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DOMINATING SETS IN BERGMAN SPACES AND SAMPLING
CONSTANTS

A. HARTMANN, D. KAMISSOKO, S. KONATE & M.-A. ORSONI

Abstract. We discuss sampling constants for dominating sets in Bergman spaces. Our
method is based on a Remez-type inequality by Andrievskii and Ruscheweyh. We also
comment on extensions of the method to other spaces such as Fock and Paley-Wiener
spaces.

1. Introduction

Let Ap,α(D), 1 ≤ p <∞, α > −1 be the weighted Bergman space on the unit disk D in
the complex plane defined by

Ap,α(D) = {f ∈ Hol(D) : ‖f‖pp = (α + 1)

∫
D
|f(z)|p(1− |z|2)αdA(z) < +∞}. (1.1)

Here dA denotes normalized Lebesgue area measure on D. We will also use the notation
dAα(z) = (α + 1)(1− |z|2)αdA(z) (see [7] for more information on Bergman spaces). The
unweighted Bergman space is denoted by Ap = Ap,0. In this paper we are interested in
measurable sets E ⊂ D for which we have∫

E

|f(z)|pdAα(z) ≥ Cp

∫
D
|f(z)|pdAα(z). (1.2)

We will occasionally write Lp,α(F ) for the Lebesque space on a measurable set F ⊂ D
with respect to dAα. A set satisfying (1.2) will be called dominating for Ap,α. We mention
that dominating sets are closely related to so-called reverse Carleson measures for which
we refer to the survey [4] for more information. The question of dominating sets in the
Bergman space has been studied first by Luecking [12]-[14] who completely characterized
these dominating sets in Ap in terms of relative density, which morally speaking means that
every pseudohyperbolic disk of a certain minimal fixed radius (depending on E) meets the
set E with uniformly positive density (precise definitions will be given below). We mention
the closely related question of sampling sequences which have been characterized by Seip
(see the monograph [19] for a general reference on sampling and interpolation).

A question which arises quite naturally is whether it is possible to estimate the constant
C appearing in (1.1) in terms of the underlying density. A prominent example where this
question has been studied is the Paley-Wiener space. Dominating sets in this space go back
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to work by Logvinenko-Sereda [11] and Panejah [16]-[17]. We mention also some recent
work on so-called Paley-Wiener measures (see e.g. [18, Theorem 15]). Having precise esti-
mates on the sampling constants is important in applications when one has to decide on the
trade-off between the cost of the sampling and the accuracy of the estimates. In the early
2000’s Kovrijkine [9] considered the Paley-Wiener space and gave a precise and optimal
estimate on C in terms of the underlying density. His method is quite clever and based on
the Bernstein inequality which does not hold in Bergman or Fock spaces but for instance in
model spaces where the proof was adapted in [6]. It was brought to our attention that very
recently, Jaming and Speckbacher [8] considered the case of polyanalytic Fock spaces using
a strong result by Brudnyi — which holds for plurisubharmonic functions — and a clever
trick allowing to switch from polyanalytic functions to analytic ones in 2 variables. Since
the Fock space is a special case of the polyanalytic Fock space, they in particular get an
estimate of the sampling constant in Fock spaces. Our method is more elementary and uses
holomorphy. While our result is presented for the Bergman space, for which the geometry
is different, the method applies quite directly to consider the case of the (analytic) Fock
space. It should also be noted that our intermediate step (Proposition 1) allows to turn
around the Bernstein inequality in a large set of situations, including of course Fock spaces
but also the Paley-Wiener space. We will comment on these observations in the last section.

We need to introduce some notation. Let

ρ(z, w) =

∣∣∣∣ z − w1− zw

∣∣∣∣
be the pseudohyperbolic distance between two points z, w ∈ D. We consider the associated
pseudohyperbolic balls: Dphb(z, r) = {w ∈ D : ρ(z, w) < r}, where 0 < r < 1. A
measurable set E ⊂ D is called (γ, r0)-dense for some γ > 0 and 0 < r0 < 1, if for every
z ∈ D

|E ∩Dphb(z, r0)|
|Dphb(z, r0)|

≥ γ.

Here |F | denotes planar Lebesgue measure of a measurable set F . We will just say that
the set is relatively dense if there is some γ > 0 and some 0 < r < 1 such that the set is
(γ, r)-dense.

Luecking’s result on dominating sets can be stated as follows ([12], and in particular
condition (2’) in [12, p.4]).

Theorem 1 (Luecking). A (Lebesgue) measurable set E is dominating in Ap (p > 0) if
and only if it is relatively dense.

Looking closely at the proof proposed by Luecking — who was not interested in the
magnitude of the sampling constant — it turns out that his sampling constant behaves
like Cp ≥ γe−cp/γ. A more general result concerning sampling measures in a large class of
spaces of analytic funtions has been discussed again by Luecking in [14], and in particular
in Bergman spaces [14, Theorem 1]. Even if the density appears explicitely in his proof,
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a compactness argument used in [14, Lemma 4] introduces an implicit dependence on the
density.

Our main result is the following

Theorem 2. Let 1 ≤ p < +∞. There exists L such that for every measurable set E ⊂ D
which is (γ, r)-dense, we have

‖f‖Lp,α(E) ≥
(γ
c

)L
‖f‖Ap,α (1.3)

for every f ∈ Ap.

The constants c and L depend on r. For L we can choose

L = c1
1 + α

p

1

(1− r)4
ln

1

1− r
,

where c1 is some universal constant.

It should be noted that there is a competing relation between γ and r. The density γ can
be very small for a given r (because E has holes which have pseudohyperbolic radius close
to r), but it can become rather big when we choose a bigger radius (e.g. pseudohyperbolic
doubling of r: 2r/(1 + r2)). In a sense one needs to optimize L ln γ, and L depends on r.

Here is another observation. Though this might be obvious, it should be observed that
there is no reason a priori why a holomorphic function for which the integral

∫
E
|f |pdAα

is bounded for a relative dense set E should be in Ap,α. Outside the class Ap,α relative
density is in general not necessary for domination (see also a remark in [12, p.11]).

The discussion of the necessary condition of relative density in [12, p.5], involving testing
on reproducing kernels, shows that given a sampling constant C in (1.2), then γ & Cp, i.e.
C . γ1/p.

There are three main ingredients in the proof of Theorem 2. The first one is a Remez-
type inequality, which allows to get the local estimate depending on the density. These
have been studied in a large set of situations. We refer to [2] for a general source on
polynomials and Remez-type inequalities, and to [3] for a survey. In our situation, we
need a Remez-type inequality for planar domains, which can be found in [1]. The second
ingredient is to decompose the integration domain into good and bad parts. Good meaning
here that the Remez-type inequality applies. In Kovrijkine’s work, as well as in many of the
succeeding work using his method, the separation in good and bad parts was achieved via
a Bernstein-type inequality. Such an inequality holds for instance in Paley-Wiener spaces
and more generally in so-called model spaces. However, it is no longer true in Fock or
Bergman spaces. So a different approach has to be found to get the good intervals (rather
disks in Fock or Bergman spaces). The way of turning around Bernstein’s inequality given
in this paper is one of the new features and applies to many other situations, including the
Paley-Wiener space itself (see the last section). The third ingredient will be a translation
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allowing to translate the good parts to a reference situation (the “origin”) where we apply
the Remez-type inequality. Such translations are known to be well-behaved for instance in
Fock spaces and Paley-Wiener spaces so that our construction easily carries over to those
situations. Since in those spaces the result is already known ([9] for the Paley-Wiener space
and [8] for the Fock space), in this paper we focus on the case of the Bergman spaces.

As a matter of fact, the method proposed here can also be seen as a new way of proving
sampling results in the Bergman space (also e.g. in Fock or Paley-Wiener spaces). It
essentially exploits locally the Remez-type inequalities, the proofs of which often involve
heavy machinery. But once these inequalities established they prove being powerful tools
in sampling problems.

2. Remez-type inequalities

In this section we start recalling some results of the paper [1]. Let G be a (bounded)
domain in C. Let 0 < s < |G| (Lebesgue measure of G). Denoting Poln the space of
complex polynomials of degree at most n ∈ N, we introduce the set

Pn(G, s) = {p ∈ Poln : |{z ∈ G : |p(z)| ≤ 1}| ≥ s}.
Next, let

Rn(z, s) = sup
p∈Pn(G,s)

|p(z)|.

This expression gives the biggest possible value at z of a polynomial p of degree at most
n and being at most 1 on a set of measure at least s. In particular Theorem 1 from [1]
claims that for z ∈ ∂G, we have

Rn(z, s) ≤
(c
s

)n
. (2.1)

This result corresponds to a generalization to the two-dimensional case of the Remez in-
equality which is usually given in dimension 1. In what follows we will essentially consider
G to be a disk or a rectangle. By the maximum modulus principle, the above constant
gives an upper estimate on G for an arbitrary polynomial of degree at most n which is
bounded by one on a set of measure at least s. Obviously, if this set is small (s close to 0),
i.e. p is controlled by 1 on a small set, then the estimate has to get worse.

Remark 1. Let us make another observation. If c is the constant in (2.1) associated with
the unit disk G = D = D(0, 1), then a simple argument based on homothecy shows that the
corresponding constant for an arbitrary disk D(0, r) is cr2 (considering D(0, r) as under-
lying domain, the constant c appearing in [1, Theorem 1] satisfies c > 2 × m2(D(0, r))).
So, in the sequel we will use the estimate

Rn(z, s) ≤
(
cr2

s

)n
, (2.2)

where c does not depend on r.

Let us recall Lemma 1 from [9].
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Lemma 1 (Kovrijkine). Let φ be analytic in D(0, 5) and let I be an interval of length 1
such that 0 ∈ I and let E ⊂ I be a measurable set of positive measure. If |φ(0)| ≥ 1 and
M = max|z|≤4 |φ(z)| then

sup
z∈I
|φ(z)| ≤

(
C

|E|

) lnM
ln 2

sup
x∈E
|φ(x)|.

We will discuss the following counterpart for the planar case:

Lemma 2. Let 0 < r < ρ be fixed. There exists a constant η > 0 such that the following
holds. Let φ be analytic in D(0, ρ), and let E ⊂ D(0, r) be a planar measurable set of
positive measure, and let z0 ∈ D(0, r). If |φ(z0)| ≥ 1 and M = max|z|≤ρ |φ(z)| then

sup
z∈D(0,r)

|φ(z)| ≤
(
cr2

|E|

)η lnM
sup
z∈E
|φ(z)|,

where c does not depend on r, and

η ≤ c′′
ρ4

(ρ− r)4
ln

ρ

ρ− r
for an absolute constant c′′.

For the case of the Bergman space which is the main object in this paper we can consider
(1−r) = κ(1−ρ) for some κ > 1, and, of course, ρ < 1, so that the above estimate becomes

η ≤ c′′
1

(1− r)4
ln

1

1− r
, (2.3)

where c′′ is another absolute constant.

Kovrijkine’s proof, based on Jensen’s inequality and the Remez inequality in the one-
dimensional case, carries almost verbatim over to the two-dimensional case. Still, since our
geometrical setting is not exactly the same and we need to take into account the location
of z0, and moreover we wish to keep track of the underlying constants, we reproduce here
the adapted version of the proof. Also, in our proof we make use of the pseudohyperbolic
metric which changes a bit the setting and which could be of interest in other situations.
For a ∈ D, define the usual disk automorphism by

ϕa(z) =
a− z
1− az

, z ∈ D. (2.4)

It is well known that ϕa(ϕa(z)) = z.

Proof. We first observe that by a rescaling argument we can assume ρ = 1. Let

ψ(z) = φ ◦ ϕz0(z) = φ(
z0 − z
1− z0z

),

which translates z0 to 0. Also, letting r0 = 2r/(1 + r2) (which corresponds to a pseudohy-

perbolic doubling of r), we get E ⊂ Dphb(z0, r0). Define Ẽ = ϕz0(E) so that Ẽ ⊂ D(0, r0),
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and ψ|Ẽ = φ ◦ ϕz0|Ẽ = φ|E. From now on, we will consider ψ on D(0, r0) which thus

contains Ẽ, and |ψ(0)| = |φ(z0)| ≥ 1.

We now let t = 2r0/(1 + r20) another pseudohyperbolic doubling, now of r0. Consider
a1, . . . , an, the zeros of ψ in D(0, t), and B the Blaschke product associated with these
zeros in D(0, t). Then we can divide by B = P/Q to obtain a zero-free function g = ψ/B
in D(0, t). Here P =

∏n
k=1 t(ak − z) and Q =

∏n
k=1(t

2 − akz) are polynomials of degree
n. Since |B| = 1 on ∂D(0, t) and |B| ≤ 1 in D(0, t), we have |g(0)| ≥ |ψ(0)| = |φ(z0)| ≥ 1
and max|z|≤t |g(z)| ≤M . Applying Harnack’s inequality to the positive harmonic function

u = lnM − ln |g| in D(0, t) we get for every z in the compact set D(0, r0) ⊂ D(0, t) that

t− r0
t+ r0

u(0) ≤ u(z) ≤ t+ r0
t− r0

u(0) ≤ t+ r0
t− r0

lnM.

Set α = (t + r0)/(t − r0) to simplify notation. We deduce that for every z ∈ D(0, r0),
|g(z)| ≥M1−α. Hence

max|z|≤r0 |g(z)|
min|z|≤r0 |g(z)|

≤M/M1−α = Mα.

Let us estimate Q:

max|z|≤r0 |Q(z)|
min|z|≤r0 |Q(z)|

≤
max|z|≤r0

∏n
k=1 |t2 − akz|

min|z|≤r0
∏n

k=1 |t2 − akz|
≤
(
t+ r0
t− r0

)n
We now use the Andrievskii-Ruscheweyh estimate. Given a polynomial P of degree at

most n. Let m = supz∈E |P (z)|. Set P1 = P/m and s = |Ẽ|. Then P1 ∈ Pn(D(0, r0), s).
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By (2.2) we get

|P1(z)| ≤

(
cr20

|Ẽ|

)n

,

and hence

sup
|z|≤r0

|P (z)| ≤

(
cr20

|Ẽ|

)n

sup
z∈Ẽ
|P (z)|.

The exact same estimates as Kovrijkine’s lead to

sup
|z|≤r0

|ψ(z)| ≤ Mα

(
t+ r0
t− r0

)n
×

(
cr20

|Ẽ|

)n

× sup
z∈Ẽ
|ψ(z)|

≤ M
t+r0
t−r0

(
t+ r0
t− r0

)n
×

(
cr20

|Ẽ|

)n

× sup
z∈Ẽ
|ψ(z)|

≤ e
t+r0
t−r0

lnM+n ln
t+r0
t−r0

(
cr20

|Ẽ|

)n

sup
z∈Ẽ
|ψ(z)|.

Since Ẽ = ϕz0(E) and |z0| < r0, we have |Ẽ| ≥ c(1− r0)2|E|, so that

sup
|z|≤r0

|ψ(z)| ≤ e
t+r0
t−r0

lnM+n ln
t+r0
t−r0

−2n ln(1−r0)
(
cr20
|E|

)n
sup
z∈Ẽ
|ψ(z)|.

Assuming e ≤ cr20/|E| (note that this inequality means that the density of E is less than a
fixed constant, if the density is bigger than some fixed constant, say 1/2, then the estimate
is not really of interest). This yields

sup
|z|≤r0

|ψ(z)| ≤
(
cr20
|E|

) t+r0
t−r0

lnM+n ln
t+r0
t−r0

−2n ln(1−r0)+n

sup
z∈Ẽ
|ψ(z)|

Applying Jensen’s formula in a similar way as did Kovrijkine we obtain n ≤ lnM
ln(1/t)

(recall

that ρ was supposed to be 1). Setting

η =
t+ r0
t− r0

+

(
ln
t+ r0
t− r0

− 2 ln(1− r0) + 1

)
/ ln(1/t),

and retranslating to φ we get

sup
|z|≤r
|φ(z)| ≤ sup

|z|≤r0
|ψ(z)| ≤

(
cr20
|E|

)η lnM
sup
z∈Ẽ
|ψ(z)| ≤

(
cr20
|E|

)η lnM
sup
z∈E
|φ(z)|

Let us discuss the estimate for η. Note first that t = 2r0/(1 + r20), so that

t+ r0
t− r0

=
3 + r20
1− r20

≤ 4

1− r20
.



8 A. HARTMANN, D. KAMISSOKO, S. KONATE & M.-A. ORSONI

Also ln(1/t) ∼ (1 − r0)2/(2r0), and since r0 = 2r/(1 + r2) we have 1 − r0 ∼ (1 − r)2/2.
Hence

η .
4

1− r20
+

(
ln

4

1− r20
+ ln

1

(1− r0)2
+ 1

)
× 2

(1− r0)2
≤ c

(1− r0)2
ln

1

1− r20

∼ c′

(1− r)4
ln

1

1− r
where c and c′ are absolute constants.

Getting back to arbitrary ρ > 0, the above becomes

η ≤ c′′ρ4

(ρ− r)4
ln

ρ

ρ− r
�

The corresponding case for p-norms is deduced exactly as in Kovrijkine’s work.

Corollary 1. Let 0 < r < ρ be fixed. There exists a constant η > 0 such that following
holds. Let φ be analytic in D(0, ρ) and let E ⊂ D(0, r) be a planar measurable set of
positive measure. If |φ(0)| ≥ 1 and M = max|z|≤ρ |φ(z)| then for p ∈ [1,+∞) we have

‖φ‖Lp(D(0,r)) ≤
(
cr2

|E|

)η lnM+ 1
p

‖φ‖Lp(E).

The estimates on η are the same as in the lemma. The constant c does not depend on r.

3. Proof of Theorem 2

In the proof we will use a change of variable formula. Recall the definition of the disk-
automorphism from (2.4). Then we can introduce the change of variable formula

Ta : Ap,α −→ Ap,α, (Taf)(z) = (f ◦ ϕ)(z)ϕ′a(z)(2+α)/p.

Recall that

ϕ′a(z) = − 1− |a|2

(1− az)2
.

Clearly Ta is an isomorphism of the Bergman space Ap,α. We will also consider restrictions
of Ta from pseudohyperbolic disks to other corresponding pseudohyperbolic disks.

We now enter into the main part of the proof which gives a simple way of avoiding the
Bernstein inequality. We need to introduce some preliminary notation. For n ∈ N and
k = 0, 1, . . . , 2n − 1, let zn,k = (1− 2−n)ei2πk/2

n
and define

Dr
n,k = Dphb(zn,k, r),

where r ∈ (0, 1). It can be checked that for a sufficiently big choice r0 of r these disks
cover D. We will henceforth set Dn,k = Dr0

n,k.
We need a finite covering property. Denote by χF the characteristic function of a mea-

surable set F in D.
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Lemma 3. For every r ∈ (r0, 1), there exists a constant N such that∑
n,k

χDrn,k ≤ N.

Moreover there is some universal constant such that

N ≤ cov
1

(1− r)2
ln

1

1− r
,

where cov is an absolute constant.

Obviously, the constant N is at least equal to 1. In the estimates below N will enter
only logarithmically so that the power in (1 − r) as well as the logarithmic term are not
very important.

Proof of Lemma. This is certainly a well know fact, but we include a proof for completeness
and to give an idea of the dependence of N on r.

The result is equivalent to say that a disk Dphb(z, r) contains at most N points zn,k.
Since the problem is rotation invariant, we can assume z = x ∈ [0, 1).

Recall from [5, p.3] that Dphb(x, r) is a euclidean disk with diameter

[α, β] =

[
x− r
1− rx

,
x+ r

1 + rx

]
In terms of distance to the boundary, this disk, taking into account that r ∈ (0, 1) is

fixed, is between

1− x− r
1− rx

=
1− rx− x+ r

1− rx
=

(1 + r)(1− x)

1− rx
≤ d1(1− x),

1− x+ r

1 + rx
=

1 + rx− x− r
1 + rx

=
(1− r)(1− x)

1 + rx
≥ d2(1− x),

where d1 and d2 are strictly positive constants (e.g. d1 = 2/(1 − r) and d2 = 1/d1 =
(1−r)/2). In particular for zn,k ∈ Dphb(x, r) it is necessary that d2(1−x) ≤ 2−n ≤ d1(1−x)
which may happen at most (ln(d2(1−x))−1− ln(d1(1−x))−1)/ ln 2 times. With the above
choice we can pick d1/d2 ≤ 4/(1− r)2 so that the number of possible n is bounded

ln
d1
d2
/ ln 2 ≤ ln

4

(1− r)2
/ ln 2. (3.1)

We also need to check that the number of k such that zn,k ∈ Dphb(x, r) is uniformly
bounded. Note that r is fixed. We will distinguish two cases, x ≤ 2r et 2r < x < 1 (in
case r ≥ 1/2 the latter case does not occur).

When x ≤ 2r, we know that Dphb(x, r) ⊂ D(0, 3r/(1 + 2r2)). In order that 1 − 2−n ∈
D(0, 3r/(1 + 2r2)) it is necessary that 1 − 2−n ≤ 3r/(1 + 2r2) which happens when n .
ln(1 − r)−1 (the constant appearing here does not depend on r). In order to get all

zn,k ∈ D(0, 3r/(1 + 2r2)), it remains to sum
∑ln(1−r)−1

k=0 2k ' (1 − r)−1. So for x ≤ 2r we
have N . (1− r)−1.
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Assume now that 2r < x < 1. Then
x− r
1− rx

≥ 2r − r
1

= r. (3.2)

Observe that in order that zn,k ∈ Dphb(x, r) we need 1−|zn,k| = 2−n ∈ [d2(1−x), d1(1−x)].
By [5, p.3], DPhb(x, r) = D(c, R) with

c = x
1− r2

1− r2x2
, R = r

1− x2

1− r2x2
.

Hence the argument of a point w ∈ Dphb(x, r) can be estimated in the following way

| argw| ≤ arcsin
R

c
= arcsin

(
r

x

1− x2

1− r2

)
≤ arcsin

1− x2

2(1− r2)
' 1− x2

2(1− r2)

≤ 1− x
1− r2

≤ 1

1− r2
1

d2
2−n

≤ 2

(1− r)2
2−n.

Hence, in order that zn,k = (1− 2−n)e2πik/2
n ∈ Dphb(x, r) we need

2πk ≤ 2

(1− r)2
. (3.3)

We conclude that the number of k is also bounded by a fixed number. We are done.
The estimates (3.1) and (3.3) yield the required bound on N . �

Fix r0 < s < t < 1. For K > 1 the set

IK−goodf = {(n, k) : ‖f‖Lp,α(Dtn,k) ≤ K‖f‖Lp,α(Dsn,k)}

will be called the set of K-good disks for (t, s) (in order to keep notation light we will not
include s and t as indices). This set depends on f .

The key-result of this paper is the following proposition which allows to obtain the set
of good disks in a very simple way. This might have some independent interest.

Proposition 1. Let r0 ≤ s < t < 1. For every constant c ∈ (0, 1), there exists K such
that for every f ∈ Ap,α we have∑

(n,k)∈IK−good
f

‖f‖pLp,α(Dsn,k) ≥ c‖f‖pAp,α .

It will be clear from the proof that one can pick K ≥ N/(1 − c) where N corresponds
to the overlapping constant from Lemma 3 for the (pseudohyperbolic) radius s.

Proof of proposition. Since r0 ≤ s < t < 1, we have
⋃
n,kD

s
n,k = D, and by Lemma 3 we

have a finite overlap property: ∑
n,k

χDtn,k ≤ N.



DOMINATING SETS IN BERGMAN SPACES AND SAMPLING CONSTANTS 11

Hence
‖f‖pAp,α ≤

∑
(n,k)

‖f‖pLp,α(Dsn,k) ≤
∑
(n,k)

‖f‖p
Lp,α(Dtn,k)

≤ N‖f‖pAp,α .

Now pick a c ∈ (0, 1). Then

N‖f‖pAp,α ≥
∑

(n,k)/∈IK−good
f

‖f‖p
Lp,α(Dtn,k)

> Kp
∑

(n,k)/∈IK−good
f

‖f‖pLp,α(Dsn,k)

= Kp
∑
(n,k)

‖f‖pLp,α(Dsn,k) −K
p

∑
(n,k)∈IK−good

f

‖f‖pLp,α(Dsn,k)

≥ Kp‖f‖pAp,α −K
p

∑
(n,k)∈IK−good

f

‖f‖pLp,α(Dsn,k).

For Kp > N we thus get ∑
(n,k)∈IK−good

f

‖f‖pLp,α(Dsn,k) ≥
Kp −N
Kp

‖f‖pAp,α

Hence, setting c = (Kp −N)/Kp ∈ (0, 1) we see that Kp = N/(1− c) is suitable. �

We are now in a position to prove the theorem.

Proof of Theorem 2. Let r1 = max(r, r0), where r0 ensures the covering of D by Dn,k. It is
not hard to see that there exists a universal constant η > 0 such that if E is (γ, r)-dense
then it is (ηγ, r1)-dense (if r ≥ r0 then η = 1, if r < r0 we can cover a least portion of any
disk Dphb(z, r0) by disjoint disks with radius r). Since the multiplicative constant η does
not change the estimate claimed in the theorem, and in order to not overload notation, in
all what follows we will use γ instead of ηγ.

Now fix c ∈ (0, 1). We will choose r1 for s in Proposition 1 and s < t < 1 to be fixed
later. Let also K be a corresponding choice from Proposition 1 (which thus depends on t
since N ≤ c ln(1/(1− t))/(1− t)2)).

Pick f ∈ Ap,α. In particular we can assume ‖f‖Ap,α = 1. Let IK−goodf be the set of
K-good disks for (r1, t). Then by Proposition 1

‖f‖pAp,α ≤
1

c

∑
(n,k)∈IK−good

f

‖f‖p
Lp,α(D

r1
n,k)

.

In all what follows we suppose (n, k) ∈ IK−goodf . Recall that zn,k is the center of Dr1
n,k.

Clearly D(0, r1) = ϕzn,k(D
r1
n,k) which allows to translate the situation on Dr1

n,k to a euclidean
disk at the origine (since pseudohyperbolic and euclidean disks are the same when centered
at 0, we will not use the index “phb” in this situation). Then the change of variable operator
Tzn,k restricted to Dr1

n,k gives

‖f‖p
Lp,α(D

r1
n,k)

=

∫
D
r1
n,k

|f(z)|pdAα(z) =

∫
D(0,r1)

|(f ◦ ϕzn,k)(u)(ϕ′zn,k(u))(2+α)/p|pdAα(u).
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Denote g = Tzn,kf and D0 = D(0, r1). Clearly
∫
D0
|g|pdA > 0 so that we can set

h = g ×

(
πr21∫

D0
|g|pdA

)1/p

.

In particular
∫
D0
|h|pdA = Area(D0), which implies that there is z0 ∈ D0 with |h(z0)| ≥ 1.

In order to use Corollary 1 we have to estimate h on a bigger disk. Let ρ = 2r1
1+r21

be a

pseudohyperbolic doubling of the radius r1, and t = 2ρ
1+ρ2

the pseudohyperbolic doubling

of ρ. Consider now h as a function in the restricted Bergman space Ap,α|D(0, t), we have
for z ∈ D(0, ρ),

|h(z)|p ≤ C

(1− ρ)(2+α)

∫
D(0,t)

|h(w)|p(1− |w|2)αdA(w),

where C is an absolute constant (the proof is done as in the Bergman space on D and
essentially based on subharmonicity of |g|p). Since h is a constant multiple of g we can
replace in the above h by g. Again, ρ is an iterrated doubling of r1 so that 1−ρ ' (1−r1)2.

Observe that ∫
D(0,t)

|g(w)|pdAα(w) =

∫
Dtn,k

|f(z)|pdAα(z),

and ∫
D0

|g|pdA(z) ≥
∫
D0

|g|pdAα(z) =

∫
D
r1
n,k

|f |pdAα(z).

Now, putting all the pieces together,

sup
z∈D(0,ρ)

|h(z)| =

(
πr21∫

D0
|g|pdA(z)

)1/p

sup
z∈D(0,ρ)

|g(z)|

≤

(
π∫

D
r1
n,k
|f |pdAα(z)

)1/p

× C1/p

(1− ρ)(2+α)/p

(∫
Dtn,k

|f(z)|pdAα(z)

)1/p

.

Since (n, k) ∈ IK−goodf for (r1, t) we get

M = sup
z∈D(0,ρ)

|h(z)| ≤ DK

(1− r21)2×(2+α)/p
, (3.4)

where D is some universal constant, and

Kp =
N

1− c
≤ cov

1− c
1

(1− t)2
ln

1

1− t
' 1

(1− r1)2
ln

1

1− r1
.

In what follows it will be enough to use the estimate

K .
1

(1− r1)3/p
. (3.5)
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We can now apply Corollary 1 to h and Ẽ = ϕz0(E ∩ Dn,k). Observe that the density

of Ẽ in D0 is the same as that of E in Dn,k which is thus bounded below by γ. Since we
are in a disk of fixed radius we can plug in the weight (1 − |z|2)α ≤ 1, to the prize of an
additional constant in the last line:∫

z∈D(0,r1)

|h(z)|pdAα(z) ≤
∫
z∈D(0,r1)

|h(z)|pdA(z)

≤

(
cr21

|Ẽ|

)pη lnM+1 ∫
Ẽ

|h(z)|pdA(z).

≤
(
c

γ

)pη lnM+1
1

(1− r22)α

∫
Ẽ

|h(z)|pdAα(z).

By homogenity we can replace in the above the function h by g. Thus, changing back
variables, we get for every K-good disk,∫

D
r1
n,k

|f |pdAα ≤
(
c

γ

)pη lnM+1
1

(1− r22)α

∫
E∩Dr1n,k

|f |pdAα,

Since integration overK-good disks allows to recover the norm we get the desired result. �

A word on the exponent appearing in the estimate. Recall from (2.3) that

η ≤ c′′
1

(1− r1)4
ln

1

1− r1
,

Also from (3.4), (3.5) and with δ = (1− r21)(2+α)/p,

lnM .
7 + 2α

p
ln

1

1− r21
(the constants involved here do not depend on r1) so that with 7 + 2α . 1 + α, we get

η lnM .
1 + α

p
× 1

(1− r1)4
ln

1

1− r21
.

4. Comments on other spaces

4.1. Fock spaces. In Fock spaces (see [20]), the situation follows as a special case of
the recent work by [8]. Still, since our method is quite elementary and universal, we feel
interesting to present this application of the above techniques. Let us give the necessary
indications on how to obtain the estimates in the Fock space defined by

Fp,α = {f ∈ Hol(C) : ‖f‖pFp,α =

∫
C
|f(z)|pe−pα|z|2/2dA(z) < +∞}.

Les us also use dAα,p(z) = e−pα|z|
2/2dA(z). In the Fock space the computations are easier

since we do not need to work with pseudohyperbolic distance but with euclidean distance.
In this situation pick zn,k = n + ik, n, k ∈ Z. Replace the pseudohyperbolic disks by

euclidean ones Dr
n,k = D(zn,k, r) where now r >

√
2 will ensure the covering property. For
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every fixed r >
√

2 it is clear that the finite overlap property holds (we are in euclidean
geometry). One easily sees that N ' r2. Also there is an isometric translation (change of

variable) operator Taf(z) = eαaz−α|a|
2/2f(z − a) which will allow to translate the situation

from an arbitrary disk Dr
n,k to D(0, r).

As in the Bergman space, we introduce good disks. Fix
√

2 < s < t. For K > 1 and a
function f ∈ Fp,α the set

IK−goodf = {(n, k) : ‖f‖Lp,α(Dtn,k) ≤ K‖f‖Lp,α(Dsn,k)}

will be called the set of K-good disks for (t, s), where we integrate with respect to the
measure dAα,p. In the argument below we pick s = r and t = 4r.

Now, given f with ‖f‖Fp,α = 1, let, as in the Bergman space, g = T−zn,kf for (n, k) ∈
IK−goodf , and set

h = c0g, c0 =

(
πr2∫

D(0,r)
|g|pdA(z)

)1/p

.

Again there is z0 ∈ D(0, r) with |h(z0)| ≥ 1.
Set ρ = 2r. We have to estimate the maximum modulus of h on D(0, ρ) in terms of a

local integral of h. To that purpose, we can assume h ∈ Ap(D(0, 4r)) which justifies the
first of the estimates below. Hence

max
z∈D(0,ρ)

|h(z)|p ≤ C

r2

∫
D(0,4r)

|h|pdA(z)

=
C

r2
× πr2∫

D(0,r)
|g|pdA(z)

∫
D(0,4r)

|g|pdA(z)

≤ Ce8αpr
2

r2
πr2∫

D(0,r)
|g|pdAα,p(z)

∫
D(0,4r)

|g|pdAα,p(z)

(in the last estimate, in order to switch from dA to dAα,p we had to introduce an ad-

ditional factor eαp(4r)
2/2). Since (n, k) is K-good for (r, 4r), we see that the last ex-

pression in the above inequalities is bounded by a constant (depending on r) times Kp:

Mp = maxz∈D(0,ρ) |h(z)|p ≤ crK
p, where cr = Cπe8αpr

2
. Exactly as in Proposition 1 we see

that Kp ' N . r2, so that

M . r2/pe8αr
2

. (4.1)

Hence, setting Ẽ = (E ∩Dr
n,k)− zn,k we get using Corollary 1 applied to h:∫

D(0,r)

|h(z)|pdA(z) ≤

(
cr2

|Ẽ|

)pη ln(M/δ)+1 ∫
Ẽ

|h(z)|pdA(z)

The factor r2 appearing inside the brackets is a rescaling factor (see Remark 1). Again,

by homogenity we can replace in the above inequality h by g. Note also that πr2/|Ẽ| is
controlled by 1/γ. This yields
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∫
Drn,k

|f |pdAα,p(z) =

∫
D(0,r)

|g(z)|pdAα,p(z) ≤
∫
D(0,r)

|g(z)|pdA

≤

(
cr2

|Ẽ|

)pη lnM+1 ∫
Ẽ

|g(z)|pdA(z)

≤ e2αpr
2

(
c1
γ

)pη lnM+1 ∫
Ẽ

|g(z)|pe−pα|z|2/2dA(z)

= e2αpr
2

(
c1
γ

)pη lnM+1 ∫
E∩Drn,k

|f(z)|pdAα,p,

where c1 is an absolute constant.
Summing over all K-good (n, k) we obtain the required result

‖f‖Fp,α . e2αr
2

(
c1
γ

)η lnM+1/p

‖f‖Lp(E,dAα,p)

where

lnM . 8αr2 ln r +
2

p
ln r,

and, in view of (2.3),
η = c′′ × 24 ln 2.

Remark 2. In the above reasoning we had fixed the centers to be zn,k = n + ik which
makes them independent of r. Still, one could replace these by z̃n,k = rn + irk (and

consider the disks with these z̃n,k and radius (
√

2 + ε)r)), which will give a better control
on the overlapping constant N (actually N ≤ 4 in this case). Still replacing the radii 2r
and 4r by slightly bigger or smaller ones will easily kill the term r2 in the estimate of M
(4.1)

4.2. Paley-Wiener spaces. The above arguments apply also to the Paley-Wiener spaces,
in particular to find the good intervals. We do not claim that our proof is better than
Kovrijkine’s nor that we get better constants (also, Kovrijkine’s key lemma is still used).
We would just like to point out that also in this case Bernstein’s inequality is not required
to run the proof. Let us recall the definition of Paley-Wiener spaces:

PW p
b = {f ∈ Hol(C) : f is of exponential type at most b, ‖f‖p

PW p
b

=
1

π

∫
R
|f(x)|pdx <∞}

where b > 0 is the bandwith (often chosen to be π).
We will now use Proposition 1 to find the good intervals. Let us give some indications

for this case. We first observe that an equivalent norm in the Paley-Wiener space can be
given by integrating over a strip: Sh = {z = x + iy ∈ C : x ∈ R, |y| < h} for some fixed
h > 0:

‖f‖p
PW p

b
'
∫
Sh
|f(z)|pdA(z).
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Here the constants depend on b, p and h (in what follows we will choose h = 10). This can
be seen from the Plancherel-Polya estimate (see [19, p.96]), or checking that χSdA, where
χS is the characteristic function of the strip S, is a Carleson and reverse Carleson measure
for PW p

b (see [6] and [4]). The Plancherel-Polya estimate is certainly a more elementary
tool here. Clearly for every h1 and h2 we have ‖f‖Lp(Sh1 ) ' ‖f‖Lp(Sh2 ) for f ∈ PW p

b , and
the constants in play only depend on h1 and h2.

Relative (γ, r)-density of a measurable set E ⊂ R (Lebesgue measure on R) here means
that

|I ∩ E|
|I|

≥ γ

for every interval I of length r. We can cover the substrip of Sr ⊂ S10r by rectangles Rn,r

with length r and height 2r. For this, pick Rn,r = [zn−r/2, zn+r/2]× [−r, r] and zn = rn,
n ∈ Z (this will cover Sr up to a set with zero planar Lebesgue measure). The following
adaption of Kovrijkine’s statement will be useful. It is proved exactly as [9, Lemma 1].

Lemma 4 (Kovrijkine-bis). Fix r > 0. Let φ be analytic in D(0, 10r) and let I = [−r
2
,
r

2
].

Let z0 ∈ D(0, r), and E ⊂ I a measurable set of positive measure. If |φ(z0)| ≥ 1 and
M = max|z|≤9r |φ(z)| then

sup
z∈I
|φ(z)| ≤

(
C

|E|

) lnM
ln 2

sup
x∈E
|φ(x)|.

Again, there is also an Lp-version of this result:

Corollary 2. Under the conditions of the lemma, and let 1 ≤ p < +∞, we have

‖φ|Lp(I) ≤
(
C

|E|

) lnM
ln 2

+ 1
p

‖φ‖Lp(E).

Now, as in Proposition 1 we find a set ofK-good rectangles satisfying now
∫
Rn,10r

|f |pdA ≤
K
∫
Rn,r
|f |pdA (the arguments are exactly the same, but one has to take care of the fact

that we use two different norms associated with Sh1 and Sh2). Note that we could have
chosen disks, but rectangles, centered on a given discrete set (here rZ), are more adapted
for the covering of the strip. On these rectangles we use the same kind of estimates as
before to control the maximum on Rn,r in a uniform manner depending only on the local
norm. More precisely, given f ∈ PW p

b and a K-good rectangle Rn,r, set

h =

(
πr2∫

D(zn,r)
|f |pdA

)1/p

f.

Then there is z0 ∈ D(zn, r) with |h(z0)| ≥ 1, and as above we can estimate (considering f
as a function on the Bergman space D(zn, 10r))

max
D(zn,9r)

|h(z)|p ≤ c

∫
D(zn,10r)

|h|pdA = cπr2
∫
D(zn,10r)

|f |pdA/
∫
D(zn,r)

|f |pdA ≤ cKπr2.
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From here on, the rest follows as in Kovrijkine’s argument using Lemma 4 and its version
for Lp.

4.3. Dirichlet spaces. It is not completely clear how to define dominating sets for Dirich-
let spaces. Recall that (weighted) Dirichlet spaces, or more general Besov spaces can be
defined by

Bpα = {f ∈ Hol(D) : ‖f‖pBpα = |f(0)|p +

∫
D
|f ′(z)|p(1− |z|2)αdm <∞}.

Defining a positive, finite measure µ on D as reverse Carleson measure by asking
∫
D |f |

pdµ ≥
C‖f‖pBpα , thus generalizing (1.2) to arbitrary positive measures, leads to an empty result in

general. Indeed, at least for p = 2 and α = 0 it was mentioned after [4, Theorem 8.3] that
such measures do simply not exist. If, instead, one defines dominating sets as measurable
sets E ⊂ D containing 0 such that

‖f‖pBpα = |f(0)|p +

∫
D
|f ′(z)|p(1− |z|2)αdm ≥ c|f(0)|p +

∫
E

|f ′(z)|p(1− |z|2)αdm

then the key observation is that f ∈ Bpα if and only if f ′ ∈ Ap,α and use the results found
in the Bergman space to get the same sampling constant estimates (which will thus give
the constant when 0 ∈ E; otherwise one could add 0 or an arbitrarily small neighborhood
of 0 which does not change the density).
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[3] T. Erdélyi, Remez-type inequalities and their applications, J. Comput. Appl. Math. 47 (1993), no. 2,
167-209.

[4] E. Fricain, A. Hartmann, W.T. Ross, A survey on reverse Carleson measures, Harmonic Analysis,
operator theory, function theory, and applications, Jun 2015, Bordeaux, France. pp.91-123

[5] J. Garnett, Bounded analytic functions.
[6] A. Hartmann, Ph. Jaming, & K. Kellay, Quantitative estimates of sampling constants, accepted for

publication in Amer. J. Math.
[7] H. Hedenmalm, B. Korenblum,& K. Zhu, Theory of Bergman spaces. Graduate Texts in Mathematics,

199. Springer-Verlag, New York, 2000. x+286 pp.
[8] Ph. Jaming & M. Speckbacher, Planar sampling sets of the short-time Fourier transform, preprint.
[9] O. Kovrijkine Some results related to the Logvinenko-Sereda theorem. Proc. Amer. Math. Soc. 129

(2001), no. 10, 3037-3047.
[10] Levin
[11] V. N. Logvinenko & Yu. F. Sereda, Equivalent norms in spaces of entire functions of exponential type.

Teor. Funktsii, Funktsional. Anal. i Prilozhen 19 (1973), 234-246.
[12] D. H. Luecking, Inequalities on Bergman spaces. Illinois J. Math. 25 (1981), no. 1, 1-11.
[13] D. H. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their

derivatives. Amer. J. Math. 107 (1985), no. 1, 85-111.
[14] D. H. Luecking, Dominating measures for spaces of analytic functions. Illinois J. Math. 32 (1988), no.

1, 23-39.



18 A. HARTMANN, D. KAMISSOKO, S. KONATE & M.-A. ORSONI
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