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Abstract –The interest of functionally graded adhesives (FGA) is growing as it is a mean to 

increase a bonded joint strength without any modification of the initial design of the 

adherends. The behaviour of bonded joints with variable adhesive properties along the overlap 

can be predicted with a potentially time-costly Finite Element (FE) analysis. Dedicated 

numerical procedures and design tools for FGA bonded joints would increase. The objective 

of this paper is to offer a mesh-free method for the analysis of functionally graded joints. The 

technique is based on the macro-element (ME) method and Taylor expansion in power series 

(TEPS) are used to approach the shape functions of the ME. The method has been developed 

so far for 1D-bar and 1D-beam kinematics frameworks. This mesh-free_method and a Finite-

Element analysis give similar results.  

 

Keywords: functionally graded adhesive; single-lap bonded joint, Taylor expansion in power 

series, variable modulus, stress distribution, joint design, finite element stress analysis 
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NOMENCLATURE AND UNITS  

 Aj extensional stiffness (N) of adherend j 

Bj extensional and bending coupling stiffness (N.mm) of adherend j 

Dj bending stiffness (N.mm2) of adherend j 

   matrix of the recursive equation system with displacement boundary conditions 

Ea adhesive peel modulus (MPa) 

Ea,min minimal adhesive shear modulus (MPa) 

Ea,max maximal adhesive shear modulus (MPa) 

Ej adherend Young’s modulus (MPa) of adherend j 

Fe element nodal force vector 

Ga adhesive shear modulus (MPa) 

Ga,min minimal adhesive shear modulus (MPa) 

Ga,max maximal adhesive shear modulus (MPa) 

   stiffness matrix 

KBBa elementary stiffness matrix of a bonded-bars element 

KBBe elementary stiffness matrix of a bonded-beams element 

L half-length (mm) of bonded overlap 

   matrix with load boundary conditions 

Mj bending moment (N.mm) in adherend j around the z-direction 

Nj normal force (N) in adherend j in the x-direction 

   number of terms in the series   after truncation 

    number of terms in the series   after truncation 

         nodal axial force of node       and   

         nodal shear force of node       and   

         nodal Moment force of node       and   



3 

 

 

S adhesive peel stress (MPa) 

T adhesive shear stress (MPa) 

   vector of the unknown parameters of the displacements series  

Vj shear force (N) in adherend j in the y-direction 

b width (mm) of the adherends 

ea thickness (mm) of the adhesive layer 

f magnitude of applied tensile force (N) 

uj displacement (mm) of adherend j in the x-direction 

   
     parameter of the axial displacement serie of the adherend   (    ) 

      dimensionless     parameter of the axial displacement serie of the adherend    

vj displacement (mm) of adherend j in the y direction 

   
     parameter of the transverse displacement serie of the adherend   (    ) 

      dimensionless     parameter of the transverse displacement serie of the adherend    

   bending angle (rad) of the adherend    around the  -direction 

(x,y,z) global reference system of axes 

BBa bonded-bars 

BBe bonded-beams 

FE Finite Element 

FGA functionally graded adhesive 

HA homogeneous adhesive 

ME macro-element 

ODE ordinary differential equation 

1. TEPS Taylor expansion in power seriesIntroduction 
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The use of adhesively bonded joints increased over the last decade thanks to their high 

mechanical performances. They present a high strength-to-weight ratio, static and fatigue 

strength which makes them attractive for structural design [1-3]. Moreover, this technology 

allows dissimilar adherends assemblies. Contrary to mechanical fastening, the load transfer is 

spread along the bonded overlap instead of being localized at the position of the fasteners. 

However, the deformations of the adhesive and adherends create stress gradients at both ends 

of the overlap. So, the major part of the load transfer is mainly ensured by a small length of 

the overlap. In the case of dissimilar adherends, the stress gradients are asymmetric too. The 

effect can be reduced by using a variable-property adhesive. By varying the adhesive stiffness 

along the overlap, the stress distribution is modified in the joint [4-8]. Such joints are called 

functionally graded adhesive (FGA) joints. The use of a FGA tends to a homogenisation of 

the adhesive stress along the overlap. The use of FGA joints increased [9-10] offering 

opportunities to optimize adhesively bonded structures. The Finite Element (FE) method is an 

existing stress analysis method able to predict the behaviour of FGA joints [11].  However, 

due to the very high ratio between the adherend thickness and the adhesive thickness, the FE 

method is time costly. So to take full advantage of this technology, dedicated simulation tools 

need to be developed to increase the design efficiency in pre-sizing stages. 1D-bar stress 

analysis of FGA joints has been presented by Carbas et al. in 2014 [5]. Based on Volkersen’s 

1D-bar-homogeneous-adhesive (HA) model, the FGA is introduced. The ordinary differential 

equations (ODE) of the model are nonlinear due to the variable shear modulus along the 

overlap. To solve the problem, Carbas et al. presented a resolution scheme based on Taylor 

expansion in power series (TEPS). The method can be applied to a half of the overlap length 

and for a symmetric bilinear FGA.  Later, in 2016, Stein et al. published a sandwich-type-1D-

beam analysis also using TEPS in their resolution. Their model works for any gradation of the 

adhesive properties and is suitable for unbalanced joints [12-13]. Finally, in 2018, the second 
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author of the present paper worked on an analysis of a FGA joint under a combined thermal 

and mechanical load [7]. The equations are solved through the ME technique [14] and through 

TEPS in 1D-bar analysis. Only the ME technique was used in 1D-beam analysis. The ME is a 

4-node brick gathering the adherends and the adhesive layer in one single element. The FGA 

joint analysis is performed thanks to a mesh of MEs along the overlap to take account of the 

variations of the adhesive modulus. The aim of this paper is to present an approached method 

to formulate a unique ME, for a whole bonded overlap involving graduation of the adhesive 

properties. Firstly, the approached method is explained for a 1D-bar framework with 

homogeneous-adhesive (HA) and graded properties. Then, part 2, the same method is used to 

develop an HA ME and a FGA ME with a 1D beam model. Finally, part 3, the results are 

compared to a FE model published in [15]. Moreover, the stiffness matrices, in the 

homogeneous cases, are compared with the exact stiffness matrices developed in [14].  

The configuration used for comparison is the same one as in [15] and is shown in Figure 1. 

The numerical values, of the problem parameters, are detailed later, in Table 1.   

Finally, the MATLAB codes, used to get the results presented in this paper, are available as a 

supplementary material. 
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Figure 1: Simply supported single-lap involving the geometrical parameters, boundary conditions and in -plane loading. 
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2. Development of the approached stiffness matrix of a 1D-bar macro-element 

 

2.1 Introduction to the macro-element technique 

The ME technique is inspired by the FE method as the structure is discretized and the nodes 

of the ME are linked through a stiffness matrix. However, the shape functions are not 

assumed but derived directly from the governing equations of the system. Thus, the predicted 

distribution of the displacements and internal forces in the adherends, along the overlap, does 

not depend on a mesh density. Then, a single ME is enough to represent a whole bonded 

overlap.  

Once the global stiffness matrix [K] of the complete structure is computed, the resolution of 

the system [K] Ue = Fe gives the nodal displacements Ue  of the joints as a function of the 

vector of the nodal forces Fe . Then, the stresses in the adhesive and in the adherends are 

computed from the constitutive equations and the nodal displacements.  

The development of the ME is highly dependent on the simplifying assumptions made. The 

exact expression for the stiffness matrix is obtained if the ODEs system can be solved by 

hand. This paper is focused on a FGA joint, thus the properties of the adhesive are not 

constant along the overlap. The choice is made to use an approached method to solve the 

ODEs system and so, to derive an approached stiffness matrix for the whole bonded overlap 

joint. As did Hart-Smith in his paper [16] to find the shear stress in a scarfed bonded overlap 

and Carbas to study a FGA joint [5], approximations of the solutions of the ODEs are done 

with TEPS.   

 

2.2 Assumptions and governing equations  

The development of the 1D-bar ME is based on the following assumptions:  
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(i) both adherends are modelled as bars made of a homogeneous linear elastic 

material; 

(ii) the adhesive layer is modelled as an infinite number of shear springs linking the 

upper and lower adherends; 

(iii) the adhesive thickness is constant along the overlap; 

(iv) the adhesive stress is constant in the adhesive thickness. 

The same equilibrium as Volkersen’s [17] is used here (see Figure 2). For both adherends, it 

leads to:  

      

  
                          (1) 

where    is the normal force of the adherend   ,   the adhesive shear stress and   the overlap 

width.  

 

 

The normal force    in each adherend is equal to:  

        

      

  
           (2) 

where          is the membrane stiffness of the adherend  , with    and    the Young’s 

Modulus and the thickness of the adherend  . The normal displacement   is the displacement 

of the point on the neutral line of the adherend   at the abscissa     

The expression for the shear stress in the adhesive layer depends on the expression for its 

shear modulus. The first case considered is a joint with HA properties.  

Figure 2: Free body diagram of infinitesimal pieces included between x and x+dx of both adherends 

in the overlap region under 1D-bar kinematics. Subscript 1 (2) refers to the upper (lower) adherend. 

N1(x+dx) N1(x) 

T.bdx 

N2(x+dx) N2(x) 



8 

 

 

2.3 Homogeneous adhesive macro-element (HA ME) 

The constitutive equation of the adhesive layer reads:  

     
  

  

 (           ) (3) 

where    is the shear modulus of the adhesive and    the thickness of the adhesive layer. By 

combining equations (1), (2) and (3), the equilibrium for each adherend becomes: 

    

       

   
      

  

  

(           )              (4) 

The solution functions    and    are searched as TEPS for any x between -L and L:  

      ∑    
  

  

   

                       [    ] (5) 

The unknowns now become the parameters of the series say    
. The following variable 

change is made:  

  
 

 
 (6) 

By changing the variable    in equation (5), the solution is searched for any    between -1 and 

1. 

      ∑    
     

  

   

 ∑    
    

  

   

 ∑(  ) 
  

  

   

     

                 [    ] 

(7) 

with the following notation set: 

    (  ) 
    

                  (8) 

The     derivatives of    is: 

       

    
 

  
       

    
 

  
∑

      

  
 (  )   

  
  

   

     

                 [    ] 

(9) 

The expressions for    and    are replaced in equation (4): 
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∑

      

  
 (  )   

  

  

   

      
  

  

(∑        
 

  

   

 ∑        
 

  

   

)              

(10) 

Then, for any  , there are two second-order recursive equations: 

        

 

  

      

  
 (  )   

      
  

  

                       

      

(11) 

To solve numerically this problem, both series are truncated at the maximum order     . 

So    is the total number of terms in each series   .The vector of the unknown parameters is:   

   

(

 
 
 
 
 
 

             
             

 
        

          
          

 
        )

 
 
 
 
 
 

 (12) 

So,    is a    -long vector. 

As equations (11) are second-order-recursive equations, each equation is considered only for 

         , which leads to a        -equation system. Four more equations are 

required to solve the system. So, the nodal displacement boundary conditions are added:  

{
 
 
 
 
 
 

 
 
 
 
 
 
         ∑           

    

   

   

         ∑           

    

   

   

        ∑         
 

    

   

   

        ∑         
 

    

   

   

 

 

(13) 
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The global system of linear equations is written in matrix form as follows:  

     

(

 
 

[ ]       

  

  

  

  )

 
 

 (14) 

where    is the     square matrix of the system including the nodal displacement boundary 

conditions and     is the vector of the unknown parameters of the truncated series. 

[ ]        is the        -long null vector coming from the system derived from equation 

(11).  By knowing the nodal displacements, the displacement at each point of the overlap can 

be computed, as the normal force thanks to equation (2).  

However, the objective is to build the stiffness matrix of the ME. The way to obtain it is the 

following. The nodal force boundary conditions are written according to the sign convention 

defined Figure 3:   

{
 
 
 
 
 
 

 
 
 
 
 
 
          

  

 
∑                  

    

   

   

          
  

 
∑                  
    

   

   

        
  

 
∑                

 

    

   

   

        
  

 
∑                

 

    

   

   

 
(15) 

 

 
 

 
 
The boundary conditions are written in matrix form with the same size as the previous system:  

Figure 3: Nodal boundary condition diagram, 1D-bar kinematics. Nodal displacement (force) sign convention on the 

right (left) hand-side.  

𝑢𝑖 
node i 

node j node l 

node k 
𝑢𝑘 

𝑢𝑗 𝑢𝑙 

𝑥  

𝑄𝑖 𝑄𝑘 

𝑄𝑗 𝑄𝑙 

𝑥  
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     (

  

  

  

  

) 
(16) 

where    is the       rectangular matrix representing the equation (15) and     is the 

vector of the unknown parameters of the truncated series. The vector of the unknowns is 

expressed from equation (14): 

     
   

(

 
 

[ ]       

  

  

  

  )

 
 

 
(17) 

 

Finally, the nodal displacements are linked to the nodal forces by combining equations (16) 
and (17):  

    
   

(

 
 

[ ]       

  

  

  

  )

 
 

 (

  

  

  

  

) 
(18) 

 
From equation (17), the stiffness matrix of the joint is the     square matrix:  

      [    
  ]         

         

  (19) 

Thanks to numerical tests, it is interesting to notice the stiffness matrix      has always been 

symmetric.  
 

2.4 Functionally graded adhesive macro-element (FGA ME) 

The case of a FGA joint is now considered. The variations of the stiffness of the adhesive 

along the overlap are described as a TEPS with known parameters.  

      ∑    
  

  

   

                   [    ] (20) 

As in the previous part, the same variable change is made:  

      ∑      
 

  

   

                   [    ] (21) 
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Where,            
 . Due to a non-homogeneous stiffness along the overlap, the 

constitutive equation of the adhesive layer is:   

     
     

  

 (           ) (22) 

The equilibrium equations (4) read now, for each adherend  :  

    
 

  
∑

      

  
 (  )   

  

  

   

      
 

  
∑   

 
  

 

  

   

 (∑     
 
  

 

  

   

 ∑     
 
  

 

  

   

)  

       

(23) 

Thanks to the Cauchy product, the equations become:  

    

 

  ∑
      

  
 (  )   

  

  

   

      
 

  
 (∑  ∑       

 

   

      
 

  

   

 ∑  ∑       

 

   

      
 

  

   

)  

       

(24) 

So the recursive equations have two sums due to the series products: 

         
 

  

      

  
 (  )   

      
 

  
 (∑   

 
   

 

   

   
 
  ∑   

 
   

 

   

   
 
 )  

       

(25) 

 
Then, with the same method as before, the stiffness matrix of the FGA ME is obtained. 

Equations (25) replace equations (11) to derive the         first lines of the matrix   . The 

same nodal-boundary conditions (13) are used to complete the matrix   , while equations 

(15) are used to derive the    matrix. Finally, notice the truncation of the adhesive shear 

modulus serie is the same as the displacement series. More terms in the shear modulus series, 

more terms in the displacement series are required.   

 

3. Development of the approached stiffness matrix of a 1D-beam  macro-element 

3.1 Assumptions, governing equations and parameterization 

The development of the 1D-beam ME is based on the following assumptions:  

(i) both adherends are modelled as linear elastic Euler-Bernoulli laminated beams ; 

(ii) the adhesive layer is modelled as an infinite number of shear springs and peel 

springs linking the upper and lower adherends; 

(iii) the adhesive thickness is constant along the overlap; 
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(iv) the adhesive stresses are constant in the adhesive thickness. 

The equilibrium of the joint (see Figure 4) comes from Goland and Reissner’s analysis [18]. 

The system of equilibrium equations is:  

{
 
 

 
 

   

  
        

   

  
          

   

  
    

   

 
   

                    (26) 

where    is the normal force of the adherend  ,    its shear force and    its bending moment 

at the abscissa   .   is the adhesive shear stress and   is the adhesive peel stress of the 

adhesive layer.   is the overlap width.  

 

 

The constitutive equations of the adherends are:  

{
 
 

 
         

      

  
   

      

  

         

      

  
    

      

  

      
      

  

                    (27) 

Figure 4: Free body diagram of infinitesimal pieces included between x and x+dx of both adherends in the 

overlap region under 1D-beam kinematics. Subscript 1 (2) refers to the upper (lower) adherend. 

 

𝑁  𝑥  

𝑉  𝑥  

𝑁  𝑥  𝑑𝑥  

𝑉  𝑥  𝑑𝑥  
𝑏𝑇 𝑥 𝑑𝑥 

𝑀  𝑥  𝑑𝑥  

𝑀  𝑥  

𝑀  𝑥   

𝑉  𝑥  

𝑁  𝑥  

𝑉  𝑥  𝑑𝑥  

𝑁  𝑥  𝑑𝑥  

𝑏𝑇 𝑥 𝑑𝑥 

𝑏𝑆 𝑥 𝑑𝑥  

𝑀  𝑥  𝑑𝑥  
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where    is the membrane stiffness of the adherend   ,    its coupling membrane-bending 

stiffness     its bending stiffness and    its bending angle   By differentiating the third 

relation in equation (26), and replacing the expression for    , the system becomes:  

{

      

  
           

       

                 
   

 

     

  
  

                    (28) 

To go further in the analysis, as before, the first case considered is an adhesive layer with 

homogeneous stiffness properties. Then the case with graded properties is treated. 

3.2 Homogeneous adhesive macro-element (HA ME) 

In this first case, the constitutive equations of the adhesive layer are:  

{
 

   
  

  

(      
  

 
   

  

 
  )

   
  

  

       

 (29) 

The adhesive peel modulus    of the adhesive layer is now introduced. Please notice that the 

adhesive peel modulus is the parameter characterising the transverse tensile behaviour of the 

adhesive layer. According to modelling choices of the adhesive layer, the adhesive peel 

modulus can be the adhesive Young’s modulus or the effective peel modulus of the adhesive 

layer [19] [20] [21] [22]. These modelling choices will not be discussed in the present paper.  

By replacing in equation (28) the expression for   and   from equation (29), the system 

becomes:  

{
 
 

 
   

    

      

    

            
  

  
(      

  

 
   

  

 
  )   

  

   (   

   

  
    

   

  
)        

  

  

        
   

 

  

  

 

  
(      

  

 
   

  

 
  )   

         
 

      

(30) 
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{
 
 

 
   

    

      

    

            
  

  
(      

  

 

   

  
  

  

 

   

  
)   

(   

    

       
    

   )        
  

  

        
   

 

  

  
(
   

  
 

   

  
 

  

 

    

    
  

 

    

   )   

      

           

(31) 

The solution functions             are expressed as TEPS:  

{
 
 

 
       ∑    

  

  

   

                       [    ]

      ∑    
  

  

   

                       [    ]

 (32) 

And, with the same variable change as in part 2, it reads:  

{
 
 

 
       ∑(  ) 

  

  

   

                           [    ]

      ∑(  ) 
  

  

   

                             [    ]

 (33) 

with: 

{
    (  ) 

    
                 

    (  ) 
    

                 
 (34) 

The expression for          and    are replaced in equation (31): 

{
 
 
 
 
 
 

 
 
 
 
 
   

  
∑(

      

  
 (  )   

 

)  

  

   

 
  

  
∑ (

      

  
 (  )   

 

)  

  

   

         
  

  

(∑(       
        

  

  

      

  
         

  

  

      

  
        )  

  

   

 )      

                            

 
  

  
∑(

      

  
 (  )   

 

)  

  

   

 
  

  
∑(

      

  
 (  )   

 

)  

  

   

       
  

  

∑(       
      ) 

 

  

   

 
   

 

  

  

(∑(
 

 

      

  
        

 

 
 

 

      

  
         

  

   

      

  
         

  

   

      

  
        )  

  

   

)   

  

         

(35) 

The recursive equations of the system are:  
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{
 
 
 
 
 

 
 
 
 
 

  

  

      

  
 (  )   

 
  

  

      

  
 (  )   

         
  

  

(       
        

  

  

      

  
         

  

  

      

  
        )   

   

                            

 
  

  
(
      

  
 (  )   

 

)  
  

  
(
      

  
 (  )   

 

)       
  

  

(       
      )

 
   

 

  

  

(
 

 

      

  
        

 

 
 

 

      

  
         

  

   

      

  
         

  

   

      

  
        )   

   

       

(36) 

The first equation for each adherend is considered as a second-order recursive equation on the 

parameter      and the second equation is a fourth-order recursive equation on the 

parameter (  ). Contrary to part 2, the truncation is defined as the maximum value that   can 

be. For any truncation at    , the last term of the    series is         and the last term of 

the    series is (  )   
. Let be          and         , the number of terms in 

the series   and    are respectively    and   . The two series have a different number of 

terms. Moreover, during the computation of the matrix of the system, for the last equation at 

n=N, in the second equation of (36) the term (  )   
 is set to zero as it does not exist in the 

frame of the truncation defined here.  

Using the same method as in part 2, the nodal boundary conditions are applied to derive the 

stiffness matrix of the joint. The sign convention visible in Figure 5 is taken.  

 

Figure 5: Nodal boundary condition diagram, 1D-beam kinematics. Nodal displacement (force) sign convention 

on the right (left) hand-side.  

 

The nodal displacement boundary conditions are: 

𝑆𝑖 
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     )

 
 
 
 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 

  

  

  
  

  

  
  

  

  
  

  

  )

 
 
 
 
 
 
 
 
 

 
(37) 

The nodal force boundary conditions are:  

(

 
 
 
 
 
 
 
 
 
 

      

      
      

      
      

      

     

     
     

     
     

     )

 
 
 
 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 
 

  

  

  

  

  

  
  

  

  

  

  

  )

 
 
 
 
 
 
 
 
 
 

 
(38) 

The expressions for    and    come from the moment equilibrium equation (26). The stiffness 

matrix is defined as in part 2. The matrix    and    are written thanks to the equations (36), 

(37) and (38). 

Thus, for any truncation at n=N, a       stiffness matrix for the 1D-beam ME is obtained 

with the same method.   

     [    
  ]                      

                      

  (39) 

 

3.3 Functionally graded adhesive macro-element (FGA ME) 
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The development of the graded 1D-beam ME uses the same approach as in the 1D-bar case. 

The variable shear modulus and variable peel modulus of the adhesive layer are written as 

follow:  

{
 
 

 
       ∑    

  

  

   

      ∑    
  

  

   

                   [    ] (40) 

The derivative of the moment equilibrium equation is modified as the shear modulus and the 

peel modulus are now   dependent.  

The same variable change is made:  

{
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 (41) 

The system coming from the equilibrium is so different from equation (31) and is:  
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(42) 

Then the new recursive equations, replacing equations (36), are:  



19 

 

   

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  

  

      

  
 (  )   

 

 
  

  

      

  
 (  )   

 

         

  

∑        (       
        

  

  

      

  
         

  

  

      

  
        )

 

   

   

              

 
  

  

      

  
 (  )   

 
  

  

      

  
 (  )   

 

      
 

  

∑(         
)(       

      )

 

   

 
   

   

 ∑
 

 

        

      
          (             

  

  

      

  
         

  

  

      

  
        )

 

 

    

 
   

   

∑(         
)(

 

 

      

  
        

 

 
 

 

      

  
         

  

   

      

  
         

  

   

      

  
        )

 

   

  

      

 

 
      

(43) 

The stiffness matrix of the FGA ME in 1D-beam kinematics is computed as before. In the 

boundary conditions, the expression of the shear force Vp takes account of the gradation of Ga 

and Ea. The new recursive equations (43) and the nodal-displacement-boundary conditions 

lead to the    matrix. The matrix    is derived from the nodal-force-boundary conditions in 

1D-beam kinematics. The derivation of the nodal-force-boundary conditions is detailed in 

Appendix A.  

 

4. Validation 

The validation of the approached ME with TEPS is done in two different ways. First of all, in 

the case of the HA ME, the exact stiffness matrix and the approached stiffness matrix 

developed here are compared terms by terms. Then, in the case of a FGA single lap joint, the 

stress distributions are compared to a FE model from a previous work [15]. The geometry and 

the material used to perform the tests are given in the following part. Then, the FE model set 

up is detailed and the validation finishes with the comparison of the stress curves obtained 

with both models.  

 

4.1 Geometry and materials  
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The tests are made with a single-lap bonded joint, as visible in Figure 1. The choice is made 

to use the exact same set up as in [15]. Consequently, the geometry details are available in the 

following Table 1 and the material parameters used are described in Table 2.  

 

Table 1: Geometrical parameters of the joint configuration 

b (mm) ea (mm) e1=e2 (mm) L (mm) l1=l2 (mm) 

25 0.2 2 12.5 75 

 

Table 2: Material parameters of the adherends  

 Young’s modulus (GPa) 

Steel         

Aluminium        

 

In [15], the shear and peel modulus variation along the overlap are defined as a symmetrical 

second order polynomial thanks to a maximum and a minimum value. For simplicity, the ratio 

between these maximum and minimum is equal to        , where   is the adhesive 

Poisson’s ratio. The extreme values taken here are in Table 3.  

Table 3: Adhesive material properties 

Ea,max (MPa) Ea,min (MPa) a 

6500 2500 0.36 

 

Finally, the structure is simply supported and loaded in the local axis of the lower adherend, 

as visible in Figure 1. 

 

4.2 Description of the FE model  
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The validation of the approached ME method is based on a 1D FE model developed in [15]. 

The main parameters of the model are described below.  

To be as close as possible to the modelling hypotheses of ME models, the 1D FE models are 

built from bar or beam elements for the adherends and spring elements for the adhesive layer. 

The nodes associated with bar or beam elements are located at the actual neutral line of the 

adherends. The nodes associated with the spring elements are located at the actual interfaces 

of adherends. In the 1D-beam model only, for each adherend along the overlap, rigid body 

elements are used to link the nodes of the neutral lines and to the nodes of the adherend 

interface.  

The predicted adhesive stresses are expected to be dependent on the number of springs used. 

The convergence study leads to 500 elements for a 25mm long bonded overlap. The mesh 

density is then 20 elements per millimetre.   

 

4.3 Stiffness matrix comparison 

4.3.1 1D-bar ME 

The exact stiffness matrix of the 1D-bar ME is used to validate the method to develop the HA 

ME. The coefficients of the two stiffness matrices tend to be equal when the number 

   increases.  Thus, the choice is made to compute the error between the terms of the two 

matrices. A convergence indicator is defined in equation (44) and named “error” hereafter. 

The error is converging to zero with the convergence of the approached stiffness matrix.  

Figure 6 gives the error, computed for a number of terms    in each serie from       to 

      in each series.  

       
∑ |[      ]    [           ]

   
|   

      ([      ]   )
 (44) 
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Figure 6 shows the error may be considered as converged for a number of terms over 10 in the 

series. As a result, this value is the sufficient number of terms in the series to obtain the same 

stress distribution in the joint as Volkersen’s with the approached ME technique. Hereafter, 

the stress distribution obtained with different values of    are compared to Volkersen’s 

solution.  

 

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0 5 10 15 20 25 30

e
rr

o
r 

Number of terms in the series 

error

0

5

10

15

20

25

30

35

40

-1.0 -0.5 0.0 0.5 1.0

Sh
e

ar
 s

tr
e

ss
 (

M
P

a)
 

Normalised abscissa 

Nu=5

Nu=7

Nu=10

Volkersen's solution

Figure 6: Evolution of the error on the stiffness matrix coefficients as a function of 

the number of terms in the series for 1D-bar kinematics 
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The relative error at the ends of the overlap is computed from the equation (45): 

               
                         

           
 (45) 

The               is the value given by the HA ME analysis. The             is 

computed through Volkersen’s shear stress solution. At      , the order of magnitude of 

the maximum relative error at the ends of the overlap is     .  

 

4.3.2 1D-beam ME 

The stiffness matrix obtained here for a 1D-beam ME is validated with the same technique. 

The error is computed between the matrix developed in this work and the exact stiffness 

matrix. The truncation of the series is done differently. A maximum value of   is defined and 

the recursive equations are used   times. So, as written part 3, the sizes of the series are 

different between    and   . The following graph shows the error defined in equation (44) for 

different values of   : 

Figure 7: Evolution of the shear stress along the overlap as function of the number of 

terms in the series. Comparison with Volkersen's solution 
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The approached matrix may be considered as converged for any      . It means a number 

of terms superior to 42 for the    series and 44 for the    series. The evolution of the 

solutions with the values of   is plotted in Figure 9. The solution provided by an analysis 

performed with the exact HA ME, available in [14], is used as a reference. The order of 

magnitude of the relative error, at both ends of the overlap, is      for     . The relative 

error is computed using equation (45). The               is the value given by the HA 

ME analysis. The             come from the analytical HA ME available in [14].  
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Figure 8: Evolution of the error on the stiffness matrix coefficients as function of N for 

1D-beam kinematics 
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Finally, in case of FGA joint, it is indicated that if the variable shear modulus and peel 

modulus (1D-beam kinematics only) are set up at constant along the overlap, the exact HA 

stiffness matrix is reached at the same number of terms in the series.  

 

4.4 Comparison with a FE analysis of a FGA joint 

This part is dedicated to the comparison between the 1D-bar and 1D-beam FE analysis, the 

meshed-HA ME analysis and the FGA ME analysis developed in the present paper. For all 

comparisons, the values of    and   are a little higher than in the previous HA case. The new 

values are:       for the 1D-bar kinematic case, and      for the 1D-beam kinematic 

case. The shear modulus and peel modulus of the adhesive vary along the overlap as a second-

order polynomial with a maximum and minimum values defined Table 3. 

 

4.4.1 1D-bar kinematic case 

The solutions obtained with the FE analysis, meshed-HA ME analysis and the FGA ME 

analysis are plotted in Figure 10. All the analyses give similar results. The relative errors at 

the end of the overlap, where the stress peaks are located, are given in Table 4. As a reminder, 

for the FGA ME each series is 15-term long, the mesh of HA ME is made of 200 HA ME and 

the mesh density of the FE model is 20 elements per millimetre.  
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Table 4: Relative shear stress relative errors at the ends of the overlap - 1D bar 

kinematic case 

 FE model vs FGA ME 

Left-hand-side shear stress 

peak 

-0.19% 

Righ hand-side shear stress 

peak 

0.10% 

 

The               is the value given by the FGA ME analysis. The             is 

computed thanks to the FE analysis. 

 

4.4.2 1D-beam kinematic case 

The solutions obtained with the FE analysis, meshed-HA ME analysis and the FGA ME 

analysis are plotted Figure 11 (shear stress) and Figure 12 (peel stress). The relative errors at 
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Figure 10: Comparison between the shear stress obtained thanks to a FE analysis, an analysis with a mesh 

of HA MEs and a FGA ME analysis for 1D-bar kinematics 
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each end of the overlap are detailed in Table 5. Compared to the errors available in [15], the 

approached ME method is about 10 times closer to the FE model. As a reminder, for the FGA 

ME the series    and    are 42-term long and the series    and    are 44-term long, the 

mesh of HA ME is made of 200 HA ME and the mesh density of the FE model is 20 elements 

per millimetre. 
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Figure 11: Comparison between the shear stress obtained  by FE analysis, an analysis with 

a mesh of HA MEs and a FGA ME analysis for 1D-beam kinematic 
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Table 5: Relative shear stress and peel stress relative errors at the ends of the overlap - 

1D-beam kinematic case 

 FE model vs FGA ME 

 Shear Stress 

Ratio 

Peel Stress 

Ratio 

Left hand-side peak -0.002% 0.03% 

Right hand-side peak 0.007% 0.03% 

 

 

5. Conclusion 

In this paper, an approached method to develop ME, using TEPS, is presented. The details of 

the mathematical derivation are described. The results are compared to a 1D FE model and to 

a model using a mesh of HA ME presented in a previous work [15]. The models used to 

develop the approached ME aim to test the use of TEPS to solve differential equations. Thus 

Volkersen’s and Goland and Reissner-based models are chosen as a first basis to test the 
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Figure 12: Comparison between the peel stress obtained by FE analysis, an analysis 

with a mesh of HA MEs and a FGA ME analysis for 1D-beam kinematics 
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resolution method before applying it to more complex models. A convergence study of the 

approached stiffness matrix as a function of the order of the series is done in the HA case. The 

convergence is done with the exact expression for the stiffness matrix of a 1D-bar ME and a 

1D-beam ME [14] as a target. A 1D-bar and 1D-beam FE models, from [15], are used to 

assess the results obtained with the approached ME of a FGA joint. Two conclusions can be 

made from the results. Firstly, the TEPS is a suitable tool to develop ME and solve 

differential equations. The exact stiffness matrix is closely approached for a reasonable 

number of terms in the series. Secondly, the use of TEPS to develop ME with non-

homogeneous properties shows results very close to a 1D-bar and 1D-beam FE analysis. The 

relative error is lower than 0.01% on the shear-stress peaks and lower than 0.05% on the peel-

stress peaks. The approach with a mesh of HA ME shows a higher error. This discrepancy is 

said to be due to the assignment strategy of the FGA modulus [15]. Thanks to the use of the 

TEPS, there is no discontinuity in the modulus values along the overlap. The solution is so 

less sensitive to any high-gradient variations of the modulus or stress peaks. Every continuous 

function can be represented by a TEPS. So the method presented here works for any FGA and 

a FE-equivalent solution can be computed. This work may also be used to determine the 

coefficients of an unknown FGA. Indeed, if the displacement field is known from 

experimental tests, the coefficient of the series representing the FGA can be identified. 

Finally, the presented method showed results very close to a FE reference solution. The 

truncation of the series has been defined in consequence. But the best strategy to define the 

truncation order in a case of a blind test still needs to be found.  
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Appendix A: Expression of the nodal force boundary conditions 

The shear force expression comes from the third equation of (26). The derivation on the 

boundary condition on node   is developed. Then the final expression is given for nodes 

    and  .  

 From (26) and (38), the nodal force boundary conditions on node   are:    

{
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Then, the expression of         is developed: 
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   and    are replaced by the third constitutive equation coming from (27). 
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The          and    are replaced by their expression in TEPS: 

{
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The boundary conditions on the three other nodes are derived the same way. 

Boundary condition on node     
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Boundary condition on node     
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Boundary condition on node l   
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