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The interest of functionally graded adhesives (FGA) is growing as it is a mean to increase a bonded joint strength without any modification of the initial design of the adherends. The behaviour of bonded joints with variable adhesive properties along the overlap can be predicted with a potentially time-costly Finite Element (FE) analysis. Dedicated numerical procedures and design tools for FGA bonded joints would increase. The objective of this paper is to offer a mesh-free method for the analysis of functionally graded joints. The technique is based on the macro-element (ME) method and Taylor expansion in power series (TEPS) are used to approach the shape functions of the ME. The method has been developed so far for 1D-bar and 1D-beam kinematics frameworks. This mesh-free_method and a Finite-Element analysis give similar results.

NOMENCLATURE AND UNITS

A j extensional stiffness (N) of adherend j B j extensional and bending coupling stiffness (N.mm) of adherend j D j bending stiffness (N.mm 2 ) of adherend j matrix of the recursive equation system with displacement boundary conditions The configuration used for comparison is the same one as in [START_REF] Paroissien | A comparison between macroelement and finite element solutions for the stress analysis of functionally graded single-lap joints[END_REF] and is shown in Figure 1.

The numerical values, of the problem parameters, are detailed later, in Table 1.

Finally, the MATLAB codes, used to get the results presented in this paper, are available as a supplementary material. 

Development of the approached stiffness matrix of a 1D-bar macro-element

Introduction to the macro-element technique

The ME technique is inspired by the FE method as the structure is discretized and the nodes of the ME are linked through a stiffness matrix. However, the shape functions are not assumed but derived directly from the governing equations of the system. Thus, the predicted distribution of the displacements and internal forces in the adherends, along the overlap, does not depend on a mesh density. Then, a single ME is enough to represent a whole bonded overlap.

Once the global stiffness matrix [K] of the complete structure is computed, the resolution of the system [K] U e = F e gives the nodal displacements U e of the joints as a function of the vector of the nodal forces F e . Then, the stresses in the adhesive and in the adherends are computed from the constitutive equations and the nodal displacements.

The development of the ME is highly dependent on the simplifying assumptions made. The exact expression for the stiffness matrix is obtained if the ODEs system can be solved by hand. This paper is focused on a FGA joint, thus the properties of the adhesive are not constant along the overlap. The choice is made to use an approached method to solve the ODEs system and so, to derive an approached stiffness matrix for the whole bonded overlap joint. As did Hart-Smith in his paper [START_REF] Hart-Smith | Adhesive-bonded scarf and stepped-lap joints[END_REF] to find the shear stress in a scarfed bonded overlap and Carbas to study a FGA joint [5], approximations of the solutions of the ODEs are done with TEPS.

Assumptions and governing equations

The development of the 1D-bar ME is based on the following assumptions:

(i) both adherends are modelled as bars made of a homogeneous linear elastic material;

(ii) the adhesive layer is modelled as an infinite number of shear springs linking the upper and lower adherends;

(iii) the adhesive thickness is constant along the overlap;

(iv) the adhesive stress is constant in the adhesive thickness.

The same equilibrium as Volkersen's [17] is used here (see Figure 2). For both adherends, it leads to:

(1)
where is the normal force of the adherend , the adhesive shear stress and the overlap width.

The normal force in each adherend is equal to:

(

) 2 
where is the membrane stiffness of the adherend , with and the Young's

Modulus and the thickness of the adherend . The normal displacement is the displacement of the point on the neutral line of the adherend at the abscissa The expression for the shear stress in the adhesive layer depends on the expression for its shear modulus. The first case considered is a joint with HA properties. 

Homogeneous adhesive macro-element (HA ME)

The constitutive equation of the adhesive layer reads:

( ) (3) 
where is the shear modulus of the adhesive and the thickness of the adhesive layer. By combining equations ( 1), ( 2) and ( 3), the equilibrium for each adherend becomes:

( ) (4) 
The solution functions and are searched as TEPS for any x between -L and L:

∑ [ ] (5) 
The unknowns now become the parameters of the series say . The following variable change is made:

(6)
By changing the variable in equation ( 5), the solution is searched for any between -1 and 1.

∑ ∑ ∑( ) [ ] (7) 
with the following notation set:

( ) (8) 
The derivatives of is:

∑ ( ) [ ] (9) 
The expressions for and are replaced in equation ( 4):

∑ ( ) (∑ ∑ ) (10) 
Then, for any , there are two second-order recursive equations:

( ) (11) 
To solve numerically this problem, both series are truncated at the maximum order .

So

is the total number of terms in each series .The vector of the unknown parameters is:

( ) (12) 
So, is a -long vector.

As equations [START_REF] Breto | Finite Element Analysis of Functionally Graded Bond-Lines for Metal/Composite Joints[END_REF] are second-order-recursive equations, each equation is considered only for , which leads to a -equation system. Four more equations are required to solve the system. So, the nodal displacement boundary conditions are added:

{ ∑ ∑ ∑ ∑ (13) 
The global system of linear equations is written in matrix form as follows:

( [ ] ) (14) 
where is the square matrix of the system including the nodal displacement boundary conditions and is the vector of the unknown parameters of the truncated series.

[ ] is the -long null vector coming from the system derived from equation [START_REF] Breto | Finite Element Analysis of Functionally Graded Bond-Lines for Metal/Composite Joints[END_REF]. By knowing the nodal displacements, the displacement at each point of the overlap can be computed, as the normal force thanks to equation (2).

However, the objective is to build the stiffness matrix of the ME. The way to obtain it is the following. The nodal force boundary conditions are written according to the sign convention defined Figure 3:

{ ∑ ∑ ∑ ∑ ( 15 
)
The boundary conditions are written in matrix form with the same size as the previous system: 

where is the rectangular matrix representing the equation ( 15) and is the vector of the unknown parameters of the truncated series. The vector of the unknowns is expressed from equation ( 14):

( [ ] ) (17) 
Finally, the nodal displacements are linked to the nodal forces by combining equations ( 16) and ( 17):

( [ ] ) ( ) (18) 
From equation [START_REF] Volkersen | Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten[END_REF], the stiffness matrix of the joint is the square matrix:

[ ] (19) 
Thanks to numerical tests, it is interesting to notice the stiffness matrix has always been symmetric.

Functionally graded adhesive macro-element (FGA ME)

The case of a FGA joint is now considered. The variations of the stiffness of the adhesive along the overlap are described as a TEPS with known parameters.

∑ [ ] (20) 
As in the previous part, the same variable change is made:

∑ [ ] (21) 
Where, . Due to a non-homogeneous stiffness along the overlap, the constitutive equation of the adhesive layer is:

( ) (22) 
The equilibrium equations ( 4) read now, for each adherend :

∑ ( ) ∑ (∑ ∑ ) (23) 
Thanks to the Cauchy product, the equations become:

∑ ( ) (∑ ∑ ∑ ∑ ) (24) 
So the recursive equations have two sums due to the series products:

( ) (∑ ∑ ) (25) 
Then, with the same method as before, the stiffness matrix of the FGA ME is obtained.

Equations (25) replace equations [START_REF] Breto | Finite Element Analysis of Functionally Graded Bond-Lines for Metal/Composite Joints[END_REF] to derive the first lines of the matrix . The same nodal-boundary conditions [START_REF] Stein | Analytical models for functionally graded adhesive joints: A comparative study[END_REF] are used to complete the matrix , while equations [START_REF] Paroissien | A comparison between macroelement and finite element solutions for the stress analysis of functionally graded single-lap joints[END_REF] are used to derive the matrix. Finally, notice the truncation of the adhesive shear modulus serie is the same as the displacement series. More terms in the shear modulus series, more terms in the displacement series are required.

Development of the approached stiffness matrix of a 1D-beam macro-element

Assumptions, governing equations and parameterization

The development of the 1D-beam ME is based on the following assumptions:

(i) both adherends are modelled as linear elastic Euler-Bernoulli laminated beams ;

(ii) the adhesive layer is modelled as an infinite number of shear springs and peel springs linking the upper and lower adherends;

(iii) the adhesive thickness is constant along the overlap;

(iv) the adhesive stresses are constant in the adhesive thickness.

The equilibrium of the joint (see Figure 4) comes from Goland and Reissner's analysis [START_REF] Goland | The stresses in cemented joints[END_REF].

The system of equilibrium equations is:

{ (26)
where is the normal force of the adherend , its shear force and its bending moment at the abscissa . is the adhesive shear stress and is the adhesive peel stress of the adhesive layer. is the overlap width.

The constitutive equations of the adherends are: where is the membrane stiffness of the adherend , its coupling membrane-bending stiffness its bending stiffness and its bending angle By differentiating the third relation in equation ( 26), and replacing the expression for , the system becomes:

{ (27)
{ (28)
To go further in the analysis, as before, the first case considered is an adhesive layer with homogeneous stiffness properties. Then the case with graded properties is treated.

Homogeneous adhesive macro-element (HA ME)

In this first case, the constitutive equations of the adhesive layer are:

{ ( ) (29) 
The adhesive peel modulus of the adhesive layer is now introduced. Please notice that the adhesive peel modulus is the parameter characterising the transverse tensile behaviour of the adhesive layer. According to modelling choices of the adhesive layer, the adhesive peel modulus can be the adhesive Young's modulus or the effective peel modulus of the adhesive layer [START_REF] Smith | Adhesive-bonded double-lap joint[END_REF] [20] [21] [START_REF] Lelias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. These modelling choices will not be discussed in the present paper.

By replacing in equation ( 28) the expression for and from equation (29), the system becomes:

{ ( ) ( ) ( ) (30) 
{ ( ) ( ) ( ) (31) 
The solution functions are expressed as TEPS:

{ ∑ [ ] ∑ [ ] (32) 
And, with the same variable change as in part 2, it reads:

{ ∑( ) [ ] ∑( ) [ ] (33) 
with:

{ ( ) ( ) (34) 
The expression for and are replaced in equation (31):
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The recursive equations of the system are:

{ ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ) ( ) (36) 
The first equation for each adherend is considered as a second-order recursive equation on the parameter and the second equation is a fourth-order recursive equation on the parameter ( ). Contrary to part 2, the truncation is defined as the maximum value that can be. For any truncation at , the last term of the series is and the last term of the series is ( ) . Let be and , the number of terms in the series and are respectively and . The two series have a different number of terms. Moreover, during the computation of the matrix of the system, for the last equation at n=N, in the second equation of (36) the term ( ) is set to zero as it does not exist in the frame of the truncation defined here.

Using the same method as in part 2, the nodal boundary conditions are applied to derive the stiffness matrix of the joint. The sign convention visible in Figure 5 is taken. 

The nodal force boundary conditions are:

( ) ( ) (38) 
The expressions for and come from the moment equilibrium equation (26). The stiffness matrix is defined as in part 2. The matrix and are written thanks to the equations (36), (37) and (38).

Thus, for any truncation at n=N, a stiffness matrix for the 1D-beam ME is obtained with the same method.

[ ] (39)

graded adhesive macro-element (FGA ME)

The development of the graded 1D-beam ME uses the same approach as in the 1D-bar case.

The variable shear modulus and variable peel modulus of the adhesive layer are written as follow:

{ ∑ ∑ [ ] (40) 
The derivative of the moment equilibrium equation is modified as the shear modulus and the peel modulus are now dependent.

The same variable change is made:

{ ∑ [ ] ∑ [ ] (41) 
The system coming from the equilibrium is so different from equation (31) and is:

{ ( ) ( ) ( )( ) ( ) ( ) (42) 
Then the new recursive equations, replacing equations (36), are:

The tests are made with a single-lap bonded joint, as visible in Figure 1. The choice is made to use the exact same set up as in [START_REF] Paroissien | A comparison between macroelement and finite element solutions for the stress analysis of functionally graded single-lap joints[END_REF]. Consequently, the geometry details are available in the following Table 1 and the material parameters used are described in Table 2. , the shear and peel modulus variation along the overlap are defined as a symmetrical second order polynomial thanks to a maximum and a minimum value. For simplicity, the ratio between these maximum and minimum is equal to , where is the adhesive

Poisson's ratio. The extreme values taken here are in Table 3. Finally, the structure is simply supported and loaded in the local axis of the lower adherend, as visible in Figure 1.

Description of the FE model

The validation of the approached ME method is based on a 1D FE model developed in [START_REF] Paroissien | A comparison between macroelement and finite element solutions for the stress analysis of functionally graded single-lap joints[END_REF].

The main parameters of the model are described below.

To be as close as possible to the modelling hypotheses of ME models, the 1D FE models are built from bar or beam elements for the adherends and spring elements for the adhesive layer.

The nodes associated with bar or beam elements are located at the actual neutral line of the adherends. The nodes associated with the spring elements are located at the actual interfaces of adherends. In the 1D-beam model only, for each adherend along the overlap, rigid body elements are used to link the nodes of the neutral lines and to the nodes of the adherend interface.

The predicted adhesive stresses are expected to be dependent on the number of springs used.

The convergence study leads to 500 elements for a 25mm long bonded overlap. The mesh density is then 20 elements per millimetre.

Stiffness matrix comparison

1D-bar ME

The exact stiffness matrix of the 1D-bar ME is used to validate the method to develop the HA ME. The coefficients of the two stiffness matrices tend to be equal when the number increases. Thus, the choice is made to compute the error between the terms of the two matrices. A convergence indicator is defined in equation (44) and named "error" hereafter.

The error is converging to zero with the convergence of the approached stiffness matrix.

Figure 6 gives the error, computed for a number of terms in each serie from to in each series.

∑ |[ ] [ ] | ([ ] ) (44) 
Figure 6 shows the error may be considered as converged for a number of terms over 10 in the series. As a result, this value is the sufficient number of terms in the series to obtain the same stress distribution in the joint as Volkersen's with the approached ME technique. Hereafter, the stress distribution obtained with different values of are compared to Volkersen's solution. The relative error at the ends of the overlap is computed from the equation ( 45):

(45)

The is the value given by the HA ME analysis. The is computed through Volkersen's shear stress solution. At , the order of magnitude of the maximum relative error at the ends of the overlap is .

1D-beam ME

The stiffness matrix obtained here for a 1D-beam ME is validated with the same technique.

The error is computed between the matrix developed in this work and the exact stiffness matrix. The truncation of the series is done differently. A maximum value of is defined and the recursive equations are used times. So, as written part 3, the sizes of the series are different between and . The following graph shows the error defined in equation ( 44) for different values of : resolution method before applying it to more complex models. A convergence study of the approached stiffness matrix as a function of the order of the series is done in the HA case. The convergence is done with the exact expression for the stiffness matrix of a 1D-bar ME and a 1D-beam ME [14] as a target. A 1D-bar and 1D-beam FE models, from [START_REF] Paroissien | A comparison between macroelement and finite element solutions for the stress analysis of functionally graded single-lap joints[END_REF], are used to assess the results obtained with the approached ME of a FGA joint. Two conclusions can be made from the results. Firstly, the TEPS is a suitable tool to develop ME and solve differential equations. The exact stiffness matrix is closely approached for a reasonable number of terms in the series. Secondly, the use of TEPS to develop ME with nonhomogeneous properties shows results very close to a 1D-bar and 1D-beam FE analysis. The relative error is lower than 0.01% on the shear-stress peaks and lower than 0.05% on the peelstress peaks. The approach with a mesh of HA ME shows a higher error. This discrepancy is said to be due to the assignment strategy of the FGA modulus [START_REF] Paroissien | A comparison between macroelement and finite element solutions for the stress analysis of functionally graded single-lap joints[END_REF]. Thanks to the use of the TEPS, there is no discontinuity in the modulus values along the overlap. The solution is so less sensitive to any high-gradient variations of the modulus or stress peaks. Every continuous function can be represented by a TEPS. So the method presented here works for any FGA and a FE-equivalent solution can be computed. This work may also be used to determine the coefficients of an unknown FGA. Indeed, if the displacement field is known from experimental tests, the coefficient of the series representing the FGA can be identified.

Finally, the presented method showed results very close to a FE reference solution. The truncation of the series has been defined in consequence. But the best strategy to define the truncation order in a case of a blind test still needs to be found. 

  min minimal adhesive shear modulus (MPa) E a,max maximal adhesive shear modulus (MPa) E j adherend Young's modulus (MPa) of adherend j F e element nodal force vector G a adhesive shear modulus (MPa) G a,min minimal adhesive shear modulus (MPa) G a,max maximal adhesive shear modulus (MPa) stiffness matrix K BBa elementary stiffness matrix of a bonded-bars element K BBe elementary stiffness matrix of a bonded-beams element L half-length (mm) of bonded overlap matrix with load boundary conditions M j bending moment (N.mm) in adherend j around the z-direction N j normal force (N) in adherend j in the x-direction number of terms in the series after truncation number of terms in the series after truncation nodal axial force of node and nodal shear force of node and nodal Moment force of node and S adhesive peel stress (MPa) T adhesive shear stress (MPa) vector of the unknown parameters of the displacements series V j shear force (N) in adherend j in the y-direction b width (mm) of the adherends e a thickness (mm) of the adhesive layer f magnitude of applied tensile force (N) u j displacement (mm) of adherend j in the x-direction parameter of the axial displacement serie of the adherend ( ) dimensionless parameter of the axial displacement serie of the adherend v j displacement (mm) of adherend j in the y direction parameter of the transverse displacement serie of the adherend ( ) dimensionless parameter of the transverse displacement serie of the adherend bending angle (rad) of the adherend around the -direction (x,y,z) global reference system of axes BBa bondedTEPS Taylor expansion in power seriesIntroduction The use of adhesively bonded joints increased over the last decade thanks to their high mechanical performances. They present a high strength-to-weight ratio, static and fatigue strength which makes them attractive for structural design [1-3]. Moreover, this technology allows dissimilar adherends assemblies. Contrary to mechanical fastening, the load transfer is spread along the bonded overlap instead of being localized at the position of the fasteners. However, the deformations of the adhesive and adherends create stress gradients at both ends of the overlap. So, the major part of the load transfer is mainly ensured by a small length of the overlap. In the case of dissimilar adherends, the stress gradients are asymmetric too. The effect can be reduced by using a variable-property adhesive. By varying the adhesive stiffness along the overlap, the stress distribution is modified in the joint [4-8]. Such joints are called functionally graded adhesive (FGA) joints. The use of a FGA tends to a homogenisation of the adhesive stress along the overlap. The use of FGA joints increased [9-10] offering opportunities to optimize adhesively bonded structures. The Finite Element (FE) method is an existing stress analysis method able to predict the behaviour of FGA joints [11]. However, due to the very high ratio between the adherend thickness and the adhesive thickness, the FE method is time costly. So to take full advantage of this technology, dedicated simulation tools need to be developed to increase the design efficiency in pre-sizing stages. 1D-bar stress analysis of FGA joints has been presented by Carbas et al. in 2014 [5]. Based on Volkersen's 1D-bar-homogeneous-adhesive (HA) model, the FGA is introduced. The ordinary differential equations (ODE) of the model are nonlinear due to the variable shear modulus along the overlap. To solve the problem, Carbas et al. presented a resolution scheme based on Taylor expansion in power series (TEPS). The method can be applied to a half of the overlap length and for a symmetric bilinear FGA. Later, in 2016, Stein et al. published a sandwich-type-1Dbeam analysis also using TEPS in their resolution.

Figure 1 :

 1 Figure 1: Simply supported single-lap involving the geometrical parameters, boundary conditions and in -plane loading.

Figure 2 :

 2 Figure 2: Free body diagram of infinitesimal pieces included between x and x+dx of both adherends in the overlap region under 1D-bar kinematics. Subscript 1 (2) refers to the upper (lower) adherend.

Figure 3 :

 3 Figure 3: Nodal boundary condition diagram, 1D-bar kinematics. Nodal displacement (force) sign convention on the right (left) hand-side.

Figure 4 :

 4 Figure 4: Free body diagram of infinitesimal pieces included between x and x+dx of both adherends in the overlap region under 1D-beam kinematics. Subscript 1 (2) refers to the upper (lower) adherend.

Figure 5 :

 5 Figure 5: Nodal boundary condition diagram, 1D-beam kinematics. Nodal displacement (force) sign convention on the right (left) hand-side.

Figure 6 :

 6 Figure 6: Evolution of the error on the stiffness matrix coefficients as a function of the number of terms in the series for 1D-bar kinematics

Figure 7 :Figure 8 :

 78 Figure 7: Evolution of the shear stress along the overlap as function of the number of terms in the series. Comparison with Volkersen's solution

Figure 9 :

 9 Figure 9: Evolution, along the overlap, as a function of N for 1D-beam kinematics of a) the shear stress and b) the peel stress

Figure 11 :

 11 Figure 11: Comparison between the shear stress obtained by FE analysis, an analysis with a mesh of HA MEs and a FGA ME analysis for 1D-beam kinematic

Figure 12 :

 12 Figure 12: Comparison between the peel stress obtained by FE analysis, an analysis with a mesh of HA MEs and a FGA ME analysis for 1D-beam kinematics

  The boundary conditions on the three other nodes are derived the same way.

  The equations are solved through the ME technique [14] and through TEPS in 1D-bar analysis. Only the ME technique was used in 1D-beam analysis. The ME is a

	4-node brick gathering the adherends and the adhesive layer in one single element. The FGA
	joint analysis is performed thanks to a mesh of MEs along the overlap to take account of the
	variations of the adhesive modulus. The aim of this paper is to present an approached method
	to formulate a unique ME, for a whole bonded overlap involving graduation of the adhesive
	properties. Firstly, the approached method is explained for a 1D-bar framework with
	homogeneous-adhesive (HA) and graded properties. Then, part 2, the same method is used to
	develop an HA ME and a FGA ME with a 1D beam model. Finally, part 3, the results are
	compared to a FE model published in [15]. Moreover, the stiffness matrices, in the
	homogeneous cases, are compared with the exact stiffness matrices developed in [14].

Their model works for any gradation of the adhesive properties and is suitable for unbalanced joints [12-13]. Finally, in 2018, the second author of the present paper worked on an analysis of a FGA joint under a combined thermal and mechanical load [7].

Table 1 :

 1 Geometrical parameters of the joint configuration

	b (mm)	e a (mm)	e 1 =e 2 (mm)	L (mm)	l 1 =l 2 (mm)
	25	0.2	2	12.5	75

Table 2 : Material parameters of the adherends

 2 

	Young's modulus (GPa)
	Steel
	Aluminium
	In [15]

Table 3 :

 3 Adhesive material properties

	E a,max (MPa)	E a,min (MPa)	 a
	6500	2500	0.36

Table 4 : Relative shear stress relative errors at the ends of the overlap -1D bar kinematic case FE model vs FGA ME Left-hand-side shear stress peak -0.19% Righ hand-side shear stress peak 0.10%

 4 

	The	is the value given by the FGA ME analysis. The	is
	computed thanks to the FE analysis.	

4.4.2 1D-beam kinematic case

The solutions obtained with the FE analysis, meshed-HA ME analysis and the FGA ME analysis are plotted Figure

11

(shear stress) and Figure

12

(peel stress). The relative errors at

Comparison between the shear stress obtained thanks to a FE analysis, an analysis with a mesh of HA MEs and a FGA ME analysis for 1D-bar kinematics each

  end of the overlap are detailed in

Table 5 .

 5 Compared to the errors available in [15], the approached ME method is about 10 times closer to the FE model. As a reminder, for the FGA

	ME the series	and	are 42-term long and the series	and	are 44-term long, the
	mesh of HA ME is made of 200 HA ME and the mesh density of the FE model is 20 elements
	per millimetre.				

Table 5 : Relative shear stress and peel stress relative errors at the ends of the overlap - 1D-beam kinematic case FE model vs FGA ME Shear Stress Ratio Peel Stress Ratio Le ft hand-side peak -0.002% 0.03% Right hand-side peak 0.007% 0.03% 5. Conclusion

 5 

	In this paper, an approached method to develop ME, using TEPS, is presented. The details of
	the mathematical derivation are described. The results are compared to a 1D FE model and to
	a model using a mesh of HA ME presented in a previous work [15]. The models used to

develop the approached ME aim to test the use of TEPS to solve differential equations. Thus Volkersen's and Goland and Reissner-based models are chosen as a first basis to test the
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A-8

The stiffness matrix of the FGA ME in 1D-beam kinematics is computed as before. In the boundary conditions, the expression of the shear force V p takes account of the gradation of G a and E a . The new recursive equations ( 43) and the nodal-displacement-boundary conditions lead to the matrix. The matrix is derived from the nodal-force-boundary conditions in 1D-beam kinematics. The derivation of the nodal-force-boundary conditions is detailed in Appendix A.

Validation

The validation of the approached ME with TEPS is done in two different ways. First of all, in the case of the HA ME, the exact stiffness matrix and the approached stiffness matrix developed here are compared terms by terms. Then, in the case of a FGA single lap joint, the stress distributions are compared to a FE model from a previous work [START_REF] Paroissien | A comparison between macroelement and finite element solutions for the stress analysis of functionally graded single-lap joints[END_REF]. The geometry and the material used to perform the tests are given in the following part. Then, the FE model set up is detailed and the validation finishes with the comparison of the stress curves obtained with both models.

Geometry and materials

Finally, in case of FGA joint, it is indicated that if the variable shear modulus and peel modulus (1D-beam kinematics only) are set up at constant along the overlap, the exact HA stiffness matrix is reached at the same number of terms in the series.

Comparison with a FE analysis of a FGA joint

This part is dedicated to the comparison between the 1D-bar and 1D-beam FE analysis, the meshed-HA ME analysis and the FGA ME analysis developed in the present paper. For all comparisons, the values of and are a little higher than in the previous HA case. The new values are: for the 1D-bar kinematic case, and for the 1D-beam kinematic case. The shear modulus and peel modulus of the adhesive vary along the overlap as a secondorder polynomial with a maximum and minimum values defined Table 3.

1D-bar kinematic case

The solutions obtained with the FE analysis, meshed-HA ME analysis and the FGA ME analysis are plotted in Figure 10. All the analyses give similar results. The relative errors at the end of the overlap, where the stress peaks are located, are given in Table 4. As a reminder, for the FGA ME each series is 15-term long, the mesh of HA ME is made of 200 HA ME and the mesh density of the FE model is 20 elements per millimetre.

Appendix A: Expression of the nodal force boundary conditions

The shear force expression comes from the third equation of (26). The derivation on the boundary condition on node is developed. Then the final expression is given for nodes and .

From ( 26) and (38), the nodal force boundary conditions on node are:

Then, the expression of is developed: 

A-3

The and are replaced by their expression in TEPS:

A-4