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Thomas Alves1(B), Jérémy Rivière1, Cédric Alaux2, Yves Le Conte2,
Frank Singhoff1,4, Thierry Duval3, and Vincent Rodin1

1 Univ Brest, Lab-STICC, CNRS, UMR 6285, Brest, France
Thomas.Alves@univ-brest.fr

2 INRAE, UR 406 Abeilles et Environnement, Avignon, France
{cedric.alaux,yves.le-conte}@inrae.fr

3 IMT Atlantique, Lab-STICC, CNRS, UMR 6285, Brest, France
thierry.duval@imt-atlantique.fr
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Abstract. Division of labour is a key aspect of distributed systems,
such as swarm robotics or multi-agent systems. Inspired by social insects
known for their task allocation capabilities, most of the models rely on
two assumptions: 1) each task is associated with a stimulus, and 2) the
execution of this task lowers that stimulus. In short, the stimulus is a AQ1

representation of the amount of work needed on a task. When these
assumptions are not true, we need a mechanism to guide the agent in its
decision whether to pursue or to interrupt its current task, as there is no
diminishing stimulus to rely on. In this article, we propose a model based
on the Response Threshold Model and a mechanism based on the agent’s
intrinsic motivation and internal states, allowing to take into account
tasks dissociated from stimuli. Agents use their intrinsic motivation to
emulate the priority of tasks not associated with any stimuli, and to
decide whether to interrupt or pursue their current task. This model has
been applied to simulate the division of labour within a simplified honey
bee colony, associated with the constantly adapting physiology of honey
bees. Preliminary results show that the task allocation is effective, robust
and in some cases improved by the interruption mechanism. AQ2

Keywords: Agent-based simulation · Task allocation ·
Self-organisation

1 Introduction

The ability of social insects to distribute their workforce without any central
control has been studied for years. This self-organisation ability to dynamically
adapt to its environment allows social insects to be robust to changes and still be
able to thrive. In computer science, and more specifically in multi-agent systems,
task allocation models adapted from social insects are numerous and effective,
applied for example in agent-based simulations [3,22] and in general problem
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2 T. Alves et al.

resolution [16,28]. These models mainly rely on two assumptions: 1) Each task is
associated with a stimulus and 2) The execution of this task lowers its stimulus
[4]. Thus, internal or external (in the environment) stimulus perceived by an
agent triggers the execution of the associated task, lowering the intensity of the
stimulus and the probability of doing that same task again. Hence the perceived
stimulus can be seen as a representation of the task work needed. However, in
some cases, the execution of a task does not affect the amount of the associated
perceived stimulus, or there is even a complete lack of association between a
task and a stimulus. In that case, we need to find other ways to drive the task
allocation algorithm. How can an agent decide whether to keep executing its
current task or to interrupt it? In this article, we describe a model able to allocate
tasks with no direct connection to stimuli to agents. We notably use agent’s
intrinsic motivation to decide whether to interrupt a task. We then present
an implementation of that model applied to a simplified honey bee colony. In
honeybee colonies, there are several tasks dissociated from any stimuli, thus
representing an interesting application for the model. For example, the larvae
do not emit any stimuli to ask to be fed, but a general stimulus that is more
a representation of the brood size. Larva-feeding bees (endorsing a nurse role)
then have to rely on other mechanisms to evaluate the task priority and to decide
whether to keep looking for larvae or seeking other jobs.

2 Related Work

Division of labour occurs when agents have to decide which task to execute in
a shared environment. Societies of individuals (or agents) have to find ways to
distribute their workforce effectively amongst tasks needed to thrive and survive.
In computer science, decentralised control inspired by social insects has been
studied for years and has proved to be effective in many applications. In this
section, we oversee here what has been done in the field of task allocation models.

In the Forage for Work [11] model, the different tasks are scattered in
zones. Agents in a given zone try to perform the zone’s associated tasks or move
randomly. Thus, crowded zones “push” agents to neighbouring zones offering
work, resulting in a division of work. When new agents arise in a specific zone
and older agents die at a certain age, this rather simple model can recreate age
polyethism: agents of the same age are globally doing the same tasks. Newborn
agents are taking work offers where they spawned, effectively pushing the older
ones away. Following simple rules, an agent can redirect itself in other zones if it
cannot find any work to do in its current one. Here, agents have direct access to
each task needs. On the other hand, the assumptions that the tasks are scattered
in zones and that their stimulus is a representation of the needed work make this
model not adapted to the problematic, and need to be refined.

The Fixed Threshold Model (FTM) [4] is based on associations between
tasks and stimuli. Agent should always execute the task with the higher priority,
computed from its score. Each task score is calculated from the intensity of the
associated stimulus perceived by the agent, usually computed using a sigmoid.
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Interruptible Task Allocation Model 3

Let T be the task evaluated by the agent, F (T ) the score of the task T , xT the
task’s associated perceived stimulus, n an integer for the non-linearity of the
function (usually n = 2 [20]) and ΘT a constant named bias used to tweak the
function such as when xT = ΘT then F (T ) = 0.5. The score is calculated with:

F (T ) =
(xT )n

(xT )n + (ΘT )n
(1)

The bias Θ is used to alter the perception of the agents. With a given bias, agents
are sensitive to the associated stimulus and engage their task earlier than higher
bias agents [9]. Each task then has an interruption probability that is randomly
tested at each time-step [21]. Then the agent searches a new task using the scores
of each task and picks the higher one. Interruption is here completely random
and does not reflect the environment nor the agents’ capabilities. We believe that
better performances can be reached with a more elegant interruption mechanism.

The Response Threshold Model: Threshold Reinforcement is based
on the FTM. Different works in the 90s [10,26] proposed to apply some reinforce-
ment to the value Θ, changing the sensitivity of the agents inline. This upgrade
of FTM is called a Response Threshold Model (RTM). Widely used to model
and drive social insects simulations, it strongly relies on the association between
tasks and stimuli in a one to one manner. It also assumes that the execution
of the task lowers it’s associated stimulus. Otherwise, the agents would execute
that task forever. In this article, we are interested in situations where those
assumptions are not true. We describe in the next section our model based on
RTM and an added mechanism to handle those situations.

3 Proposition: An Interruptible Task Allocation Model

We propose in this section a model based on the Response Threshold Model, in
which tasks, activities and actions are defined through a hierarchical subsump-
tion architecture. Our model relies on two mechanisms: 1) the score of each task
not associated with any stimuli is based on the agent’s current physical state
(tools in hand, physiology, physical traits etc.) and 2) An interruption mecha-
nism consisting in: the consideration of the agent’s internal motivation in the
evaluation of the current task and a systematic evaluation of every available
tasks after finishing an action.

3.1 Tasks, Subsumption and RTM

Subsumption architectures have been introduced by Brooks as a way to control
robots [5] and are now used in plenty of fields including multi-agent systems. This
architecture is organised in stacked layers of behaviour, where each activated
behaviour inhibits all the behaviours below it. Topmost layers are prioritised and
can be seen as reflexes. Hierarchical subsumption allows a subsumption layer to
be another subsumption systems, with layers and conditions. This nesting further
improves the adaptability and modality of subsumption system and scales well
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4 T. Alves et al.

Fig. 1. The hierarchical subsumption architecture represents a task consisting of 2
actions and one activity; the latter consists of 2 other actions, seen on the right.

with increasing complexity [13]. Heckel et al. have shown that this architecture
suits well the following definition of the key concepts of task, activity, action
and role (based on other’s works [1,6]). Figure 1 shows how tasks, activities and
actions are defined with a hierarchical subsumption architecture.
An action is an uninterruptible piece of work that lasts for a given time. Actions
can be cooperative, meaning that they require another agent executing another
given action to complete both. Each action has a boolean condition, stating
whether it can be executed, as it is a part of a subsumption block.
An activity is a set of actions and/or activities building the hierarchical sub-
sumption. Activities also have a boolean condition. Activities can be seen as
nodes of a tree where actions are the leaves.
A task is a set of piece of work that the agents have to do. Each task of the
model is an implementation of the RTM, with an associated threshold and a
sigmoid function to compute a score. This score is used by the agent to find the
highest priority task.
A role is seen as an arbitrary set of tasks, activities or actions. It does not have
to match the task’s distribution and is more suited to the observer for simplifying
the complex mechanisms in place.

3.2 Intrinsic Motivation as Part of the Interruption Mechanism

The first part of the interruption mechanism consists in the use of the intrinsic
motivation to help the agent evaluate the usefulness of its current task, and
decide whether to pursue it or to choose another one.

For psychologists, motivation is the root of action and a guide for its exe-
cution. There are two types of motivation: extrinsic, when a reward is offered
by the environment and intrinsic which only has to do with personal needs or
expectations [19], like fun or curiosity. Intrinsic Motivation is used in Artificial
Intelligence and specifically for learning systems [23], e.g. to help or guide learn-
ing agents [2]. Intrinsic motivation can be split up into many different internal
stimuli, such as hunger or fear, that trigger behaviours [15], close to what is
described in Ethology [10]. When internal stimuli are classified as needs, intrin-
sic motivation can allow more high-level decision making. Based on the Flow
theory [8], an agent struggling in his task feels anxiety and seeks a less difficult
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Interruptible Task Allocation Model 5

task. In the same way, an agent completing an easy task gets bored and moves
to more difficult tasks [7]. The competence idea brought by Roohi et al. [18] is,
for an agent, the feeling of being in control and able to complete its current task.
As such, an agent with a competence level too low seeks an easier task.

In our model, agents do not receive any reward from the environment, so
we focus on intrinsic motivation. Tasks in our model can be either motivated or
not: tasks with no representative stimuli are called motivated, as an agent has
to use its intrinsic motivation. Keeping the idea of Flow in mind, our agents
can sense whether their current motivated task is useful for the overall system.
This can be thought of as a sort of “Desire” in the Belief-Desire-Intention model
[17]. Whenever starting a new motivated task, an agent sets its motivation to 1,
as fully motivated. Then, the agent executes an action of this task, which may
be a demotivating action. Upon execution, a demotivating action decrements
the agent’s motivation. Whenever the agent has finished an action, it computes
the score of every tasks it can perform and replaces the score of its current task
by its current motivation and picks the higher scored task, as described below.
Lowering the agent’s motivation makes it more receptive to other tasks.

3.3 Agents and Task Evaluation

Each agent is defined by its internal state, behaviours and capabilities. From
these, each agent can achieve a set of tasks, associated with thresholds. Figure 2
shows the decision making of an agent at each cycle, with a systematic evalua-
tion of every available tasks. The agent evaluates first whether its current action
is done or not. If it is, the agent selects the task with the highest score. Using
the subsumption architecture associated with the selected task, the agent then
retrieves the next action and executes it for its full duration. Once done, the
whole process is repeated. The re-evaluation of every task at each action com-
pletion is key to agents’ adaptability. The tasks’ thresholds evolve through time
and are representative of the agent abilities, whereas the subsumption takes care
of the logical approach.

Fig. 2. Decision making of the agent at each cycle.
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6 T. Alves et al.

3.4 Swarm Robotics Example

We present here a theoretical example with swarm robotics to illustrate the
mechanisms of our model. The example consists of many robots that can per-
form two different tasks: foraging (gathering minerals spread around the base),
and patrolling around the base. They also have what we call upkeep tasks, such
as returning to the base to refuel. The subsumption architecture of the foraging
task includes a random movement when no mineral is in sight. This action is a
demotivating action: each time a robot executes this action, it lowers its intrin-
sic motivation and makes it more susceptible to choose another task. When
patrolling, the demotivating action is the avoidance of another patrolling bot on
the patrol path. This way, patrolling bots auto-regulate themselves.

Robots could use tools that they can pick up and drop-down. Tools modify
what robots can do, so picking up a tool changes the bias for all tasks, reflecting
the bot internal state. For example, a bot picking up a pickax sees its bias for
the foraging task drop-down. Once engaged in the foraging task, not seeing any
available mineral fields to harvest (not in sight or already occupied by other
bots) lowers the robot’s motivation. With a low enough motivation, the robot
chooses another task that may require it to change tool.

4 Application: Simulation of a Honey Bee Colony

We implemented a simplified version of a honey bee colony using our model.
Bees (are thought to) rely on many stimuli that are not a representation of the
priority of a task1. For example, in the feeding larva task, larvae emit pheromones
no matter how hungry they are2. Other tasks (like foraging) are not linked to
any external stimuli. The physiological age of a bee determines what key task
it can execute, as it needs some biological features (glands - this is equivalent
to the “Internal State” of Fig. 2 in our model). Moreover, the physiological age
is thought to be a key component of the self-organisation of bees within in
the colony, as it can be influenced by hormonal and pheromonal exchanges, as
described below. The purpose of this application is then twofold: first, test the
role of the physiological age in the division of labour with our model and second,
to evaluate the effect of the interruption mechanism. We decided to model two
key tasks by the mean of motivated tasks : feeding larvae and foraging.

4.1 Agents and Tasks

There are two kinds of agents, adult bees and larvae. Larvae accept food when
hungry enough, die when too hungry and emit a contact pheromone called Ethyle
1 The source code of the implementation (java), the table of parameters used in the

experiments and the scripts (python) used to conduct the statistical analysis (with
JASP) can be found on GitHub: https://github.com/Kwarthys/BeeKeeper.

2 Larvae continuously emit a volatile pheromone called “E-β-ocimene”, but recent
work has shown that hungry larvae emit more of it and thus attract more workers
[12]. Yet, it is still unclear if this stimulus increases the feeding of the larvae.
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Interruptible Task Allocation Model 7

Oleate (EO) at each time-step. Adult bees, on the other hand, are the agents
that have to organise themselves using the Juvenile Hormone (JH) in their
body to execute the following two motivated tasks: feed the larvae and forage
outside. Adult bees also have few upkeep tasks to perform, such as resting or
asking/searching for food (see Table 1). Each of these tasks has been described
by a hierarchical subsumption architecture (see Fig. 3 for an example).

Table 1. Tasks executed by our adult bee agents. Some tasks are computed using the
RTM sigmoid (Eq. 1), but others already mapped in [0; 1] do not need the use of a
sigmoid. A non-motivated task behaves exactly as in a classical RTM.

Task name Input stimulus Score

Upkeep tasks

RestTask Energy 1-Energy

AskFoodTask Hunger Hunger

GiveFoodTask AskFoodStimulus Sigmoid with bias at 0.5

RandomMoveTask – 0.2

Motivated tasks

ForagerTask – Sigmoid with bias: 1-JH remapped in [0.3; 1]

FeedLarva – Sigmoid with bias: JH remapped in [0.3; 1]

Fig. 3. Hierarchical subsumption describ-
ing the “feedLarvae” task. The demotivating
action is represented with a “M-”

In our model, the scores of the
motivated tasks are computed from
the current physical state of the agent
(see Sect. 3.3). It is particularly true
when modelling honeybees: the phys-
iological age of a bee determines what
motivated task it can execute. We are
insisting on the physiological age,
as bees can lower their age during
there lifetime, or accelerate their age-
ing. The physiological age of a bee
is given by the amount of (JH) in
its system, that naturally increases
with time. JH guides the physio-
logical development of honeybees: a
young bee with low amounts of JH
has the required glands to feed the larvae, and an older bee has the ability to fly
to go forage and the glands to process pollen and nectar [24]. Adult bees natu-
rally tend to go foraging outside, pushed by their increasing internal JH, but are
kept nursing by the brood, the queen and already foraging bees’ EO (exchanged
by contact) [14]. We summed up those interactions Fig. 4. This constant fight
of physiological age can nicely balance the workforce between those two major
tasks. If foraging bees die outside, less EO would be perceived by the young bees
inside and some of them would start to age again, restoring the balance.
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8 T. Alves et al.

Fig. 4. Physiological dynamics of our simplified
adult bee agents. We can see the internal bee vari-
ables in the middle and external factors on the
left. On the right, we can see how physiological age
affects task selection.

In nature, a worker can go
forage as soon as it is 5 days
old but generally starts out-
side activities around 20. Lar-
vae loss is rare: workers reg-
ulate how the queen lay eggs
by regulating how they feed
her. When they perceive a
low resource input, they can
almost stop the queen from
laying eggs. As we did not
model the queen, larva loss will
occur and will reflect the effi-
ciency of the colony to allocate
its workforce. Moreover, work-
ers having to decrease their physiological age is also a rare event. We specifically
target those interesting cases, where the colony is deprived of younger adult
bees, and, as we did not model a life cycle (no birth, no death, no egg laid),
we certainly won’t see age polyethism, and thus, bees “classical” life of starting
nurse and dying foraging [25].

4.2 Environment and Simulator

The environment is a 2D hexagonal 30 × 30 grid. Each cell has a content (a
larva, food, etc.) and may have an adult bee on it. Stimuli are managed at a cell
level, where each cell holds an amount of each stimulus. Stimuli are modelled as
two major parameters: propagation (their behaviour through space) and dissipa-
tion/evaporation (their behaviour through time). When emitting a stimulus, an
agent raises the amount of that given stimulus on its cell. Then, at each time-step
and for each stimulus, each cell computes its new value using its neighbours’ val-
ues and its own. The parameters we used for all of our simulations are inspired by
biology but calibrated to accelerate the simulations. Hormonal and pheromonal
effects can take days to occur, while bees interact and wander through the hive
in seconds. We decided to accelerate some effects to obtain results in reasonable
simulation time (ranges from x4000 to x6000). For example, larvae are fed about
every 2 h [27], but we accelerated that to 2 s. This acceleration brings up a bias,
as long term changes are now in the same time scale as quick changes, but won’t
change the core aspect of what we are demonstrating.

4.3 Experiments and Expected Results

Our first concern is to be sure that the final equilibrium is not influenced by
the initial conditions. Moreover, equilibrium should be altered by changing the
bee per larva ratio. By putting more larva per worker, we expect to have more
worker dedicated to larvae feeding and vice versa. Then we will assess how the
interruption mechanism alters the system. We want to assess two hypotheses:
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Interruptible Task Allocation Model 9

– H1: Our model with bee physiology and pheromones can achieve task allo-
cation.

– H2: Our interruption mechanism makes the system perform better, enhancing
the task allocation. Here, performing better means maximising the time spent
foraging AND the larvae survival rate.

We created 5 scenarios (S1 to S5) with different initial conditions that we use
to assess those hypotheses. Each scenario is then simulated by bypassing the
pheromonal effects (the agents’ physiological age is frozen) to assess H1 or/and
bypassing our interruption mechanism (all the tasks are considered as non-
motivated) to assess H2.

– S1: Random age distribution with 150 adult bees and 150 larvae.
– S2: 150 adults and 150 larvae but all adult bees start as newborn.
– S3: 150 adults and 150 larvae but all adult bees start as old.
– S4: Random age distribution with 150 adults and 50 larvae.
– S5: Random age distribution with 150 adults and 300 larvae.

Fig. 5. Here are the different ratios of larva feeding bees of all the experiments (scenar-
ios) we discussed, with and without the Physiology bypass. Each scenario is referred
as “InitialDistribution numberOfBees NumberOfLarvae”.

4.4 Results and Statistical Analysis

With no bypass, S1, S2 and S3 ended with roughly 60% of the colony feeding
larvae and about 20% foraging. S4 and S5, when compared to S1, changed the
equilibrium. As seen before, the equilibrium for a ratio of adult bee per larva of
1/1 (150 adult bees for 150 larvae, S1) gave us equilibrium at around 60% feeding
larvae. A ratio of 1/2 (S5) raises it to almost 90%. A ratio of (S4) 3/1 lowers
it to 20%. Figure 5 shows side by side two graphs comparing the different ratios
of feeding larva bees amongst the scenarios. We can see on the leftmost graph
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10 T. Alves et al.

that S1, S2 and S3 are converging to the same equilibrium, and S4 and S5 have
respectively lower and higher equilibrium than the first three. In the rightmost
graph, where bee’s physiology has been bypassed, we see that the system does
not adapt to the scenarios. An ANOVA analysis (Physiology x Interruption,
N = 50) showed that in some scenarios our interruption mechanism makes the
system achieves smaller scores, whereas in others it is the opposite: Table 2 shows
an overview of those statistically relevant changes, and the reader will find on
Fig. 6 a graphical comparison of the interruption bypass. On the one hand, S1,
S2 and S5 are slightly negatively impacted by the interruption mechanism (10%
less effective foraging) where the brood care is as effective. On the other hand,
in S3 and S4, the interruption mechanism improved the scores by a significant
amount.

Table 2. ANOVA analysis, one row for each scenario. The left part holds the impact
on the simulation scores of turning on the pheromonal effects, with our interruption
mechanism bypassed (computed by scores PhysiologyOn/InterruptionOff - scores Phys-
iologyOff/InterruptionOff). The right part represents the impact of turning on our
interruption mechanism while leaving the pheromonal effects on. Each impact is mea-
sured with the nursing score (how much larvae survived) and the foraging score (how
many time-steps have been spent foraging).

Without interruption With interruption

Nursing score Foraging score Nursing score Foraging score

S1 +3% (p < 0.001) −30% (p < 0.001) Not significant −11% (p < 0.001)

S2 Not significant 0 to 150k (p < 0.001) Not significant −8% (p < 0.001)

S3 0% to 68% (p < 0.001) Not significant +37% (p < 0.001) Not significant

S4 −32% (p < 0.001) −29% (p < 0.001) +45% (p < 0.001) +35% (p < 0.001)

S5 +10% (p < 0.001) −77% (p < 0.001) Not significant −14% (p = 0.007)

Fig. 6. These graphs show the mean deaths and time-steps spent foraging for each
experiment repeated 5 times. The bars show the larvae death rate. The dots shows the
number of time steps spent foraging by the colony. The left and right graphs represent
the experiments respectively with and without interruption mechanism.
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Interruptible Task Allocation Model 11

4.5 Discussions

We demonstrated that H1 is true by changing the starting condition and the bee
per larva ratio. However, the statistical analysis we provided only allows us to
say that H2 is true for S3 and S4, where most adaptability is required. The speed
at which a demotivating task will cause a task switch is a key parameter. Further
work has to be done to calibrate it, but preliminary results show that a faster
(up to a point) task switch causes overall better scores, at the cost of individual
stability. We would also like to point out that the systematic re-evaluation of all
tasks after each action completion could not be bypassed.

5 Conclusion and Perspectives

We proposed here a model based on Response Threshold Model, internal state
of the agents and intrinsic motivation to perform task allocation in an envi-
ronment where not all the tasks have stimuli representing their priority. Mod-
elling the tasks with hierarchical subsumptions and discriminating them using
an RTM approach allows us to drive the behaviour of our agents. Tasks contain
demotivating actions that represent frustrating behaviours, such as looking for
something. Executing a demotivating action lowers the agent’s motivation to
pursue its current task, making him more sensitive to other tasks. Whenever
an agent changes his current task to a motivated task, it resets is motivation.
We experimentally showed that our model can reach equilibrium, respond to
changing conditions and preliminary work shows that it enhances the effective-
ness of the system. Our implementation of this model for a honey bee simplified
colony shows a division of labour capabilities. Equilibrium is reached and does
not depend on initial conditions, but depends on the adult bee per larva ratio.
We intend to enhance the current implementation by adding complexity toward
an implementation as close as possible of how honey bee colonies work, further
testing the model and its capabilities. We will then compare the behaviour of
this implementation with real honey bee colony observations. In parallel we are
also implementing the swarm robotics example discussed in Sect. 3.4 to further
assess the modality of our proposition.
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