, r) is cr 2 (considering D(0, r) as underlying domain, the constant c appearing in

[1, Theorem 1] satisfies c > 2 × m 2 (D(0, r))).
So, in the sequel we will use the estimate

R n (z, s) ≤ cr 2 s n , (2.2) 
where c does not depend on r.

Let us recall Lemma 1 from [START_REF] Kovrijkine | Some results related to the Logvinenko-Sereda theorem[END_REF].

Lemma 1 (Kovrijkine). Let φ be analytic in D(0, 5) and let I be an interval of length 1 such that 0 ∈ I and let E ⊂ I be a measurable set of positive measure. If |φ(0)| ≥ 1 and

M = max |z|≤4 |φ(z)| then sup z∈I |φ(z)| ≤ C |E| ln M ln 2 sup x∈E |φ(x)|.
We will discuss the following counterpart for the planar case:

Lemma 2. Let 0 < r < ρ be fixed. There exists a constant η > 0 such that the following holds. Let φ be analytic in D(0, ρ), let E ⊂ D(0, r) be a planar measurable set of positive measure, and let

z 0 ∈ D(0, r). If |φ(z 0 )| ≥ 1 and M = max |z|≤ρ |φ(z)| then sup z∈D(0,r) |φ(z)| ≤ cr 2 |E| η ln M sup z∈E |φ(z)|,
where c does not depend on r, and

η ≤ c ρ 4 (ρ -r) 4 ln ρ ρ -r
for an absolute constant c .

For the case of the Bergman space which is the main object in this paper we can consider (1-r) = κ(1-ρ) for some κ > 1, and, of course, ρ < 1, so that the above estimate becomes

η ≤ c 1 (1 -r) 4 ln 1 1 -r , (2.3) 
where c is another absolute constant.

Kovrijkine's proof, based on Jensen's inequality and the Remez inequality in the onedimensional case, carries almost verbatim over to the two-dimensional case. Still, since our geometrical setting is not exactly the same and we need to take into account the location of z 0 , and moreover we wish to keep track of the underlying constants, we reproduce here the adapted version of the proof. Also, in our proof we make use of the pseudohyperbolic metric which changes a bit the setting and which could be of interest in other situations. For a ∈ D, define the usual disk automorphism by

ϕ a (z) = a -z 1 -az , z ∈ D. (2.4)
It is well known that ϕ a (ϕ a (z)) = z.

Proof. We first observe that by a rescaling argument we can assume ρ = 1. Let

ψ(z) = φ • ϕ z 0 (z) = φ( z 0 -z 1 -z 0 z ),
which translates z 0 to 0. Also, letting r 0 = 2r/(1 + r 2 ) (which corresponds to a pseudohyperbolic doubling of r), we get E ⊂ D phb (z 0 , r 0 ). Define E = ϕ z 0 (E) so that E ⊂ D(0, r 0 ), and ψ| E = φ • ϕ z 0 | E = φ|E. From now on, we will consider ψ on D(0, r 0 ) which thus contains E, and |ψ(0

)| = |φ(z 0 )| ≥ 1.
We now let t = 2r 0 /(1 + r 2 0 ) another pseudohyperbolic doubling, now of r 0 . Consider a 1 , . . . , a n , the zeros of ψ in D(0, t), and B the Blaschke product associated with these zeros in D(0, t). 

) ⊂ D(0, t) that t -r 0 t + r 0 u(0) ≤ u(z) ≤ t + r 0 t -r 0 u(0) ≤ t + r 0 t -r 0 ln M.
Set α = (t + r 0 )/(t -r 0 ) to simplify notation. We deduce that for every z ∈ D(0, r 0 ),

|g(z)| ≥ M 1-α . Hence max |z|≤r 0 |g(z)| min |z|≤r 0 |g(z)| ≤ M/M 1-α = M α .
Let us estimate Q:

max |z|≤r 0 |Q(z)| min |z|≤r 0 |Q(z)| ≤ max |z|≤r 0 n k=1 |t 2 -a k z| min |z|≤r 0 n k=1 |t 2 -a k z| ≤ t + r 0 t -r 0 n
We now use the Andrievskii-Ruscheweyh estimate. Given a polynomial P of degree at most n. Let m = sup z∈E |P (z)|. Set P 1 = P/m and s = | E|. Then P 1 ∈ P n (D(0, r 0 ), s).

By (2.2) we get

|P 1 (z)| ≤ cr 2 0 | E| n ,
and hence sup

|z|≤r 0 |P (z)| ≤ cr 2 0 | E| n sup z∈ E |P (z)|.
The exact same estimates as Kovrijkine's lead to sup

|z|≤r 0 |ψ(z)| ≤ M α t + r 0 t -r 0 n × cr 2 0 | E| n × sup z∈ E |ψ(z)| ≤ M t+r 0 t-r 0 t + r 0 t -r 0 n × cr 2 0 | E| n × sup z∈ E |ψ(z)| ≤ e t+r 0 t-r 0 ln M +n ln t+r 0 t-r 0 cr 2 0 | E| n sup z∈ E |ψ(z)|. Since E = ϕ z 0 (E) and |z 0 | < r 0 , we have | E| ≥ c(1 -r 0 ) 2 |E|, so that sup |z|≤r 0 |ψ(z)| ≤ e t+r 0 t-r 0 ln M +n ln t+r 0 t-r 0 -2n ln(1-r 0 ) cr 2 0 |E| n sup z∈ E |ψ(z)|.
Assuming e ≤ cr 2 0 /|E| (note that this inequality means that the density of E is less than a fixed constant, if the density is bigger than some fixed constant, say 1/2, then the estimate is not really of interest). This yields sup

|z|≤r 0 |ψ(z)| ≤ cr 2 0 |E| t+r 0 t-r 0 ln M +n ln t+r 0 t-r 0 -2n ln(1-r 0 )+n sup z∈ E |ψ(z)|
Applying Jensen's formula in a similar way as did Kovrijkine we obtain n ≤ ln M ln(1/t) (recall that ρ was supposed to be 1). Setting

η = t + r 0 t -r 0 + ln t + r 0 t -r 0 -2 ln(1 -r 0 ) + 1 / ln(1/t),
and retranslating to φ we get

sup |z|≤r |φ(z)| ≤ sup |z|≤r 0 |ψ(z)| ≤ cr 2 0 |E| η ln M sup z∈ E |ψ(z)| ≤ cr 2 0 |E| η ln M sup z∈E |φ(z)|
Let us discuss the estimate for η. Note first that t = 2r 0 /(1 + r 2 0 ), so that t + r 0 t -

r 0 = 3 + r 2 0 1 -r 2 0 ≤ 4 1 -r 2 0 .
Also ln(1/t) ∼ (1 -r 0 ) 2 /(2r 0 ), and since r 0 = 2r/(1 + r 2 ) we have 1 -

r 0 ∼ (1 -r) 2 /2. Hence η 4 1 -r 2 0 + ln 4 1 -r 2 0 + ln 1 (1 -r 0 ) 2 + 1 × 2 (1 -r 0 ) 2 ≤ c (1 -r 0 ) 2 ln 1 1 -r 2 0 ∼ c (1 -r) 4 ln 1 1 -r
where c and c are absolute constants.

Getting back to arbitrary ρ > 0, the above becomes

η ≤ c ρ 4 (ρ -r) 4 ln ρ ρ -r
The corresponding case for p-norms is deduced exactly as in Kovrijkine's work.

Corollary 1. Let 0 < r < ρ be fixed. There exists a constant η > 0 such that following holds. Let φ be analytic in D(0, ρ), let E ⊂ D(0, r) be a planar measurable set of positive measure, and let z 0 ∈ D(0, r).

If |φ(z 0 )| ≥ 1 and M = max |z|≤ρ |φ(z)| then for p ∈ [1, +∞) we have φ L p (D(0,r)) ≤ cr 2 |E| η ln M + 1 p φ L p (E) .
The estimates on η are the same as in the lemma. The constant c does not depend on r.

Proof of Theorem 2

In the proof we will use a change of variable formula. Recall the definition of the diskautomorphism from (2.4). Then we can introduce the change of variable formula

T a : A p,α -→ A p,α , (T a f )(z) = (f • ϕ)(z)ϕ a (z) (2+α)/p . Recall that ϕ a (z) = - 1 -|a| 2 (1 -az) 2 .
Clearly T a is an isomorphism of the Bergman space A p,α . We will also consider restrictions of T a from pseudohyperbolic disks to other corresponding pseudohyperbolic disks.

We now enter into the main part of the proof which gives a simple way of avoiding the Bernstein inequality. We need to introduce some preliminary notation. For n ∈ N and k = 0, 1, . . . , 2 n -1, let z n,k = (1 -2 -n )e i2πk/2 n and define D r n,k = D phb (z n,k , r), where r ∈ (0, 1). It can be checked that for a sufficiently big choice r 0 of r these disks cover D. We will henceforth set D n,k = D r 0 n,k . We need a finite covering property. Denote by χ F the characteristic function of a measurable set F in D. Lemma 3. For every r ∈ (r 0 , 1), there exists a constant N such that

n,k χ D r n,k ≤ N.
Moreover there is some universal constant such that

N ≤ c ov 1 (1 -r) 2 ln 1 1 -r ,
where c ov is an absolute constant.

Obviously, the constant N is at least equal to 1. In the estimates below N will enter only logarithmically so that the power in (1 -r) as well as the logarithmic term are not very important.

Proof of Lemma. This is certainly a well know fact, but we include a proof for completeness and to give an idea of the dependence of N on r.

The result is equivalent to say that a disk D phb (z, r) contains at most N points z n,k . Since the problem is rotation invariant, we can assume z = x ∈ [0, 1).

Recall from [5, p.3] that D phb (x, r) is a euclidean disk with diameter

[α, β] = x -r 1 -rx , x + r 1 + rx
In terms of distance to the boundary, this disk, taking into account that r ∈ (0, 1) is fixed, is between

1 - x -r 1 -rx = 1 -rx -x + r 1 -rx = (1 + r)(1 -x) 1 -rx ≤ d 1 (1 -x), 1 - x + r 1 + rx = 1 + rx -x -r 1 + rx = (1 -r)(1 -x) 1 + rx ≥ d 2 (1 -x),
where d 1 and d 2 are strictly positive constants (e.g.

d 1 = 2/(1 -r) and d 2 = 1/d 1 = (1-r)/2). In particular for z n,k ∈ D phb (x, r) it is necessary that d 2 (1-x) ≤ 2 -n ≤ d 1 (1-x)
which may happen at most (ln(d 2 (1 -x)) -1 -ln(d 1 (1 -x)) -1 )/ ln 2 times. With the above choice we can pick d 1 /d 2 ≤ 4/(1 -r) 2 so that the number of possible n is bounded

ln d 1 d 2 / ln 2 ≤ ln 4 (1 -r) 2 / ln 2. (3.1)
We also need to check that the number of k such that z n,k ∈ D phb (x, r) is uniformly bounded. Note that r is fixed. We will distinguish two cases, x ≤ 2r et 2r < x < 1 (in case r ≥ 1/2 the latter case does not occur).

When x ≤ 2r, we know that D phb (x, r) ⊂ D(0, 3r/(1 + 2r 2 )). In order that 1 -2 -n ∈ D(0, 3r/(1 + 2r 2 )) it is necessary that 1 -2 -n ≤ 3r/(1 + 2r 2 ) which happens when n ln(1 -r) -1 (the constant appearing here does not depend on r). In order to get all z n,k ∈ D(0, 3r/(1 + 2r 2 )), it remains to sum

ln(1-r) -1 k=0 2 k (1 -r) -1 . So for x ≤ 2r we have N (1 -r) -1 . Assume now that 2r < x < 1. Then x -r 1 -rx ≥ 2r -r 1 = r. (3.2)
Observe that in order that z n,k ∈ D phb (x, r) we need 1

-|z n,k | = 2 -n ∈ [d 2 (1 -x), d 1 (1 -x)]. By [5, p.3], D P hb (x, r) = D(c, R) with c = x 1 -r 2 1 -r 2 x 2 , R = r 1 -x 2 1 -r 2 x 2 .
Hence the argument of a point w ∈ D phb (x, r) can be estimated in the following way

| arg w| ≤ arcsin R c = arcsin r x 1 -x 2 1 -r 2 ≤ arcsin 1 -x 2 2(1 -r 2 ) 1 -x 2 2(1 -r 2 ) ≤ 1 -x 1 -r 2 ≤ 1 1 -r 2 1 d 2 2 -n ≤ 2 (1 -r) 2 2 -n . Hence, in order that z n,k = (1 -2 -n )e 2πik/2 n ∈ D phb (x, r) we need 2πk ≤ 2 (1 -r) 2 . ( 3.3) 
We conclude that the number of k is also bounded by a fixed number. We are done. The estimates (3.1) and (3.3) yield the required bound on N .

Fix r 0 < s < t < 1. For K > 1 the set

I K-good f = {(n, k) : f L p,α (D t n,k ) ≤ K f L p,α (D s n,k
) } will be called the set of K-good disks for (t, s) (in order to keep notation light we will not include s and t as indices). This set depends on f .

The key-result of this paper is the following proposition which allows to obtain the set of good disks in a very simple way. This might have some independent interest. Proposition 1. Let r 0 ≤ s < t < 1. For every constant c ∈ (0, 1), there exists K such that for every f ∈ A p,α we have

(n,k)∈I K-good f f p L p,α (D s n,k ) ≥ c f p A p,α .
It will be clear from the proof that one can pick K ≥ N/(1 -c) where N corresponds to the overlapping constant from Lemma 3 for the (pseudohyperbolic) radius s.

Proof of proposition. Since r 0 ≤ s < t < 1, we have n,k D s n,k = D, and by Lemma 3 we have a finite overlap property:

n,k χ D t n,k ≤ N. Hence f p A p,α ≤ (n,k) f p L p,α (D s n,k ) ≤ (n,k) f p L p,α (D t n,k ) ≤ N f p A p,α .
Now pick a c ∈ (0, 1). Then

N f p A p,α ≥ (n,k) / ∈I K-good f f p L p,α (D t n,k ) > K p (n,k) / ∈I K-good f f p L p,α (D s n,k ) = K p (n,k) f p L p,α (D s n,k ) -K p (n,k)∈I K-good f f p L p,α (D s n,k ) ≥ K p f p A p,α -K p (n,k)∈I K-good f f p L p,α (D s n,k ) .
For K p > N we thus get

(n,k)∈I K-good f f p L p,α (D s n,k ) ≥ K p -N K p f p A p,α
Hence, setting c = (K p -N )/K p ∈ (0, 1) we see that

K p = N/(1 -c) is suitable.
We are now in a position to prove the theorem.

Proof of Theorem 2. Let r = max(r, r 0 ), where r 0 ensures the covering of D by D n,k . It is not hard to see that there exists a universal constant η > 0 such that if E is (γ, r)-dense then it is (ηγ, r 1 )-dense (if r ≥ r 0 then η = 1, if r < r 0 we can cover a least portion of any disk D phb (z, r 0 ) by disjoint disks with radius r). Since the multiplicative constant η does not change the estimate claimed in the theorem, and in order to not overload notation, in all what follows we will use γ instead of ηγ. Now fix c ∈ (0, 1). We will choose r 1 for s in Proposition 1 and s < t < 1 to be fixed later. Let also K be a corresponding choice from Proposition 1 (which thus depends on t since N ≤ c ln(1/(1 -t))/(1 -t) 2 )).

Pick f ∈ A p,α . In particular we can assume f A p,α = 1. Let I K-good f be the set of K-good disks for (r 1 , t). Then by Proposition 1

f p A p,α ≤ 1 c (n,k)∈I K-good f f p L p,α (D r 1 n,k ) .
In all what follows we suppose (n, k)

∈ I K-good f . Recall that z n,k is the center of D r 1 n,k . Clearly D(0, r 1 ) = ϕ z n,k (D r 1 n,k
) which allows to translate the situation on D r 1 n,k to a euclidean disk at the origine (since pseudohyperbolic and euclidean disks are the same when centered at 0, we will not use the index "phb" in this situation). Then the change of variable operator

T z n,k restricted to D r 1 n,k gives f p L p,α (D r 1 n,k ) = D r 1 n,k |f (z)| p dA α (z) = D(0,r 1 ) |(f • ϕ z n,k )(u)(ϕ z n,k (u)) (2+α)/p | p dA α (u).
Denote g = T z n,k f and D 0 = D(0, r 1 ). Clearly D 0 |g| p dA > 0 so that we can set

h = g × πr 2 1 D 0 |g| p dA 1/p .
In particular D 0 |h| p dA = Area(D 0 ), which implies that there is

z 0 ∈ D 0 with |h(z 0 )| ≥ 1.
In order to use Corollary 1 we have to estimate h on a bigger disk. Let ρ = 2r 1 1+r 2 1 be a pseudohyperbolic doubling of the radius r 1 , and t = 2ρ 1+ρ 2 the pseudohyperbolic doubling of ρ. Consider now h as a function in the restricted Bergman space A p,α |D(0, t), we have for z ∈ D(0, ρ),

|h(z)| p ≤ C (1 -ρ) (2+α) D(0,t) |h(w)| p (1 -|w| 2 ) α dA(w),
where C is an absolute constant (the proof is done as in the Bergman space on D and essentially based on subharmonicity of |g| p ). Since h is a constant multiple of g we can replace in the above h by g. Again, ρ is an iterrated doubling of r 1 so that 1-ρ (1-r 1 ) 2 .

Observe that

D(0,t) |g(w)| p dA α (w) = D t n,k |f (z)| p dA α (z),
and

D 0 |g| p dA(z) ≥ D 0 |g| p dA α (z) = D r 1 n,k |f | p dA α (z).
Now, putting all the pieces together, sup z∈D(0,ρ)

|h(z)| = πr 2 1 D 0 |g| p dA(z) 1/p sup z∈D(0,ρ) |g(z)| ≤ π D r 1 n,k |f | p dA α (z) 1/p × C 1/p (1 -ρ) (2+α)/p D t n,k |f (z)| p dA α (z) 1/p . Since (n, k) ∈ I K-good f for (r 1 , t) we get M = sup z∈D(0,ρ) |h(z)| ≤ DK (1 -r 2 1 ) 2×(2+α)/p , (3.4) 
where D is some universal constant, and

K p = N 1 -c ≤ c ov 1 -c 1 (1 -t) 2 ln 1 1 -t 1 (1 -r 1 ) 2 ln 1 1 -r 1 .
In what follows it will be enough to use the estimate

K 1 (1 -r 1 ) 3/p . (3.5) 
We can now apply Corollary 1 to h and E = ϕ z 0 (E ∩ D n,k ). Observe that the density of E in D 0 is the same as that of E in D n,k which is thus bounded below by γ. Since we are in a disk of fixed radius we can plug in the weight (1 -|z| 2 ) α ≤ 1, to the prize of an additional constant in the last line:

z∈D(0,r 1 ) |h(z)| p dA α (z) ≤ z∈D(0,r 1 ) |h(z)| p dA(z) ≤ cr 2 1 | E| pη ln M +1 E |h(z)| p dA(z). ≤ c γ pη ln M +1 1 (1 -r 2 2 ) α E |h(z)| p dA α (z).
By homogenity we can replace in the above the function h by g. Thus, changing back variables, we get for every K-good disk,

D r 1 n,k |f | p dA α ≤ c γ pη ln M +1 1 (1 -r 2 2 ) α E∩D r 1 n,k |f | p dA α ,
Since integration over K-good disks allows to recover the norm we get the desired result.

A word on the exponent appearing in the estimate. Recall from (2.3) that

η ≤ c 1 (1 -r 1 ) 4 ln 1 1 -r 1 ,
Also from (3.4), (3.5) and with δ = (1 -r 2 1 ) (2+α)/p , ln M 7 + 2α p ln 1 1 -r 2 1 (the constants involved here do not depend on r 1 ) so that with 7 + 2α 1 + α, we get

η ln M 1 + α p × 1 (1 -r 1 ) 4 ln 1 1 -r 2 1 .

Comments on other spaces

4.1. Fock spaces. In Fock spaces (see [START_REF] Zhu | Analysis on Fock spaces[END_REF]), the situation follows as a special case of the recent work by [START_REF] Ph | Planar sampling sets of the short-time Fourier transform[END_REF]. Still, since our method is quite elementary and universal, we feel interesting to present this application of the above techniques. Let us give the necessary indications on how to obtain the estimates in the Fock space defined by

F p,α = {f ∈ Hol(C) : f p F p,α = C |f (z)| p e -pα|z| 2 /2 dA(z) < +∞}.
Les us also use dA α,p (z) = e -pα|z| 2 /2 dA(z). In the Fock space the computations are easier since we do not need to work with pseudohyperbolic distance but with euclidean distance.

In this situation pick z n,k = n + ik, n, k ∈ Z. Replace the pseudohyperbolic disks by euclidean ones D r n,k = D(z n,k , r) where now r > √ 2 will ensure the covering property. For every fixed r > √ 2 it is clear that the finite overlap property holds (we are in euclidean geometry). One easily sees that N r 2 . Also there is an isometric translation (change of variable) operator T a f (z) = e αaz-α|a| 2 /2 f (z -a) which will allow to translate the situation from an arbitrary disk D r n,k to D(0, r). As in the Bergman space, we introduce good disks. Fix √ 2 < s < t. For K > 1 and a function f ∈ F p,α the set

I K-good f = {(n, k) : f L p,α (D t n,k ) ≤ K f L p,α (D s n,k )
} will be called the set of K-good disks for (t, s), where we integrate with respect to the measure dA α,p . In the argument below we pick s = r and t = 4r. Now, given f with f (in the last estimate, in order to switch from dA to dA α,p we had to introduce an additional factor e αp(4r) 2 /2 ). Since (n, k) is K-good for (r, 4r), we see that the last expression in the above inequalities is bounded by a constant (depending on r) times K p : M p = max z∈D(0,ρ) |h(z)| p ≤ c r K p , where c r = Cπe 8αpr 2 . Exactly as in Proposition 1 we see that K p N r 2 , so that M r 2/p e 8αr 2 . (4.1)

Hence, setting E = (E ∩ D r n,k ) -z n,k we get using Corollary 1 applied to h:

D(0,r) |h(z)| p dA(z) ≤ cr 2 | E| pη ln(M/δ)+1 E |h(z)| p dA(z)
The factor r 2 appearing inside the brackets is a rescaling factor (see Remark 1). Again, by homogenity we can replace in the above inequality h by g. Note also that πr 2 /| E| is controlled by 1/γ. This yields

D r n,k |f | p dA α,p (z) = D(0,r) |g(z)| p dA α,p (z) ≤ D(0,r) |g(z)| p dA ≤ cr 2 | E| pη ln M +1 E |g(z)| p dA(z) ≤ e 2αpr 2 c 1 γ pη ln M +1 E |g(z)| p e -pα|z| 2 /2 dA(z) = e 2αpr 2 c 1 γ pη ln M +1 E∩D r n,k |f (z)| p dA α,p ,
where c 1 is an absolute constant. Summing over all K-good (n, k) we obtain the required result

f F p,α e 2αr 2 c 1 γ η ln M +1/p f L p (E,dAα,p)
where ln M 8αr 2 ln r + 2 p ln r, and, in view of (2.3), η = c × 2 4 ln 2.

Remark 2. In the above reasoning we had fixed the centers to be z n,k = n + ik which makes them independent of r. Still, one could replace these by z n,k = rn + irk (and consider the disks with these z n,k and radius ( √ 2 + )r)), which will give a better control on the overlapping constant N (actually N ≤ 4 in this case). Still replacing the radii 2r and 4r by slightly bigger or smaller ones will easily kill the term r 2 in the estimate of M (4.1) 4.2. Paley-Wiener spaces. The above arguments apply also to the Paley-Wiener spaces, in particular to find the good intervals. We do not claim that our proof is better than Kovrijkine's nor that we get better constants (also, Kovrijkine's key lemma is still used). We would just like to point out that also in this case Bernstein's inequality is not required to run the proof. Let us recall the definition of Paley-Wiener spaces:

P W p b = {f ∈ Hol(C) : f is of exponential type at most b, f p P W p b = 1 π R |f (x)| p dx < ∞}
where b > 0 is the bandwith (often chosen to be π).

We will now use Proposition 1 to find the good intervals. Let us give some indications for this case. We first observe that an equivalent norm in the Paley-Wiener space can be given by integrating over a strip: S h = {z = x + iy ∈ C : x ∈ R, |y| < h} for some fixed h > 0:

f p P W p b S h |f (z)| p dA(z).
Here the constants depend on b, p and h (in what follows we will choose h = 10). This can be seen from the Plancherel-Polya estimate (see [19, p.96]), or checking that χ S dA, where χ S is the characteristic function of the strip S, is a Carleson and reverse Carleson measure for P W p b (see [START_REF] Hartmann | Quantitative estimates of sampling constants[END_REF] and [START_REF] Fricain | A survey on reverse Carleson measures, Harmonic Analysis, operator theory, function theory, and applications[END_REF]). The Plancherel-Polya estimate is certainly a more elementary tool here. Clearly for every h 1 and h 2 we have f L p (S h 1 )

f L p (S h 2 ) for f ∈ P W p b , and the constants in play only depend on h 1 and h 2 .

Relative (γ, r)-density of a measurable set E ⊂ R (Lebesgue measure on R) here means that |I ∩ E| |I| ≥ γ for every interval I of length r. We can cover the substrip of S r ⊂ S 10r by rectangles R n,r with length r and height 2r. For this, pick R n,r = [z n -r/2, z n + r/2] × [-r, r] and z n = rn, n ∈ Z (this will cover S r up to a set with zero planar Lebesgue measure). The following adaption of Kovrijkine's statement will be useful. It is proved exactly as [9, Lemma 1]. Now, as in Proposition 1 we find a set of K-good rectangles satisfying now R n,10r |f | p dA ≤ K Rn,r |f | p dA (the arguments are exactly the same, but one has to take care of the fact that we use two different norms associated with S h 1 and S h 2 ). Note that we could have chosen disks, but rectangles, centered on a given discrete set (here rZ), are more adapted for the covering of the strip. On these rectangles we use the same kind of estimates as before to control the maximum on R n,r in a uniform manner depending only on the local norm. More precisely, given f ∈ P W p b and a K-good rectangle R n,r , set From here on, the rest follows as in Kovrijkine's argument using Lemma 4 and its version for L p . then the key observation is that f ∈ B p α if and only if f ∈ A p,α and use the results found in the Bergman space to get the same sampling constant estimates (which will thus give the constant when 0 ∈ E; otherwise one could add 0 or an arbitrarily small neighborhood of 0 which does not change the density).

E

  |f (z)| p dA α (z) ≥ C p D |f (z)| p dA α (z).(1.2)

  Then we can divide by B = P/Q to obtain a zero-free function g = ψ/B in D(0, t). Here P = n k=1 t(a k -z) and Q = n k=1 (t 2 -a k z) are polynomials of degree n. Since |B| = 1 on ∂D(0, t) and |B| ≤ 1 in D(0, t), we have |g(0)| ≥ |ψ(0)| = |φ(z 0 )| ≥ 1 and max |z|≤t |g(z)| ≤ M . Applying Harnack's inequality to the positive harmonic function u = ln M -ln |g| in D(0, t) we get for every z in the compact set D(0, r 0

2 D 2 D≤ Ce 8αpr 2 r 2 πr 2 D

 2222 F p,α = 1, let, as in the Bergman space, g = T -z n,k f for (n, k) ∈ I K-good f , and set h = c 0 g, c 0 = πr 2 D(0,r) |g| p dA(z) 1/p . Again there is z 0 ∈ D(0, r) with |h(z 0 )| ≥ 1. Set ρ = 2r. We have to estimate the maximum modulus of h on D(0, ρ) in terms of a local integral of h. To that purpose, we can assume h ∈ A p (D(0, 4r)) which justifies the first of the estimates below. Hence max z∈D(0,ρ) |h(z)| p ≤ C r (0,r) |g| p dA(z) D(0,4r) |g| p dA(z) (0,r) |g| p dA α,p (z) D(0,4r) |g| p dA α,p (z)

Lemma 4 (Corollary 2 .ln 2 + 1 pφ

 4221 Kovrijkine-bis).Fix r > 0. Let φ be analytic in D(0, 10r) and let I = [-Let z 0 ∈ D(0, r), and E ⊂ I a measurable set of positive measure. If |φ(z 0 )| ≥ 1 and M = max |z|≤9r |φ(z)| then is also an L p -version of this result: Under the conditions of the lemma, and let 1 ≤ p < +∞, we have φ| L p (I) ≤ C |E| ln M L p (E) .

h = πr 2 D

 2 (zn,r) |f | p dA 1/p f. Then there is z 0 ∈ D(z n , r) with |h(z 0 )| ≥ 1, and as above we can estimate (considering f as a function on the Bergman space D(z n , 10r)) max D(zn,9r) |h(z)| p ≤ c D(zn,10r) |h| p dA = cπr 2 D(zn,10r) |f | p dA/ D(zn,r) |f | p dA ≤ cKπr 2 .

4. 3 .

 3 Dirichlet spaces. It is not completely clear how to define dominating sets for Dirichlet spaces. Recall that (weighted) Dirichlet spaces, or more general Besov spaces can be defined byB p α = {f ∈ Hol(D) : f p B p α = |f (0)| p + D |f (z)| p (1 -|z| 2 ) α dm < ∞}.Defining a positive, finite measure µ on D as reverse Carleson measure by askingD |f | p dµ ≥ C f p B p α , thus generalizing (1.2) to arbitrary positive measures, leads to an empty result in general. Indeed, at least for p = 2 and α = 0 it was mentioned after[START_REF] Fricain | A survey on reverse Carleson measures, Harmonic Analysis, operator theory, function theory, and applications[END_REF] Theorem 8.3] that such measures do simply not exist. If, instead, one defines dominating sets as measurable E ⊂ D containing 0 such thatf p B p α = |f (0)| p + D |f (z)| p (1 -|z| 2 ) α dm ≥ c|f (0)| p + E |f (z)| p (1 -|z| 2 ) α dm
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