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Abstract

The presented adaptive modelling approach aims to jointly control the level of refinement for
each of the building-blocks employed in a typical chain of finite element approximations for stochas-
tically parametrized systems, namely: (i) finite error approximation of the spatial fields (ii) surro-
gate modelling to interpolate quantities of interest(s) in the parameter domain and (iii) Monte-Carlo
sampling of associated probability distribution(s). The control strategy seeks accurate calculation
of any statistical measure of the distributions at minimum cost, given an acceptable margin of
error as only tunable parameter. At each stage of the greedy-based algorithm for spatial discreti-
sation, the mesh is selectively refined in the subdomains with highest contribution to the error in
the desired measure. The strictly incremental complexity of the surrogate model is controlled by
enforcing preponderant discretisation error integrated across the parameter domain. Finally, the
number of Monte-Carlo samples is chosen such that either (a) the overall precision of the chain of
approximations can be ascertained with sufficient confidence, or (b) the fact that the computational
model requires further mesh refinement is statistically established. The efficiency of the proposed
approach is discussed for a frequency-domain vibration structural dynamics problem with forward
uncertainty propagation. Results show that locally adapted finite element solutions converge faster
than those obtained using uniformly refined grids.

Keywords: Adaptivity; Stochastic Control and Estimation; Stochastic finite element method;
Solid mechanics

1 Introduction

Solving partial differential equations with uncertain parameters requires large amount of computa-
tional resources. This is due not only to the potential complexity of the numerical model (in our case
finite elements - FEM) but also to the vast quantities of evaluations of the numerical model required
to capture the probability density function of the output quantity of interest (QoI).

In order to reduce this computational burden, we may act at three different levels. Firstly, mesh
refinement should be done only where it significantly contributes to increasing the accuracy of the pre-
dicted QoI. Secondly, surrogate modelling may be used to take advantage of a potential “offline/online”
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split of the overall numerical complexity. Finally, we may attempt to reduce the number of Monte-
Carlo (MC) iterations. In this paper, we developed an algorithmic technology to control these three
levels of numerical refinement together, in a goal-oriented manner.

Adaptive mesh refinement is a well known approach to optimise computational resources in finite
element technologies [1, 2]. Typically, a posteriori error indicators are used to guide the refinement
process. Regarding uncertainty quantification (UQ), non-probabilistic approaches bound the risk (e.g.
fuzzy arithmetic methods [3] or worst-case-scenario [4]) while probabilistic approaches describe the
likelihood of the complete range of possible outcomes. The latter category is relevant in this work,
and more specifically methods that rely on adequately sampling the parameter space.

On the one hand, researchers working in the area of finite element model verification traditionally
focus on quantifying and controlling spatial discretisation errors specifically [5, 6, 7]. On the other
hand, researchers in numerical methods for probabilistic PDEs are usually more interested in the
reduction of the sampling error [8, 9, 10], in the development of surrogate models [11, 12, 13, 14, 15]
or in the reduction of the number of relevant parameters [16, 17, 18]. More recently [19] uses error
estimation to enrich locally a model surrogate (without controlling the FE discretisation per se).

There exist some directions of research to control or reduce the cost of this combination of errors,
including (i) the bounding of UQ error separately and sensitivity analysis on the discretisation bound
[20, 21, 22], (ii) the extension of goal-oriented error estimators to stochastic frameworks to obtain
bounds [23, 24, 25, 26, 27] which allows reduction of the predominant error at each stage although not
under a single criterion and without considering the effect of local mesh refinement on the stochastic
process (iii) adaptivity to describe an embedded surface which does not have uncertainty propagation
[28], (iv) adaptivity of errors based in the Arlequin method considering uniform refinement to reduce
the discretisation error [29] (and requiring a fine enough mesh to perform stochastic evaluations), and
(v) optimisation of the hierarchy of meshes used in the framework of Multi Level Monte Carlo methods
(see [30]) in order to reduce the sampling cost of evaluating the finer mesh [31].

Yet, only in the framework of the Stochastic Finite Element Method (stochastic process at element
level) an optimal empiric relation between the mesh size and the stochastic characterisation has been
studied [32, 33, 34]. Furthermore, none of the previous works explores how local mesh adaptivity
affects the stochastic error. To the authors knowledge the latter has solely been explored in [35]
within the framework of Multi-Level Monte Carlo. It is the purpose of the present paper to delve into
this relation with the stochastic processes out of the finite element and in a single mesh framework,
so that all approaches can benefit from it.

Specifically, an algorithm is proposed to minimise the computational cost of adaptively reducing
the error of any QoI due to discretisation until it is on the same scale as the forwarded uncertainty
of any desired probabilistic measure of this QoI (expectation or percentile in this work), which is an
unknown dependent random variable. The novel approach is as follows. Optimality is pursued by
refining the spatial discretisation greedily and locally, whilst incrementally increasing the surrogate
model. Each refined solution is then compared to the uncertainty through a non-dimensional precision
parameter representing the exact proportion of the errors the user is willing to accept (see equation
29). The spatial error contribution is simply estimated by refining the polynomial order of the finite
element mesh, and using the adjoint methodology to propagate the effect of local errors to the QoI.
The contribution of the surrogate model is evaluated directly, at sampling points of the parameter
domain. Subsequently, we force the reduced model to be such that it produces a response surface
whose error contributions are similar in amplitude than the surface obtained from the discrete FEM
model. Finally, the MC sampling is performed adaptively. It is stopped when either (i) the QoI is
computed with a sufficiently low level of error or (ii) we are sufficiently confident that the desired level
of precision cannot be achieved with the current combination of mesh and surrogate model, which
indicates need of further local refinement. We believe that this simplicity is attractive in terms of
engineering practices.

This paper follows up chapter 5 of the doctoral thesis [36]. The thesis included the algorithm and
results for the expectation of a single QoI, expanded here to any probabilistic measure and QoI (with
additional results for percentiles and strains with respect to the expectation of the displacement). It
is organised as follows. Section 2 consists on a quick reference table of notation to improve readabil-
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ity. Afterwards, formal notation and equations are introduced in detail, being section 3 devoted to
parametrised finite element problems in elastodynamics and section 4 to the stochastic formulation
and reduced order model. The latter section contains also a first discussion regarding the various
sources of numerical errors of the whole posed problem (sub-section 4.3). In section 5, the interactions
between these errors are investigated numerically. We also introduce the adaptive algorithm for the
approximation scheme outlined previously. Finally, section 6 displays and discusses results with the
aim to verify that the algorithm controls all different sources of error.

2 Table of notation

This section contains the most important symbols used as notation in the paper for quick reference.

Boundary valued problem notation
xxx ; t Spatial and time coordinates
−→n ; −→ey Unit vector normal to the boundary; unit vector following Cartesian axis y
∇s ; Tr(•) Symmetric gradient; trace of •
I Identity tensor of adequate size
Ω ; Ωk ; ∂Ω Domain ; domain of the element ek; and Boundary
Γd ; Γn Subset of the boundary where Dirichlet and Neumann prescribed values are ap-

plied
u Displacement field, solution to the vibration problem
v Continuous test field used in the weak formulation
e Error in the displacement
ε Error in a quantity of interest. Specific errors in quantities of errors are : ε/

relative, εσ normalised by the standard deviation, εNM of the numerical model,
εPC due to polynomial chaos

ε Estimation of an error or tolerance for an error
aω(·, ·) Bilinear form of the vibrating structure problem under a harmonic load (eq. 4)
l(·) Right hand side of the weak problem including source/forcing function & pre-

scribed BC terms
f(·) ; F (·) Source or forcing function. Capital for time dependent version
ud(·) ; Ud(·) Prescribed Dirichlet boundary data. Capital for time dependent version
gn(·) ; Gn(·) Prescribed Neumann boundary data. Capital for time dependent version
Rω(•) Residual of field • related to the vibrating structure problem (examples eq. 13

17 18)
E(x, µx, µx, µ) Parametric Young’s moduli (see stochastic symbols for the parameter µµµ)
C(E(x, µx, µx, µ), ν) Fourth order Hooke tensor (function of the parametric Young’s moduli an Poisson

ratio)
ω Circular frequency for the load

Finite element method notation
Lp Lesbesgue functional space with finite p-norms
Ho Sobolev space which contains L2 functions whose weak derivatives up to order o

are also L2

U Space of continuous solutions to the problem posed
V Space of trial solutions equalling zero at the Dirichlet boundary

Vh ; V̂ ; Ṽ Coarse; refined (rich); and reference or last computable piece-wise discrete spaces
of trial functions. Notation extended to solution spaces, meshes, shape functions,
solution and error fields, estimators and indicators related with the corresponding
discretisation

M ; m Mesh defining a discretisation; index identifying a mesh
h Characteristic radius of the circumcircle of the elements of a FE mesh. As a

super-index determines the discrete coarse version of a space, field, mesh, shape
function, estimator or indicator
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e;k Finite element forming a mesh; index identifying an element of the mesh

ψh ; ψ̂ Shape functions, coarse and fine versions. In this paper it is either order 1 and 2
polynomials for a given mesh, or both sets of order 1 polynomials determined by
the initial and the refined mesh.

[uh] Vector of coefficients of a field. Field uh can be reproduced as [uh] · ψh
Vh

π̂
V

Projector operator from a rich to a coarse field (see eq. 35)

Error control notation

ηtype ; ηtype
k

Global error estimator; indicator of refinement of type ′type′ for the element ek
MN;EN;D;⊥
; δ

Types of η. Mass norm; energy norm; localised QoI; orthogonal localised QoI;
and QoI localised extracting the projection to the coarse FE space

q(·) Function mapping from the solution to a quantity of interest
z Influence field or influence function (reflects influence of the residual upon the

QoI, eq. 18)

Stochastic process notation
µµµ Primary random variable vector of r real parameters influencing C(x, µx, µx, µ) (eq. 8)
Q Response or forwarded random variable result of applying q() to the all solutions

u(x, µx, µx, µ)
M() Numerical FEM model. It maps from the primary known random variable(s) µµµ

to the unknown stochastic forwarded one function of it(them) Q
s ; s′ Sub-indexes identifying a sampling point and a control point
Θ ; ΘQ Sampling spaces of the primary and response stochastic processes
F Smallest σ-algebra consisting of a set of all measurable subsets
fP
µµµ ; fP

Q Probability density function of the sub-indexed random variable

θs ; Qs Outcomes of the random variables µµµ and Q respectively for sample s
U(1, 2) Uniform distribution in the interval [1,2]
N (1, 2) Normal distribution with mean 1 and variance 2
std(•) ; σ Standard deviation of •
E [•] ; E [•] Expectation of • ; its discrete Monte Carlo approximation (eq. 20; 21)
C• ; C• Centile or percentile of • ; its discrete Monte Carlo approximation
CL Confidence level
CI• ; CI•left Confidence interval for the discrete stochastic quantity • ; its left sub-interval

w.r.t. the median

{ZjZ}
jZ=nZ
jZ=1 Polynomial basis in a Polynomial Chaos Expansion (PCE)

o ; nZ Maximum order in the PCE determining its nZ number of polynomials (with r
and truncation)

whwhwh ; ŵ̂ŵw Weights for the PCE approximation of the model in the spaces Vh and V̂ (same
basis)

CP ; •CP Control points; quantity • computed through CP
•PCo Quantity • approximated with PCE surrogate model of maximum polynomial

order o
{Qh

b∗}
b∗=nb
b∗=1 Family of nb∗ sets of bootstrapped outcomes of Qh used to estimate its variance

3 Reference parametrised problem and notation

3.1 Parametrised frequency-domain structural vibration problem

This section introduces the class of parametrised elasticity problems that we are interested in. We
consider the undamped, steady-state vibrations of a structure occupying a bounded domain Ω ⊂ Rd,
with d = 2 or d = 3. We assume that the equations of isotropic linear elasticity govern the deformation
of the structure, and small deformations are assumed. The Young’s modulus is a function of space and
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is parametrised by means of a finite set of real-valued variables. Therefore, so it is the Hook tensor.
Within this framework, the differential equation describing the conservation of linear momentum

reads (
ρ
∂2

∂t2
−∇s · (C(xxx,µµµ)∇s)

)
U(xxx,µµµ, t) = F (xxx, t) in Ω,

U(xxx,µµµ, t) = Ud(xxx, t) on Γd,
(C(xxx,µµµ)∇sU(xxx,µµµ, t)) · −→n = Gn(xxx, t) on Γn.

(1)

In the previous equations, Γn and Γd stand for the complementary subsets of the boundary ∂Ω
where Neumann and Dirichlet conditions are prescribed, respectively, and defined such that Γd is
neither empty nor reduced to points. In particular, Ud(xxx, t) : Γd × T → Rd stands for the prescribed
boundary displacement and Gn(xxx, t) : Γn × T → Rd for the prescribed boundary traction, where the
bounded time interval is denoted as T . The given vector-valued F (xxx, t) : Ω × T → Rd is a forcing
function depending on time and space. The parametric uncertainty in the Young’s modulus field
E(xxx,µµµ) is accounted by a r-dimensional primary variable µµµ ∈ Θ ⊂ Rr in the form of a vector of real
parameters. The fourth order Hooke tensor C(xxx,µµµ) ≡ C(E(xxx,µµµ), ν) describes isotopic linear elasticity,
being ν is the deterministic Poisson’s ratio. Mass density is assumed to be constant and it is denoted
by ρ. Finally, the vector-valued field of displacements U(xxx, t,µµµ) : Ω × Θ × T → Rd depends on time
and the random parameters described by µµµ.

Frequency-domain solutions to (1) are chosen as representative numerical problem to solve. It
is relevant enough to raise the interaction between discretisation and probabilistic errors. Although
less accurate than time-domain analysis (for which the algorithm can also be applied), there exist a
vast number of applications where these non-hyperbolic solutions are useful (e.g. to predict cracks in
structures [37]). Assuming that the loading functions are time-harmonic, i.e. F (xxx, t) = f(xxx;ω) eiωt,
Ud(xxx, t) = ud(xxx;ω) eiωt, Gn(xxx, t) = gn(xxx;ω) eiωt, we look for steady-state waves of the form U(xxx, t,µµµ) =
u(xxx,µµµ;ω) eiωt. Where the symbol i =

√
−1 is used, and ω is the angular frequency associated with

the harmonic loading function. The structural dynamic system equation in the frequency domain of
a given ω is then:

−

(
ρω2 +∇s · (C(xxx,µµµ)∇s)

)
u(xxx,µµµ) = f(xxx) in Ω,

u(xxx,µµµ) = ud(xxx) on Γd,
(C(xxx,µµµ)∇su(xxx,µµµ)) · −→n = gn(xxx) on Γn.

(2)

Let V and U be the test and trial Sobolev spaces V = {v ∈ H1(Ω) | v = 0 on Γd} and U = {u ∈
H1(Ω) |u = ud on Γd}. Then, the variational form of the equation (2) becomes, find u ∈ U such that∫

Ω

(
ρω2v(xxx) ·u(xxx,µµµ) +∇v(xxx) · (C(xxx,µµµ)∇su(xxx,µµµ))

)
dΩ

=

∫
Ω
v(xxx) · f(xxx) dΩ +

∫
Γn

v(xxx) · gn(xxx) dΓn ∀ v(xxx) ∈ V.
(3)

For the sake of simplicity, notations aω(·, ·; .) and l(·) are introduced to match both sides of equation
(3), which now simply reads as

aω(u, v;µµµ) = l(v), ∀ v ∈ V. (4)

3.2 Parametrised problem of interest

In order to guide the reader, we give a visual example of the type of structural vibration problem that
we are interested in. The mechanical problem under consideration is represented in figure 1, where
the geometry, load case and tunable/unknown parameters are all represented graphically.

P1, P2 and P3 are different loading cases, being the load f(xxx) uniformly distributed and of unitary
value in the direction of the arrows. Load P1 (that is applied in direction −−→e x1 = (−1, 0) to {xxx ∈
R2 : x = L, y = [L+ 0.5, 2L]}) excites the 1st natural frequency of the structure, load P2 (in direction
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Figure 1: Geometry parameters for the numerical examples

−→e x2 = (0, 1) applied to {xxx ∈ R2 : x = [0, L], y = 2L}) produces horizontal displacement only due to
the parametric uncertainty and load P3 (in direction −→e x1 = (−1, 0) applied to {xxx ∈ R2 : x = L, y =
[T +R,L− 0.5T −R]}) is included only to test the indicator of refinement, which should concentrate
in the lower half of the structure.

Formally, we introduce the domain of the structure as

Ω = {[0, L]× [0, 2L]}\{ΩH1 ∪ ΩH2}, (5)

where

ΩH1 = {xxx ∈ R2 : |xxx+ (T +R, T +R)| < R} ∪
{xxx ∈ R2 : |xxx+ (L− T −R, T +R)| < R} ∪
{xxx ∈ R2 : |xxx+ (T +R,L− 0.5T −R)| < R} ∪
{xxx ∈ R2 : |xxx+ (L− T −R,L− 0.5T −R)| < R} ∪
{]T +R,L− T −R[ × ]T, L− 0.5T [} ∪
{]T, L− T [ × ]T +R,L− 0.5T −R[},

(6)

the symbol (·, ·) denotes a vector in R2, symbols [·, ·] and ]·, ·[ are closed and open intervals in R, and

ΩH2 = {xxx ∈ R2 : xxx− (0, L− 0.5T ) ∈ ΩH1}. (7)

Furthermore, Ω is divided in a non-overlapping domain decomposition Ω =
⋃r
i=0 Ωi with r = 2

number of parametric dimensions and (Ωi − ∂Ωi) ∩ (Ωj − ∂Ωj) = { ∅} if i 6= j. We then establish the
following expression for the Hooke tensor field C(xxx,µµµ):

C(xxx,µµµ)∇s(·) =
eµ

i
ν

(1 + ν)(1− 2ν)
Tr(∇s(·)) I +

eµ
i

(1 + ν)
∇s(·) if xxx ∈ Ωi, i ≥ 1, (8)

where I is an identity fourth order tensor of appropriate dimension.
In the non-parametric domain Ω0 = Ω\{Ω1 ∪ Ω2}, we set the Young’s modulus 1, which is the

reference value. In the parametric subdomains Ωi 6=0, the Young’s modulus is defined by means of known
primary statistical variables (For instance precast concrete is used and the factory provides this data).
In our specific case these parametric subdomains are located in Ω1 = [L−T, L]× [T +R,L−0.5T −R]
and Ω2 = [L − T, L] × [L + 0.5T + R, 2L − T − R], and the probabilistic description is provided in
section 6. These parametric variables produce an unknown dependent variable or response surface.

Regarding the probabilistic model for the Young’s modulus, Steel C. [38] proposes a normal distri-
bution justified by the central limit theorem applied to homogenisation and verifies it experimentally.
Yet, since the present work does not correspond to any experimental data, in order to ensure that
any C remains strictly positive regardless of the outcome of µµµ, its ith component µi (associated with
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the darkened domains Ωi) represents the logarithm of the local Young’s modulus. The results pre-
sented in the present work are produced with known probabilistic primary parameters consisting on
a uncorrelated normal distribution. The exact values are defined at section 6.

As main example of QoI, we will measure the displacement in direction −→e x ∈ Rd averaged over a
sub-domains Ω•. Namely,

q(u(xxx,µµµ)) :=
1

|ΩQ•|

∫
ΩQ•

−→e x · u(xxx,µµµ) dx, (9)

where Ω• varies depending on the loading case, being ΩQ1 = ΩQ2 := Ω\{[0, T +R]× [2L−T −R, 2L]}
and ΩQ3 := Ω\{[0, T + R] × [L − 0.5T − R,L + 0.5T + R]} where the numerical indexes refer to P1,
P2 and P3.

Strains will be used as alternative QoI to check independence of results with respect the former
QoI. Furthermore, subdomain mesh constrains will be overcome by substituting subdomain integration
by a normal distributed weight with mean centered in the area of interest. The weighted XY strain
component concentrated in the top right corner reads

q(u(xxx,µµµ)) := N ([T ; 2L− T ], [L, 0; 0, L])0.5

∫
Ω

∂

∂y
−→e x · u(xxx,µµµ) +

∂

∂x
−→e y · u(xxx,µµµ) dΩ. (10)

Both resultant random variables q(u(xxx,µµµ)) depend on the forwarded uncertainty propagation of the
primary variables µµµ and the errors on their discrete evaluation depend also on the level of discretisation
(uh(xxx) corresponding to a given mesh). Their characterisation requires multiple evaluations of the
FE model in order to approximate probabilistic measures (details in section 4). Furthermore, its
accuracy depends on the discretisation while its reliability on the number of evaluations. This paper
proposes an algorithm to achieve a precise and trustful characterisation with minimal computational
cost. The algorithm presented could be used to compute any probabilistic measure of the QoI, but
their expectation and percentiles are selected in the present work.

3.3 Goal-oriented error estimation

The discrete local estimation of the defined QoI driving the greedy-based refinement process will be
presented in this section.

Historically, so-called “energy-norm” error indicators were used to guide the refinement strategy.
They include finite element post-processing methodologies such as those based on the constitutive
relation error [39, 40], gradient recovery [41] and residual estimators [42, 43]). Nowadays, and thanks
to the pioneering work of Becker and Rannacher [44], Cirak and Ramm [45] and Oden and Prudhomme
[46] in particular, goal-oriented a posteriori methods allow us to guide refinement process so that the
precision of the actual QoI of the finite element problem is (sub-)optimised. These techniques are
well-understood in the context of linear and mildly non-linear diffusive problems.

FEM will be used to seek approximate solutions to the vibration problem. To this end, the exact
variational formulation is replaced by its discretised counterpart

aω(uh, vh;µµµ) = l(vh), ∀ vh ∈ Vh. (11)

Coarse spaces Vh ⊂ V and Uh ⊂ U are defined through a mesh Mm of non-overlapping linear (p1)
triangular elements forming the approximative tessellated domain Ωh ⊂ Ω. The solution and test FE
fields are then piecewise linear, and we will neglect the influence of the geometrical error. Subsequently,
we will drop notation Ωh and abusively denote Ω ≡ Ωh indistinctly for discrete polygonal and whole
non-polygonal domains.

The discretisation error e(xxx,µµµ) = u(xxx,µµµ)− uh(xxx,µµµ) belongs to the space V of homogeneous fields
since both u(xxx,µµµ) and uh(xxx,µµµ) are exact at Γd in the presented case. Furthermore, it is the solution
of the following boundary value problem

aω(e, v;µµµ) = l(v)− aω(uh, v;µµµ), ∀ v ∈ V. (12)

We define the residual form over V as

Rω(v;µµµ) := l(v)− aω(uh, v;µµµ). (13)
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We choose to approximate the error e(xxx,µµµ) through the definition of a discrete rich space V̂ ⊂
V consisting in the same mesh Mm with quadratic triangles and the edge nodes exactly at the
midpoint of the edges. The reason is that even if the re-entrant corners create singularities, vibration
problem solutions are smooth, and therefore a more accurate global solution is ensured. The adaptive
refinement strategy is based on the size of the element, so h-refinement (reduction of the element size)
will take into the account the singularities that the p-refinement (increase of the order of the polynomial
shape function) can capture even if less efficiently. Consequently, the solution û is computed and
considered close enough to u for the sole purpose of driving each refinement iteration. This leads to
the approximation

e(xxx,µµµ) = u(xxx,µµµ)− uh(xxx,µµµ) ≈ ê(xxx,µµµ) := û(xxx,µµµ)− uh(xxx,µµµ), (14)

which is computable directly through FEM and interpolation without any other error estimation
technique. Of course, any error estimator could be used instead and similar results are to be expected
with the only exception of problems with highly non-smooth solutions in the interior domain.

The error in the QoI is defined using equation 9 and assuming linearity as

εQ(µµµ) := q(u(xxx,µµµ))− q(uh(xxx,µµµ)) = q(e(xxx,µµµ)). (15)

A sample evaluation of this QoI is a scalar representing a global magnitude. In order to obtain
a dual of q(e(xxx,µµµ)) defined in all the domain, the adjoint problem [46] is introduced. It contains all
Residual information (as any error estimator or indicator based on it) and reads

aω(v(xxx,µµµ), z(xxx,µµµ)) := q(v(xxx,µµµ)) = Rω(z;µµµ), ∀ v(xxx,µµµ) ∈ V. (16)

Using the definition 13 we obtain the dual-weighted form

Rω(e;µµµ) = q(e(xxx,µµµ)) = aω(e(xxx,µµµ), z(xxx,µµµ)). (17)

The influence field or influence function denoted as field z(xxx,µµµ) reflects the residual influence upon
the QoI. Equation 16 allows to compute discrete approximations of this field. Most importantly, local
indicators of z(xxx,µµµ) can be obtained by applying any partition of unity φi

Rω(z;µµµ) =
∑
i

Rω(φiz;µµµ). (18)

4 Forward Uncertainty Propagation

4.1 Stochastic computational model and Monte Carlo method

In the previous sections, we have defined a deterministic computational model M that given a sample
of the primal parameter variable µµµ produces an outcome for any QoI which is a dependent variable.
This section poses the functional stochastic problem to solve (mapping from µµµ to the response surface)
where the function is the numerical model which also depends on the spatial mesh used to discretise
the problem. The expectation and percentiles of the QoI(s) were selected as measures to characterise
the response surface(s).

MC methods [47, 48, 49] constitute the simplest option but several alternatives exist that reduce
the amount of sampling required to characterise stochastic processes (i.e. collocation [50, 10], adaptive
sampling [9], sparse grid sampling [51] or importance sampling [52]). Although the paper focusses on
forward uncertainty propagation, the present work could be extended to inverse uncertainty charac-
terisation based on MC or Markov Chain MC [53] sampling techniques (e.g. [54, 55, 56]).

Let us define the stochastic problem in the following probabilistic space. Firstly, the sampling
space is Θ ⊂ Rr. Secondly the Borel σ-algebra consists of the collection F of all measurable subsets
SiS of Θ including the empty subset. The collection F is closed under complements and also under
countable unions. Finally, the probability that the outcome of µµµ is included in a measurable subset of
F reads P (µµµ ∈ SiS ) =

∫
SiS

fP
µµµ (µµµ)dµµµ, where the probability density function (PDF) fP

µµµ is known.
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Each given mesh Mm processed by the numerical model M(µµµ) produces an unknown stochastic
process for the QoI response due to the forward uncertainty propagation of the primary random param-
eters. The PDF fP

Q defining the response random variable Qm : ΘQ 7→ R is unknown. Nevertheless, it
is a dependent variable, function of the independent parametric variable; i.e. Qm(θQ) ≡ Qm(µµµ,Mm).
Therefore, exploiting the surjective non-injective map existing between both sampling spaces leads to

M(µµµ) : Θ 7−→ Qm, (19)

where µµµ ∈ Θ ⊆ Rr and Qm = q(u(µµµ(θθθ))) ∈ ΘQ ⊆ R. That is to say, the numerical FEM model maps
µµµ ∈ Rr to Qm ∈ R, both being random variables.

Monte-Carlo integration will allow us to evaluate numerically some statistical measures of the
dependent variable. It is important to note that to evaluate the statistical QoI, we will keep our
computational mesh fixed. The subindex referring to a specific mesh will be dropped henceforth
unless necessary.

Any statistical measure or collection of them can be selected as a solution for the stochastic
problem. In this work, we are particularly interested in the expectation of the QoI. However, since
the selected surrogate model can produce an expectation directly, we will look also to percentiles.

Recalling the definition of the expectation of a response random variable Q

E [Q] ≡ E [M(µµµ)] :=

∫
Θ
Qfµµµ(µµµ)dµµµ. (20)

Around any measure it is also needed to assess the uncertainty. Confidence intervals [57] and
confidence levels using percentiles are the most extended option and so the one used. Quantiles,
statistical moments or analysis of the full distribution are alternative valid assessments.

Since the PDF of µµµ is known, MC sampling allows to approximate the PDF fP
Q by evaluating ns

samples Qs = M(µsµsµs) ruled by the known distribution fP
µµµ (µµµ). Mathematically,

E [Q] ≈ E [Q] :=
1

ns
·
ns∑
s=1

M(µsµsµs) =
1

ns
·
ns∑
s=1

Qs, µsµsµs ∼ fµµµ(µµµ). (21)

The percentiles are computed by the closest rank method with linear interpolation, using the set
of evaluated samples. We will keep the distinct notation Ci and C i for analytical and discrete (i.e.
computed from available samples) for the i-th percentile respectively.

These evaluations involve computing the whole FE problem whose computational cost is high.
Moreover, the convergence rate of MC sampling methods is

√
ns even assuming perfect random number

generation. This means that each additional order of magnitude precision requires to square the sample
size.

4.2 Surrogate model

In order to reduce the cost of the evaluations of the full numerical model, a surrogate model will
be built. The surrogates can be based on functional expansion [14, 15] or numerical integration
[58, 59]. This work will employ standard Polynomial Chaos Expansion (Wiener Chaos or PCE) with
tensor product of 1D Hermite polynomials, which makes the construction of the multidimensional
surrogate straightforward. Conversely, numerical integration based methods build the surrogate after
the computation of some moments. Another benefit of PCE surrogates is that their accuracy is
adaptively adjustable and only dependent on the maximum order of polynomials used in the expansion,
which perfectly fits the adaptive algorithm presented. Regarding accuracy, the work by Lee and Cheng
[60] shows that they can be as accurate as any other method provided that enough order of polynomials
are considered in the expansion. In order to avoid the introduction of more local error phenomena,
only standard PCE is implemented with no local enrichment of the surrogate.

Remark. Even though PCE can be fitted to represent the probability response surface directly
allowing also to compute surrogate model expectation analytically (not the percentiles), in the present
work it is only used as a reduced model in order to minimise the offline computational time. The
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algorithm presented in this work is independent of the model. Therefore, no surrogate model or any
other reduced model could be used, even if it is not able to represent the random dependent variable.
Its only requirement is being able to produce outcomes of the dependent variable from a sample of the
set of primary variables.

4.3 Total error and error contributions

After the definition of all building-blocks of the problem posed and the chain of approximations, the
total error in QoI’s expectation or ith percentile can be expressed as

ε := E [Q]− E [QhPC ] for the expectation, (22a)

ε := Ci[Q]− C i[QhPC ] for i-th percentiles. (22b)

Here, the different approximations are denoted by (1) superindex h standing for the spatial dis-
cretisation belonging to the coarse space Vh, (2) subindex PC indicating the surrogate approximation
due to PCE, and (3) the operators E [·], C i[·] (see equation 21 and next paragraph) including the finite
sampling approximation resulting from MC method.

Henceforth, the symbol ̂ introduced in equation 14 will be extended to all magnitudes belonging
to the spaces V̂ or Û , which are always the quadratic enrichment space of the linear element defined
spaces Vh ⊂ V̂ ⊂ V or Uh ⊂ Û ⊂ U respectively. For the sake of simplicity we introduce the notation
p1 for spaces defined by linear elements and p2 for quadratic elements.

The errors associated with the aforementioned approximation of the expectation can be expressed
as

ε = (E [Q]− E [Q̂])︸ ︷︷ ︸
ε̃

+ (E [Q̂]− E [Q̂])︸ ︷︷ ︸
ε

+ (E [Q̂]− E [Q̂PC ])︸ ︷︷ ︸
εPC

+ (E [Q̂PC ]− E [QhPC ])︸ ︷︷ ︸
ε̂︸ ︷︷ ︸

εNM

,

(23)

where ε corresponds to MC error (i.e. statistical sampling error), εPC to surrogate or PCE error, and
both ε̂ and ε̃ to discretisation error. The non-computable part of the discretisation error ε̃ can be
easily checked by means of standard convergence analysis or error estimators with guaranteed lower
and upper bounds such as flux-free locally equilibrated error estimates [61]. Due to the fact that in
the vibration problems we are interested in, both the spatial solution field u and the stochastic field
remain smooth with the only exception of the parameters leading exactly to a natural frequency, the
present work will use an error estimation based on projection of polynomial order easier to implement
but not reliable on non-smooth cases. For completeness, section 6.2 includes a standard convergence
check with respect to a reference solution (see figure 14).

Lastly, the numerical approximation error is defined as εNM . Its PCE part is fully controlled
through pre-calibration of the PCE at each mesh refinement step. Afterwards, εPC and ε̂ cannot be
assessed separately, unless unwanted further evaluations of the FE model are computed (see section
5.1 for details).

An equivalent expression to equation 23 and to all derived subsequent equations for percentiles
can be obtained from 22.b. For the sake of concision, henceforth equivalent equations referring to
percentiles will be omitted in the paper unless required.

5 Simultaneous evaluation and control of Monte-Carlo, surrogate
model and Finite Element numerical errors

The algorithm presented aims to deliver an optimised computational mesh, with minimum computa-
tional effort while satisfying a given accuracy dictated by either the expectation or the percentile of
the engineering QoI. The refinement algorithm is iterative, and henceforth, we describe the numerical
operations that will be performed at iteration i of this algorithm. Several important steps need to
be described in detail: (i) how to control the quality of the PCE, (ii) how to compare the statistical
error ε and the numerical approximation error εNM (surrogate model + FEM discretisation) and sub-
sequently decide which of the two needs to be reduced and (iii) how to perform local mesh adaptivity
in this setting.
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5.1 Adaptive surrogate model strategy

As a step towards a full adaptive uncertainty propagation algorithm, this subsection explains how to
jointly control FE discretisation and PCE errors.

The maximum order o of the polynomial considered in the basis Z determines both the precision
of PCE and the number of Hermite-Gauss quadrature points to evaluate through the model M. A
perfect surrogate model would produce exactly the same outcome than the full FE model. Therefore,
the required PCE precision depends on the discretisation error. Consequently, PCE error can be
neglected in εNM provided it is at least one order of magnitude smaller than discretisation error.

5.1.1 Measures of the discretisation error extended to the parameter space

The chosen surrogate model’s error is defined in the parameter space whereas the discretisation error
is defined for a single sampling point. Therefore, in order to compare them and enforce the desired
balance, the latter must be extended to the parameter space.

Discretisation error ε̂ms := |Q̂ms −Qhms| is deterministic given a mesh Mm and a sampling point
s. Exact values of this error are only computed at the quadrature points as shown in figure 10 and 11.

In order to control PCE surrogate this error must be extended to Θ, for instance considering:

The maximum in Θ, ε̂m
Θ = max

Θ
|Q̂ms −Qhms|, (24a)

Stat. moment order õ, ε̂m
Θ =

∫
Θ
|Q̂ms −Qhms)|

õfµµµ(µµµ)dµµµ, (24b)

The average in Θ, ε̂m
Θ =

1

ns

ns∑
s=1

|Q̂ms −Qhms|, (24c)

where ns denotes the number of evaluated samples s.
The present work discards the maximum criterion because of it highly depends on the set of

samples used as control points to fit the surrogate model. As can be seen in figure 11, PCE accuracy
worsens as the distance from a given sample to the area of maximum probability increases. Then, the
average (equation 24c, even if it is not a norm) was selected for two reasons. First, the expectation of
the QoI was selected as one of the measures of the stochastic problem in section 4.1 and it follows the
same principle as how MC estimates the expectation (see equation 21). Second, all studied stochastic
measures (expectation and percentiles) are order one, so it seems unnecessary to use moments of
higher order.

5.1.2 Calibration of the surrogate model

Sampling for the calibration. For a fixed maximum order o considered in PCE reduced model,
the assessment of PCE precision requires two different sets of sampling points to be evaluated with the
FE model. The first set is fixed and corresponds to the Gauss-Hermite quadrature points evaluated
in the least squares fitting process. The second one serves the purpose of computing measure 24c.

We introduce the denomination control points for the second set in order to separate it from the
MC set of samples. Two things must be considered to size this set, the variance in the estimation of
the fitting measure (especially in the case of small o polynomials) and the cost needed to compute
it. Since the first criterion is more important, a user defined minimum was implemented to guarantee
contributions from all relevant sectors of the domain and avoid an undue high variance. In the present
work the chosen minimum number of control samples is 400. From that number, we propose to pair
the number of quadrature and control points. This way, the evaluation cost of the fitting and the
assessment processes increase proportionally, which does not hamper the global cost.

Subalgorithm 1 is devised to minimise the number of evaluations needed. Incremental o are tried
until the measure 24c is smaller than a 10 %, ensuring PCE error is negligible with respect to the
discretisation error. Since refining the mesh results generally in a more complex response surface, o is
saved to re-initialise the subalgorithm after mesh refinement.
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Calibration sub-algorithm. From equation 24c and using index s′ to denote the nCP control
sampling points θs′ ∈ Θ, the measure ε̂m

CP reads

ε̂m
CP =

1

nCP

nCP∑
s′=1

|Q̂ms′ −Qhms′ |, where θs′ 6= θs, ∀s′ ∈ S′ = {1, ..., nCP },

∀s ∈ S = {1, ..., ns},
(25)

where the index s denotes the ns MC sampling points θs ∈ Θ.
To compute the PCE approximation of measure ε̂m

CP , two different surrogate models are fit for
each mesh Mm, corresponding to the coarse p1 and fine p2 spaces. Then,

Q̂ms′,PCo =

jZ=nZ∑
jZ=1

ŵjZZjZ (θs′), 1st PCE for Q̂m, (26a)

Qhms′,PCo =

jZ=nZ∑
jZ=1

wh
jZZjZ (θs′), 2nd PCE for Qhm, (26b)

ε̂m
CP
PCo =

1

nCP

nCP∑
s′=1

|Q̂ms′,PCo −Qhms′,PCo | approximated measure, (26c)

where the two different weighting coefficient sets ŵ̂ŵw = {ŵjZ}
jZ=nZ
jZ=1 and whwhwh = {wh

jZ
}jZ=nZ
jZ=1 for the same

basis {ZjZ}
jZ=nZ
jZ=1 fixed by o are fitted through least squares thanks to the orthogonality between basis

components (distinct tensor products of 1D Hermite polynomials) weighted by the target Gaussian
distribution.

The difference between these two PCE approximations is the response surface shown in figure 10.
And the measure defined in 26.c is the MC integration of this surface. In this work, calibration consists
in ensuring that the response surface for the error in the QoI is of the same order than the one that
should have been produced sampling intensively the original FE model. Graphically, the error in this
response surface is the vertical distance between the surface and the exact values at the quadrature
points (figures 10 and 11).

Set a minimum of Control Points (minCP ) to ensure low variance

while |ε̂mCPPCo − ε̂mCP |/|ε̂mCP | > 10% and 1/nCP
∑nCP
s′=1

(|Q̂ms′,PCo − Q̂ms′ |/|Q̂ms′ |) > 10% do
Increase order o of the maximum polynomial and number of quadrature points (nQP )
Check if the number of Control Points needs to be increased (if nQP > minCP , then nCP = nQP )
Compute solution at new quadrature and control points

Update ε̂m
CP with new samples

Least squares to update the coefficients of polynomial chaos

Compute approximation at control points and ε̂m
CP
PCo

end

Subalgorithm 1: Calibration of polynomial chaos surrogate(s) for mesh Mm

In order to avoid a case where the reduced order of magnitude of discretisation error using PCE
comes from compensation of PCE errors, an extra condition is needed. Then the two conditions to
ensure both PCE approximations are correctly calibrated read

|ε̂mCPPCo − ε̂m
CP |/|ε̂mCP | < 10%, (27a)

1

nCP

nCP∑
s′=1

(|Q̂ms′,PCo − Q̂ms′ |/|Q̂ms′ |) < 10%. (27b)

After calibration, both surrogate models produce outcomes of Q̂ms′,PCo and Qhms′,PCo with negli-
gible PCE component. That is to say εPC << ε̂. Therefore, for mesh Mm no further FE evaluation
is required since εNM ≈ ε̂. Note that this approach to the calibration of the reduced model is param-
eterless, since the 10% of error comes from the enforcement of a lesser order of magnitude.
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5.2 Link of the uncertainty and discretisation error

With the PCE approximation under control, a decision mechanism is required to ascertain whether
any of the remaining errors must be further reduced. Due to the generalist aim of our approach, the
non-dimensional parameter εσ must be defined. This parameter represents the acceptable accuracy
in the discretisation error for the QoI and its quotient by the standard deviation relates it with its
forwarded uncertainty. When comparing the actual distribution of this error with its acceptable limit
(ε̂σ in equation 29 compared with εσ) at the m-th mesh refinement step, the possible choices for
the mechanism are (i) further refinement of the mesh is needed, (ii) the desired accuracy has been
achieved, or (iii) more sample evaluations are required to reduce the uncertainty.

Neither E [Q̂] and E [Qh] nor any percentile of Q̂ and Qh are deterministic (these measures were
selected in section 4.1 to describe the coarse and fine stochastic fields). In fact, MC sampling approx-
imation turns them into dependent random variables. Let the integer b be an index denoting a pair
of outcomes E [Q̂]b and E [Qh]b . Then, the dependent samples producing these outcomes are the sets

Q̂b = {Q̂1, ..., Q̂ns} and Qh

b = {Qh1 , ..., Qhns}, where ns is the number of intermediate outcomes Q̂s
and Qhs corresponding to the same primary samples µsµsµs. Despite any set indexed by b derives from
a specific collection of different aleatory primary samples, the number ns remains constant for all of
them.

Prior to describing the refinement indicator (sections 5.2.3 and 5.2.4), section 5.2.1 will introduce
the bootstrapping technique to approximate the nb samples, and section 5.2.2 will be devoted to
showing how each of them affects the PDF of the quantities of interest. This will highlight the need
of the aforementioned indicator.

5.2.1 Bootstrapping

The uncertainty in the measures E [Q̂] and E [Qh] (and percentiles C i[Q̂] and C i[Qh]) is assessed by boot-
strapping technique [62, 63]. The technique ensures that the dependent variable variance (obtained
through original different computed sets of intermediate outcomes) can be equivalently reproduced
through alternative aleatory sets (assembled re-using the already computed intermediate outcomes of
the initial set). Diversity on the alternative sets is achieved allowing repetition, decreasing the number
of samples in the set or computing some extra intermediate outcomes.

As illustrative example, let the goal be to assess the variance of a dependent response variable
Q := E [Qh], and the sets of intermediate outcomes Qhs used to compute an outcome Qb prescribed to

have 5 components. Then, Qb = E [Qb ] = E [{Qhs }
s=5+5(b−1)
s=1+5(b−1)] and the first set Qb=1 = {Qhs }s=5

s=1. The

second set Qb=2 = {Qhs }s=10
s=6 can be replaced with an alternative set Qb∗=2 = {Qh4 , Qh1 , Qh4 , Qh5 , Qh1 }

constructed randomly from the first set allowing repetition. Analogously, subsequent sets can be
replaced avoiding further model evaluations Qhs>5. This has no impact on the estimation of the
variance of Q .

In this work, the Confidence Level (CL) on measures E [Q̂] and E [Qh] is determined by means
of Confidence Intervals (CI) estimated from the bootstrapped distribution. Due to the peaks on the
QoI when a primary sample brings the structure close to resonance, our particular approach to obtain
CI is non-symmetric and centred around the median of the bootstrapped PDF. Specifically, for a
given number of bootstrapped sets nb the left and right subintervals (CLleft and CLright respectively)
forming the CI corresponding to a given confidence level of CL% reads

CI
E [Qh]
left :=

[
C (50−CL/2)(E [{Qh

b∗}
b∗=nb
b∗=1 ]) , median(E [{Qh

b∗}
b∗=nb
b∗=1 ])

]
, (28a)

CI
E [Qh]
right :=

[
median(E [{Qh

b∗}
b∗=nb
b∗=1 ]) , C (50+CL/2)(E [{Qh

b∗}
b∗=nb
b∗=1 ])

]
, (28b)

where C (i)(·) denotes the i-th discrete percentile and [·, ·] a closed interval.

Even though the CI distance CIE [Qh] = CI
E [Qh]
left ∪ CI

E [Qh]
right is computed “non-symmetrically cen-

tered” around the median, in the figures it will be plotted around the QoI (which is the expectation).
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5.2.2 How finite element refinement and addition of samples affect the distribution

Plot contents. The plots in this subsection graphically show the PDF of Q̂PC and QhPC . They also

show that they differ due to the difference between the spaces Û and Uh. Standard Kernel Density
Estimation (KDE) was used for estimating these PDFs. The PDFs are included for illustration
purposes only since they do not play a role in the algorithm. Within these plots, the graphical
representation of the discretisation error ε̂ is the distance E [Q̂PC ] − E [QhPC ] (as defined in equation
23). Regarding the graphical representation of the MC sampling error ε, it is included through the
confidence intervals (CI) of these expectations [57] estimated using bootstrapping (see section 5.2.1).
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Figure 2: KDE approximation of Qhm and Q̂m (equation 9) and evolution depending on the number
of samples and stages of local mesh refinement. Confidence intervals CI for its expectation computed
through bootstrapping

Effects of reducing MC error. Figures 2.a,b show that for a given meshM1, CI intervals become
thinner as we increase the number of samples. This is due to the improved characterisation of the PDF
coming from the increase of samples. In contrast, the distance between the estimated expectations is
constant, since the discretisation error ε̂ is only improved by refining the mesh. By looking at figures
2.a,b it is immediately noticed that FE refinement is needed for mesh M1, since the discretisation
error is much larger than the CI representing the MC error.

Effects of reducing discretisation error. Figures 2.b,c,d show the opposite case. The size of the
CI remains of the same order of magnitude if the same number of samples is used in different meshes.
On the other hand, the distance between both PDFs and hence their expectation become closer with
each mesh refinement.

Need of an specific indicator of refinement. The plots 2.a-d were produced for the loading case
P1 (see figure 1 ). In loading case P1 the parametric uncertainty has a minor contribution to the QoI.
It is clear in all the plots that the distance E [Q̂PC ] − E [QhPC ] exceeds the CI measuring MC error,
even considering the best case within the two sets of CI.
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On the other hand, figure 2.e, produced for the loading case P2, shows a case where the confidence
intervals overlap. In that case the plot does not provide enough information to establish whether
or not the FE error dominates with the required certainty. Either of the errors could predominate
considering all possibilities of E [Q̂PC ] and E [QhPC ] within their CI.

5.2.3 Mechanism to ascertain whether any of the errors must be further reduced

Once established the interaction between the errors and the reduction of uncertainty, a mechanism
to unequivocally provide the algorithm with the optimal direction must be formulated. Since the FE
discretisation error extended to the parameter space has been defined as the difference ε̂ = E [Q̂PC ]−
E [QhPC ], the logical step is to look at the distribution of the difference rather than looking at both
distributions separately. This will avoid overlapping of confidence intervals in figure 2.e.

A stopping criterion as problem independent as possible to accept or reject this error is also required
as well as a limit determining the confidence levels for acceptance or rejection.

Regarding the stopping criterion, the common strategy of non-stochastic problems is to define a
maximum relative error εFE for the relative discretisation error ε̂/ reading |E [Q̂PC ]− E [QhPC ]|/|E [QhPC ]|.
This may suffice in some engineering problems, for instance if a structure is allowed to enter sporadi-
cally in the plasticity regime, but not if the interest is in knowing if a crack has formed in a concrete
structure. Even in cases where the maximum relative error suffices, it requires a profound understand-
ing of the problem to centre the expectation on a meaningful stochastic measure of the QoI since the
statistical variation from it is not taken into account.

We propose a stopping criterion where the discretisation error is normalised by means of the
standard deviation std(·). This approach focuses in approximating the area below the PDF rather
than the error in the expectation. In this case the user defined limit εσ is compared to the relative
deviation index reading

ε̂σ :=
|E [Q̂PC ]− E [QhPC ]|

std(QhPC)
, (29)

where std(QhPC) must be evaluated from the set of outcomes {QhPC,1, ..., QhPC,ns}. This error can be
read as how good is the discretisation error in a QoI with respect its variation, so it is completely
problem independent. However, a discrete estimation of the standard deviation is much more sensitive
to the lack of samples than a discrete approximation of the expectation. Consequently unless a surro-
gate model with negligible cost is used, the criterion based on ε̂σ highly increases the computational
cost with respect to the one based on ε̂/.

Regarding the confidence level (CL), the certainty in the achievement of the desired accuracy
will be assessed by percentiles CσCL and Cσ100−CL which are defined as percentiles of the bootstrapped
distribution of the relative deviation index ε̂σ.

For instance figure 3 contains a case where the confidence level CLσ was set to 95%, and the
desired accuracy to εσ = 0.5 (which means that the error in the QoI is half the standard deviation,
i.e. ε̂σ < εσ = 0.50 with CLσ = 95%).

In figure 3.a the desired accuracy for the fifth refined mesh lays between the percentiles, implying
that it can not be predicted if the outcome for any new set of the same number of sampling points ns
will exceed or fall behind the desired accuracy. In other words, the dominating error is due to lack of
sampling and therefore uncertainty must be reduced by increasing the discrete sample population.

Conversely, increasing the number of samples leads to figure 3.b, where the desired accuracy lays
on the left side of the percentile C(100−CLσ). Therefore, for the fifth mesh, the likelihood of the error
exceeding the desired accuracy (ε̂σ > εσ = 0.50) is larger than 95%, when considering at least ns
samples. Then, it can be deduced that discretisation error is predominant and the mesh must be
further refined. The reduction of the discretisation error shifts ε̂σ to the left, so at the end, for a
discretised enough mesh, CCLσ will fall behind εσ = 0.50 providing certainty that the error in the QoI
is smaller that the self imposed limit with a probability of 0.95.
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Figure 3: KDE approximation of ε̂σ
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Figure 4: Algorithm map for the criterion based on the discretisation error normalised by the
standard deviation

5.2.4 Algorithm map and severity of the certainty assessment

As presented in previous sections, the algorithm might require an unduly large number of evaluations
if the relative deviation index equals ε̂σ almost exactly at any point in the refinement process. Only
in that case and depending on the surrogate model, the computational cost to reduce the uncertainty
enough to facilitate a decision can overcome the cost of arriving at the same conclusion with a refined
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mesh. In order to avoid this artificial numerical stagnation, a parameter ∆CI is introduced as a
measure of the severity imposed to the stochastic sub-loop.

If the algorithm decides that more samples are needed, before doing so, the parameter controls
that the CI is not too small. The distance CI is computed by means of equations 28 and the larger
one produced from the coarse and rich spaces is taken into consideration. Then, if CI < ∆CI it is
considered that too much effort has been devoted to sampling and a refinement of the mesh is induced.
The belief for this decision is that even if the current discretisation may eventually provide certainty
of having reached the final goal, the next discretisation should provide the same certainty with a
smaller number of samples. Obviously, because of the computational cost of building the surrogate
and evaluating it, to achieve an improvement in computational cost terms, ∆CI should be very strict if
the surrogate models are very cheap to evaluate and moderately loose if MC on the original numerical
model is used with no surrogate. The final algorithm map including this severity check in the decision
of the dominating error is shown in Figure 4.

5.3 Goal-oriented local adaptivity

Once “when to refine” is known, the question of “where to” remains. The QoI is a global quantity so
it does not help in deciding where to refine. Consequently, a localised quantity derived from the QoI
must be obtained, which is not a trivial task.

Prior to proceeding to define the indicators of refinement, notation for the FEM splitting of any
discrete field using the shape functions is due. Let us denote ψh and ψ̂ as the sets of shape functions
associated with spaces Vh and V̂ respectively. Then, any field •h ∈ Vh can be described as the product
between the vector of weights hereafter denoted as [•h] and the corresponding shape functions ψh.
Equivalently a field in the fine space •̂ = [•̂]ψ̂.

5.3.1 Indicators based on the magnitude of the error

A naive approach to defining an indicator of refinement would be to directly use the restriction of the
discrete version of equation 17 to the subdomain Ωk as indicator of refinement for the element ek. We

will use the nomenclature ’direct’ to refer to this indicator, as well as the symbol η̂D
k

. Using the rich

and coarse spaces V̂ and Vh it reads

η̂D
k

:= RωΩk(ẑ) = aωΩk(ê, ẑ). (30)

Due to Galerkin orthogonality, the residual of any field ζh ∈ Vh is zero (i.e. Rω(ζh) = 0). So it is
possible to modify equation 30 to compute the orthogonal part with respect to the coarse space Vh.

Despite the localised contribution to the QoI η̂⊥
k

will change, the global QoI will remain unaffected.

η̂⊥
k

:= RωΩk(ẑ − zh) = aωΩk(ê, ẑ − zh). (31)

An indicator based on localisation of the mass norm was defined, with the only purpose of showing
that all the localised indices point to where the error is larger and that this is not useful to drive the
refinement strategy. The indicator based on the mass matrix reads

η̂MN
k

:= ρ · ω2

∫
Ωk

(
[ê]T ψ̂ · ψ̂[ê]

)
dΩ, (32)

where the error field ê in the fine space V̂ has been decomposed using the corresponding shape functions
ψ̂.

It is clear that for the posed problem, the indicator η̂MN
k

will always point to the top part of the
structure, since it is where the displacement and the error are larger (see horizontal deformation in
figure 5). The indicators based on the QoI introduce the sensitivity field z which modifies this focus
(lighter areas in figure 5.a have more influence), but they are still based on the magnitude of the error.
Section 5.3.4 will show that this leads to very poor refinement strategies.
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(a) z (b) z −
Vh

π̂
V

(z)

Figure 5: Sensitivity fields for the QoI, load P1, ω between 1st and 2nd natural frequency

5.3.2 Indicators based on the variation of the error

Refinement indicators based on the energy norm usually lead to excellent convergence. Due to the
definition of the energy norm, those indicators take into account the gradient. The mentioned indicator
reads

η̂EN
k

:= aωΩk(ê, ê). (33)

Including the gradient in the indicator means that it points to where the error changes the most, so
where there is more probability of improvement.

The goal is then to define an indicator of refinement η̂∂
k

based on the QoI that points to the

elements where the error varies the most, and not where it is larger as was the case of η̂MN
k

.

Oden [46] proposes an indicator equivalent to η̂∂
k

= η̂EN
k
· η̂D
k

, where one term of the product
accounts for influence field and the other for the energy of the system. Another technique is to define
a QoI which involves a gradient, e.g. an indicator based on the stress [40]. Later works, as the one by
Rognes [64], base the indicator on the equilibrated residual, integration by parts and redistribution of
the normal derivative which accounts for the contribution of the rest of the domain in the element ek.

The present work relies on Galerkin orthogonality and the use of p-refinement to achieve the same
goal in a much simpler discrete way. The idea is to subtract all the coarse FE component of the error
interpolated to the rich space from the influence field. As already mentioned, subtracting any coarse
field from equations 17 has no influence on the global QoI but affects the local contributions.

In order to describe the projection field vh
∗ ∈ Vh ⊂ V̂ of a field v̂ ∈ V̂, let us denote iDOF as the ith

degree of freedom of any coarse field and nDOF as the total number of degrees of freedom determined
by the FE coarse mesh. Effectively, this index points to a component of the vector of weights [vh

∗
],

and to position xxxiDOF in the material space (Rd) which is independent of the functional space (Vh or

V̂). Then,

vh
∗

:=
Vh

π̂
V

(v̂) (34)

where the projector operator
Vh

π̂
V

(·) is such that

Vh

π̂
V

(v̂) : [vh
∗
]iDOF = v̂(xxxiDOF) ∀ iDOF ∈ {1, ..., nDOF } (35)

Therefore, the proposed indicator based both on the variation of the error and the influence field
reads
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η̂∂
k

:= RωΩk(ẑ −
Vh

π̂
V

(ẑ)) = aωΩk(ê, ẑ −
Vh

π̂
V

(ẑ)). (36)

Figure 5.b clearly shows that by removing completely any contribution belonging to Vh, the only
local contributions to the global QoI are those were the p2 shape functions capture better the error
than the p1 shape functions. Indeed, these contributions are larger where the error varies the most,
which was the goal in the first place.

5.3.3 Local mesh refinement strategy adopted

All indicators defined on sections 5.3.1 and 5.3.2 try to estimate which elements contribute the most
to the error, not the error per se. In all cases, the local refinement strategy consists of sorting elements
from largest to smallest and marking elements for refinements until a 10% of the sum of indicators.

Technically, for the indicator η̂∂
k
, the set of sorted elements forming mesh Mm reads Es =

{eks}ks=neks=1 such that

ksj < ksk ⇔ η̂∂
ksj
≥ η̂∂

ksk
∀j, k (37)

Then, the set of elements marked for refinement ER ⊂ Es = {eks}
ks=neR
ks=1 is defined satisfying

ks=neR−1∑
ks=1

η̂∂
ks < 0.1 ·

ks=ne∑
ks=1

η̂∂
ks,

ks=neR∑
ks=1

η̂∂
ks ≥ 0.1 ·

ks=ne∑
ks=1

η̂∂
ks

(38)

Since information has not to be transferred from one mesh to another as in the case of time
dependent problems, a non-conforming re-meshing refinement strategy was preferred. In particular
the software Gmsh [65] and its option threshold field was used to that purpose. The benefits with
respect to the more extended approach of subdividing only the marked elements with and without
extra edges are lack of skewed elements and lack of hanging nodes respectively. The only drawback
is a slight increase in the number of degrees of freedom with respect to subdividing an element. See
figure 6 for visual support on the three types of local refinement cited.
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Figure 6: Resulting meshes depending on the refinement strategy after 4 levels of adaptive local
refinements

5.3.4 Effectivity of the different indicators of refinement

When the described indicators are applied to the stochastic problem posed, Figure 8 shows that the

ones based on the magnitude of the error have poor performance. Indicators η̂D
k

and η̂⊥
k

improve

from η̂MN
k

because the influence field weights the new area of interest farther from the top, where the
magnitude of the error is larger.
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Figure 7: Evolution of the mesh refinement for load case P1, based on criterion 38

On the contrary, indicators based on the variation of the error η̂EN
k

and η̂∂
k

converge faster than

uniform refinement. Obviously, convergence for the global energy norm using η̂∂
k

is worse than just

using local energy norm (η̂EN
k

) as indicator of refinement, although they are close. Nevertheless, η̂∂
k

is a specialised indicator that leads to better results than η̂EN
k

for the QoI, because it still has the
influence field, even if it is equal to zero in the nodes belonging to the coarse space.
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Figure 8: Convergence depending on the refinement criteria

5.3.5 Concentration of refinements check

The benefits of localisation of refinement is usually presented with diffusion or flow over a notch
problems which leads to high concentration of the mesh refinement around the notch or the source.
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(a) Mesh num 1 (b) Mesh num 7

Figure 9: Concentration of refinements in the lower part for the case load P3 and ω = 0
Error in X displacement is plotted at each nodes from êm = ûm − ehm (m = meshes 1 and 7)

On the other hand, the goodness of concentration of local refinements is not as acute for structural
vibration problems, since displacements and hence errors due to harmonic loads tend to propagate. In
addition, the placement of these refinements is not always intuitive to check. Nevertheless, the ability
to capture these local phenomena is needed to validate a refining indicator. As a consequence, the
case of load P3 and ω = 0 was introduced as a test for the refinement indicator.

In this test the natural frequencies are almost not excited. Then, if both the load P3 and the domain
ΩQ3 are defined in the lower part of the structure, there should be concentration of refinement on this
lower part. Results in Figure 9 shows an acute concentration of refinement at stage 7. Therefore,
considering the good convergence and the ability to concentrate refinements we can conclude that,

from the presented indicators, η̂∂
k

is the most suitable to lead the goal-oriented refinement process.

6 Numerical results

Based on the problem defined in section 3, the present section includes the numerical results for
three different loading cases. The geometry and parameters for the structure are listed next. L=1,
R=0.1, T=0.2, P1=P2=P3=1/length unit, µµµ = {µ1, µ2} following the normal uncorrelated distribu-
tion N ([0.5 ; 0.7], [0.32 , 0 ; 0 , 0.32]), ρ = 1 and ω = 0.3 (between the first and the second natural
frequency).

The results are structured in 3 subsections devoted to check the 3 different sources of error described
in section 4.3.

6.1 Results for the surrogate model

The first loading case P1 consists of a horizontal load that excites first and second natural frequencies
in a direct manner. Furthermore, the QoI (defined as average of the horizontal displacement in one
tip corner) is also very influenced by a direct horizontal load. Even though both parameters have also
impact on the QoI, this impact is in general minor compared to the load contribution.

Figure 10a,b shows that the error in the QoI is reduced globally in all the parameter domain
where samples are approximated. We see that for load P1, order 3 Hermite polynomials are accurate
enough to keep polynomial chaos error below the discretisation error even for 9th stage refinement
meshes. Recall that subalgorithm 1 is used to fit two different PCE for each mesh (See equations 26
and 27 where the surrogate models are fitted to reproduce the original FEM models for each mesh).
The strictly incremental iterative increase in accuracy strategy for the PC surrogate model defined
in section 5.1.2 comes from the fact that more accurate meshes produce less discretisation error.
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Figure 10: Parameter response surface ‘error in the QoI’

Therefore, errors introduced by a low order PCE may become of the same order than the difference
between next iteration of refined meshes, but not the opposite.

The second loading case is a vertical one. In contrast to the previous case, parameter variation
is now the only factor that significantly affects the QoI. Consequently, the parameter surface equals
zero when the parameters are also zero. Parameter zero means Young’s modulus equals 1 which is the
same for the rest of the structure.

Surface plots show similar results except for the fact that an increasing number of polynomials
is needed to keep the error below the discretisation error. Figure 11a-d show slices of the parameter
surfaces through lines of quadrature points so that direct computations can be included.

It is interesting to notice that as the complexity of the parameter surface increases the quadrature
points cover a wider area, even farther than the high probability sampling area that defined the
polynomials on the first place. Of course, by increasing infinitely the number of samples, eventually
the sampling area will overcome the area covered by the quadrature points regardless of their order.

Although only the central and one of the extreme slices in µ1 direction have been included in figure
11a-d, it can be seen that the error of the polynomial chaos approximation is larger the farther we are
from the mean of the sampling distribution (in our case µ1 = µ2 = 0 corresponding to Young’s modulii
=1). While the values close to this mean fit almost perfectly, approximations in the extremes do not
perform so well. This behaviour was to be expected because even if the fitting process ensures that
the error is minimized with an exact integration in the whole infinite parameter domain, the weights
considered in the integration quadrature enhance contributions of the maximum probability region.
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Figure 11: Slices of the parameter response surface ‘error in the QoI’ (equivalent to figure 10 for load
P2)

6.2 Discretisation convergence

Regarding the discretisation error, which drives the problem and serves as reference for the rest of
errors, the convergence of the QoI is the best way to assess its accuracy. The whole point of adaptive
refinement is to obtain a lesser error than uniform refinement for the same number of degrees of
freedom so that computational time is saved.

The error at each step in figures 12.a-d is estimated as the difference between the expectation of
the QoI using linear and quadratic elements (E [Qhm] and E [Q̂m]) for the given mesh Mm. In order
to rule out the possibility that results are polluted due to mesh dependence of the estimations, the
same errors were computed as the difference between the coarse solution E [Qhm] at each mesh and
a fixed reference solution E [Q̃], with similar results. The mesh producing the reference solution was
obtained by taking the finer uniform mesh and marking for refinement all elements adjacent to the
curved boundary.

From the computed cases, Figure 8 already shows that this is the case for load P1 where the
uncertainty is small. Even though the case of load P2 produces more uncertainty, Figure 12 shows that
the better convergence is consistent for a large number of mesh refinements and all considered loading
cases. However, the path to convergence has significant oscillations in the second case. Regarding
the order of improvement with respect to the uniform refinement, in both loading cases the gain it
is of the same order for the static and the ω = 0.3 frequency cases (between first and second natural
frequencies).

Results for the computation of percentiles included in figure 13 show that the algorithm performs
similarly independently of the probabilistic measure selected, even if it can not be integrated analyt-
ically through the surrogate model. Furthermore, the sets of results for the 95th percentile include
weighted XY strains, non restricted to mesh-conforming sub-domains as an alternative QoI.

On the matter of the oscillations, they appear due to two facts. In the first place, in load P2
the only reason for lateral displacement is the parameter variation, which makes different samplings
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Figure 14: Classic convergence analysis to check the non-computable part of the error ε̃ (see eq.23)

present a much larger discrepancy in the QoI (and hence its error) than load P1 case. Second, a non-
uniform mesh has profound impact on the displacement and rotations of the domain introducing an
oscillatory component to the general asymptotic evolution of the QoI, and this is inherited by the error
measures. Due to geometric constrains, it is not possible to implement a mesh refinement strategy with
steps small enough to mitigate this effect. Furthermore, even if it was possible, it will unduly increase
the number of meshes to be assessed wasting the increase of computational performance gained with
respect to uniform refinement.

Finally, a classic convergence analysis was performed in order to check the assumption made in
sub-section 4.3 neglecting the non-computable part of the error. Figure 14 consists of two plots of the
evolution of the error between the iterative QoI in the coarse space and a reference solution. On the
left we see similar results than the ones obtained in Figure 12.d while in the right, the signed error
displays the oscillations mentioned.

6.3 Sampling stop criterion

This section provides evidence that the confidence intervals serve their purpose. In other words
the stochastic error due to stop the sampling strategy early is controlled. In order to perform this
verification, the problem was computed 34 times allowing randomness in all samplings. The area
between percentiles 5 and 95 was used as confidence interval, so an average of 3.4 cases are expected
to be outside of the confidence interval at each step of the mesh refinement. Of course, the number of
samples is too small in order to have conclusive results or any precision in this average. However, figure
15 shows that even for a small amount of computed cases, the order of magnitude of the confidence
intervals is close to 3.4.

Testing all the computed cases, the average for all cases and meshes varies from 1.6 to 4.4. Because
of the small number of cases computed, the standard deviation is quite high ranging from 2.5 to 5.4.
After checking that the MC expectation of the error in the QoI is controlled through confidence
intervals, the final mesh for different sampling strategies was tested. Adapted meshes were included in
figure 16 with and without the implementation of confidence intervals and cutting early the sampling
process.

It is clear that both sampling strategies lead to almost the same refined mesh. The implementation
of confidence intervals is then an excellent tool to save computational time. This is particularly helpful
when polynomial chaos is not included in the algorithm, which is a sensible choice if the number of
dimensions of the stochastic space is large enough. In this case, the curse of dimensionality makes
evaluating the Hermite-Gauss quadrature points really expensive in computational time terms.
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Figure 16: Final mesh for 6 local refinements

Conclusions

Discretisation error and parametric uncertainty can be linked under a single convergence criterion to
control the errors in spatial, surrogate and parametric spaces simultaneously. This allows to adaptively
refine the spatial discretisation not only to produce an error scaled with the uncertainty, but also to be
optimised with respect to any QoI whose probabilistic measures become the unknown random variable
dependent of the parameters.

The indicator of refinement needs to be based on where the error varies the most. To that effect,
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if p-refinement reference space is used, simply removing all the contribution of the coarse space to
the QoI suffices. Furthermore, it leads to an indicator which is similar to the ones based on the
energy norm, but that takes the dual weight of the goal-oriented residual into consideration. Any
error estimator or indicator can be used as indicator of refinement in place of the approach chosen for
this paper where the estimator consists on the difference between the solution using the same mesh
with quadratic and linear elements. However, when the QoI does not involve a gradient, the indicator
must point to where the error varies the most by any other means.

Results show that the presented algorithm minimises the computational efforts in the spatial dis-
cretisation, in the construction of the surrogate and in the MC sampling to characterise the stochastic
process. Moreover, an optimal mesh also reduces the computational cost of the model evaluations
needed to build the surrogate model or to perform MC sampling if no surrogate model is used.

In this work, the only parametrised quantity is the field of Young modulii. However, all the
algorithmic propositions presented in this paper can be applied to parametrised boundary data and
mass densities. Excitation frequency ω may also be treated as an adjustable or unknown parameter.
Even if the algorithm was tested for a frequency domain elasto-dynamics application, nothing in its
formulation limits it to this particular application. The proposed parametric problem is simply a
relevant simplified benchmark.

The fundamental contribution of the work consists in a tool that allows to control simultaneously
FE discretisation and stochastic errors avoiding undue over-discretisation and therefore minimising
the computational cost. The range of applications for this tool includes any method involving sample
evaluation of FE models commonly used in structure reliability analysis or crack prediction. Some
examples are forward uncertainty propagation, Bayesian inference, sampling methods (importance,
adaptive or Latin hypercube sampling) and kriging method.
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