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Abstract

Although being a popular approach for the modeling of laminated composites, mesoscale constitutive
models often struggle to represent material response for arbitrary load cases. A better alternative in terms
of accuracy is to use the FE2 technique to upscale microscopic material behavior without loss of general-
ity, but the associated computational effort can be extreme. It is therefore interesting to explore alternative
surrogate modeling strategies that maintain as much of the fidelity of FE2 as possible while still being com-
putationally efficient. In this work, three surrogate modeling approaches are compared in terms of accuracy,
efficiency and calibration effort: the state-of-the-art mesoscopic plasticity model by Vogler et al. [1], reg-
ularized feed-forward neural networks and hyper-reduced-order models obtained by combining the Proper
Orthogonal Decomposition (POD) and Empirical Cubature Method (ECM) techniques. Training datasets are
obtained from a Representative Volume Element (RVE) model of the composite microstructure with a number
of randomly-distributed linear-elastic fibers surrounded by a matrix with pressure-dependent plasticity. The
approaches are evaluated with a comprehensive set of numerical tests comprising pure stress cases and three
different stress combinations relevant in the design of laminated composites. The models are assessed on their
ability to accurately reproduce the training cases as well as on how well they are able to predict unseen stress
combinations. Gains in execution time are compared by using the trained surrogates in the FE2 model of an
interlaminar shear test.
Keywords: Laminated composites, Reduced-order modeling, Hyper-reduction, artificial neural networks.

1 Introduction
Numerical analysis of fiber-reinforced composite materials is, by nature, a multiscale endeavor. Although
most of the design effort in composites is concentrated at the structural level (macroscale), most of the material
characterization effort is spent at the mesoscale (thin coupon-sized specimens) [2, 3]. At the same time, many of
the current knowledge gaps in composite behavior stem from physical and chemical processes taking place at the
much smaller microscale (individual fibers and surrounding matrix), where performing discerning experiments
becomes a complex and delicate task [4, 5]. Bridging these scale gaps through high-fidelity numerical analysis
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[6, 7, 8] and increasingly substituting real experiments by virtual testing campaigns [9] is seen as the way
forward in the design of composite structures.

A popular modeling approach consists in using micromechanical models to calibrate mesoscale constitutive
models [10, 1]. The appeal of this approach lies in allowing the use of realistic constitutive models for each
microscopic constituent — fibers [4, 11], matrix [12, 13] and fiber/matrx interface [14, 15] — and using homog-
enization techniques to derive the mesoscopic behavior from a number of numerical microscopic experiments.
However, the ability of mesoscopic models to correctly represent the composite material under general stress
states is limited by assumptions made in order to minimize the number of parameters to be calibrated. This
can be seen, for instance, in [7], where the state-of-the-art mesoscopic plasticity model by Vogler et al. [1] is
put to the test by comparing its predictions with micromechanical results and found to be lacking in its ability
to represent the influence of matrix plasticity in the fiber direction on the longitudinal shear behavior of the
composite material, a loading scenario commonly encountered in practice.

An alternative to homogenized mesomodels is the concurrent multiscale (FE2) approach [16, 17, 18]. FE2

allows material behavior to be directly derived from embedded microscopic models without introducting any
mesoscopic constitutive assumptions. However, even though the method effectively carries microscopic fidelity
over to the mesoscale without loss of generality, the computational effort required by having an embedded
micromodel at each and every mesoscopic integration point can be extreme [19]. It is therefore interesting to
seek alternative strategies that improve computational efficiency without sacrificing the generality of FE2.

One such strategy consists in reducing the computational complexity of the microscopic boundary-value
problem through Model Order Reduction (MOR) techniques: through a series of analysis snapshots obtained be-
fore model deployment (offline training), reduced-order solution manifolds are computed both for displacements
[20, 21] and internal forces [22, 23, 24]. During the many-query multiscale analysis, projection constraints en-
sure that only solutions belonging to these reduced manifolds are sought, resulting in dramatic reductions in the
number of degrees of freedom and constitutive model computations. The advantage of using such dimensional-
ity reduction techniques is that, although the amount of freedom the micromodel has to represent general stress
states is reduced, it is still driven by the original high-fidelity microscopic material models and therefore still
obeys basic physical assumptions made at the microscale (e.g. thermodynamic consistency, loading-unloading
conditions). Furthermore, recent innovations allow the training process [25] and basis construction [26] to be
optimized, leading to hyper-reduced models with increased accuracy and efficiency.

Alternatively, physics-based constitutive models may be altogether abandoned by employing artificial neural
networks as surrogate models [27]. This approach is based on the fact that neural networks are universal
approximators — i.e. capable of approximating any continuous function to an arbitrary level of precision
provided that enough parametric freedom is given to the model [28]. A network can be trained with macroscopic
stress-strain snapshots from a full-order micromodel and subsequently employed online to give predictions of
stress and tangent stiffness. Since the early work of Ghaboussi et al. [29], a number of efforts have been made
to improve predictions by restricting the parameter space by focusing on a fixed macroscopic strain distribution
[30], using gated neural layers with memory in order to capture path dependency and unloading [31], including
additional microscopic parameters such as material volume fractions in the network input [32] and attempting
to infuse the network with physics-based constraints [33]. Nevertheless, the use of artificial neural networks as
surrogate constitutive models is still far from widespread, and its applicability to model general stress states of
complex micromodels is still an open issue.

In summary, three different alternatives to a fully-resolved micromodel have been discussed: physics-based
mesoscale models, hyper-reduced micromodels and artificial neural networks. Conceptually, these three ap-
proaches can be seen as entities of the same nature: surrogate models that require an offline calibration phase
and sacrifice part of the generality and accuracy of a micromodel in favor of computational efficiency. In this
work, the three strategies are compared in terms of calibration effort, efficiency and generality of representation.
In order to keep the focus on the surrogate modeling techniques, matrix plasticity is the only source of nonlinear
microscopic behavior considered in the study. Firstly, the multiscale equilibrium problem to be solved is briefly
described. Secondly, each of the three acceleration approaches is presented, starting with a brief description of
a state-of-the-art mesoscale plasticity model for composites [1] followed by formulations of the hyper-reduced
and neural surrogate models. Finally, the three strategies are put to the test in a number of numerical examples
involving both pure stress cases and combined loading conditions.
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2 Multiscale analysis of laminated composites
In order to introduce the context of the present discussion, the full-order concurrent multiscale equilibrium
problem for which surrogate models are sought is presented. Two distinct spatial scales are identified. In
the mesoscale, individual composite plies are modeled as homogeneous orthotropic media. Descending to the
microscale, a Representative Volume Element (RVE) of the composite microstructure is modeled, consisting of
a number of unidirectional fibers and surrounding matrix.

When coupling these two scales, the goal is to exploit the high-fidelity information obtained at the mi-
croscale to derive the constitutive behavior of a material point at the mesoscale. Before comparing the different
approaches to perform this coupling through an offline training/calibration phase, this section outlines how an
online scale coupling can be achieved without mesoscopic constitutive assumptions or loss of generality through
the FE2 technique. In the context of the present study, FE2 is regarded as the reference solution that represents
both the upper bound of model fidelity and the lower bound of computational efficiency. Formulating alternative
strategies based on surrogate models entails significantly improving efficiency while retaining as much fidelity
as possible.

2.1 Mesoscopic problem
Let Ω be the continuous and homogeneous mesoscopic domain being modeled and let it be bounded by the
surfaces Γu and Γf on which Dirichlet and Neumann boundary conditions are applied, respectively (Γu ∩ Γf =
∅). Stress equilibrium and strain-displacement relationships in Ω are given by:

div
(
σΩ
)

= 0 εΩ =
1

2

(
∇uΩ +

(
∇uΩ

)T)
(1)

where div (·) is the divergence operator, ∇ (·) is the gradient operator, body forces are neglected and a small
strain formulation is adopted. In order to solve for the displacements uΩ, a constitutive relation between stresses
and strains must be introduced:

σΩ = D
(
εΩ, εΩ

h

)
(2)

where the dependency on the strain history εΩ
h accounts for the possibility of path dependency. For the moment,

no assumptions on the behavior of the constitutive operator D are made. In a general sense, D should account
for the information on material behavior coming from smaller scales that is lost when assuming that Ω is a
continuous and homogeneous medium.

In a FE environment, the domain is discretized by a finite element mesh with N degrees of freedom and the
equilibrium problem is solved by minimizing the force residual rΩ ∈ RN :

rΩ = fΩ − fΓ = 0 with fΩ =

∫
Ω

BTσΩdΩ fΓ =

∫
Γf

NTtΓdΓ (3)

where N and B contain the shape functions and their spatial derivatives, respectively, tΓ are the tractions
at surface Γf and the Dirichlet boundary conditions u

∣∣
Γu

= uΓ are implicitly applied. The formulation is
completed with the definition of the tangent stiffness matrix KΩ ∈ RN×N , used to compute the displacement
update ∆un = −

(
KΩ
)−1

rΩ:

KΩ =

∫
Ω

BTDΩBdΩ DΩ =
∂σΩ

∂εΩ
(4)

with DΩ being the tangent material stiffness matrix. Although not explicit in the preceding equations, it is
important to note that since composite laminates are anisotropic materials, constitutive computations are per-
formed in a local material coordinate system and rotation operators are used to bring σΩ and DΩ back to global
coordinates.
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2.2 Microscopic problem
Let ω define the microscopic domain of a Representative Volume Element (RVE) of the material where indi-
vidual fibers and surrounding matrix are modeled. The domain is assumed to be continuous and bounded by
the Dirichlet and Neumann surfaces γu and γf (γu ∩ γf = ∅). Maintaining the small strain assumption and
neglecting body forces, stress equilibrium and strains are given by:

div (σω) = 0 εω =
1

2

(
∇uω + (∇uω)

T
)

(5)

At the microscale, constitutive operators for fibers and matrix are assumed a priori. Fibers are modeled as
isotropic and linear-elastic and the matrix is modeled with the plasticity model proposed by Melro et al. [6].
The matrix response starts as linear-elastic and transitions to plasticity with pressure-dependent hardening until
the response reaches a perfectly-plastic regime. The model is briefly described in the following, with most
formulation details being omitted for compactness. For further details, the interested reader is referred to [6, 7].

The stress-strain relationship in tensor notation is given by:

σ = De (ε− εp) (6)

where De is the fourth-order elastic stiffness matrix and an additive decomposition between elastic and plastic
strains (εp) is assumed. The onset of plasticity is defined by a pressure-dependent paraboloidal yield surface:

f (σ, σc, σt) = 6J2 + 2I1 (σc − σt)− 2σcσt (7)

with I1 and J2 being stress invariants and the yield stresses in compression (σc) and tension (σt) being functions
of the equivalent plastic strain εeq

p in order to allow for the occurrence of hardening:

σc = σc

(
εeq

p

)
σt = σt

(
εeq

p

)
ε̇eq

p =

√
1

1− 2νp
ε̇p : ε̇p (8)

where νp is the plastic Poisson’s ratio. The development of plastic strains is dictated by the non-associative flow
rule:

∆εp = ∆γ

(
3S +

1− 2νp

1 + νp
I1I

)
(9)

where ∆γ is the plastic multiplier increment computed through a return mapping procedure [7] and S is the
deviatoric stress tensor. The formulation is completed by the definition of the consistent tangent operator,
obtained by differentiating Eq. (6) with respect to the strains [7].

With constitutive models in place, the equilibrium residual rω to be minimized is computed as:

rω = fω − fγ = 0 with fω =

∫
ω

BTσωdω fγ =

∫
γf

NTtγdγ (10)

2.3 Scale coupling
The basic idea behind the FE2 approach consists in defining the mesoscopic constitutive operator D of Eq. (2)
as the homogenized response of a finite element micromodel embedded at each integration point of the domain
Ω (Fig. 1). Assuming the principle of separation of scales holds (ω � Ω) [16], a link between the two scales is
enforced by satisfying:

uω = εΩxω + ũ (11)

where ũ is a fluctuation displacement field subjected to ũγ+ = ũγ− , where γ− and γ+ represent pairs of
opposing microdomain boundaries. In practice, enforcing Eq. (11) entails converting the macroscopic strain
εΩ into prescribed displacements at the corners of the micromodel, tying nodes at γ− and γ+ through periodic
boundary conditions and solving the resultant boundary-value problem [18].
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Figure 1: The FE2 approach: A concurrent link is established between meso and microscales.

After convergence of the microscopic nonlinear analysis, the Hill-Mandel principle is used to recover the
mesoscopic stresses:

σΩ =
1

ω

∫
ω

σωdω (12)

while the tangent stiffness is obtained through a probing operator P based on the microscopic stiffness matrix
Kω according to the procedure in [34]:

DΩ = P (Kω) (13)

which completes the formulation. The FE2 approach effectively defines the operator D through an implicit
procedure that involves no mesoscopic constitutive assumptions. However, the associated computational effort
can be prohibitive even for simple applications. In the next sections, three alternative strategies for defining D
are presented.

3 Mesoscale constitutive model
The mesoscopic constitutive model proposed by Vogler et al. [1] and later revisited by Van der Meer [7] is briefly
presented here as a way of defining the D operator of Eq. (2) through a physics-based model that effectively
condenses the microscale material behavior into a small number of mesoscale constitutive parameters calibrated
with micromechanical simulations.

A unidirectional composite lamina is modeled as an orthotropic material with pressure-dependent plasticity
and assuming an additive decomposition of strains. The stress-strain relationship is similar to the one of Eq. (6)
but the stiffness tensor De is now orthotropic. The onset of plasticity is defined by the following yield surface,
written in Voigt notation:

f =
1

2
σTAσ + aTσ − 1 (14)

where A is given by:

A =


0 0 0 0 0 0
0 1

2α1 + 2α32 − 1
2α1 + 2α32 0 0 0

0 − 1
2α1 + 2α32

1
2α1 + 2α32 0 0 0

0 0 0 2α1 0 0
0 0 0 0 2α2 0
0 0 0 0 0 2α2

 (15)

and a =
[
0 α3 α3 0 0 0

]T
. The α coefficients are piecewise-linear functions of the equivalent plastic

strain εeq
p and pressure-dependency is introduced by allowing for distinct values of α32 and α3 to be defined

depending on the sign of σ2 + σ3.
Plastic strain evolution is dictated by the flow rule:

∆εp = ∆γGσ (16)
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where ∆γ is the plastic multiplier computed by a return mapping procedure [7] and G is given by:

G =


0 0 0 0 0 0
0 1 −νp 0 0 0
0 −νp 1 0 0 0
0 0 0 2 (1 + νp) 0 0
0 0 0 0 2 (1 + νp) 0
0 0 0 0 0 2 (1 + νp)

 (17)

with νp being the plastic Poisson’s ratio.
Calibration of the mesomodel consists in determining νp and the α coefficients through a set of microme-

chanical numerical experiments. The procedure used here follows the one described in [7]. From the homog-
enized stress-strain curves obtained from the micromodels, the components of De are obtained and with those
the equivalent plastic strain histories. With values for σ and εeq

p , the model parameters are computed as:

α1

(
εeq

p

)
=

1

σ2
ts

α2

(
εeq

p

)
=

1

σ2
ls

(18)

αt
32

(
εeq

p

)
=

1− σut

2σbt
− α1

σ2
ut

4

σ2
ut − 2σbtσut

αc
32

(
εeq

p

)
=

1− σuc

2σbc
− α1

σ2
uc

4

σ2
uc − 2σbcσuc

(19)

αt
3

(
εeq

p

)
=

1

2σbt
− 2αt

32σbt αc
3

(
εeq

p

)
=

1

2σbc
− 2αc

32σbc (20)

where ts stands for transverse shear, ls for longitudinal shear, ut and uc for uniaxial tension and compression,
respectively, and bt and bc for biaxial tension and compression, respectively. With this relatively limited amount
of calibration data, the model can be used to predict the behavior under general stress states.

4 Neural networks
An alternative to a physically-motivated mesoscopic model is the use of a purely data-driven approach, the idea
consisting in the introduction of a parametric regression model S used to compute an approximation σ̂ of the
stresses:

σ̂ = S
(
εΩ,W

)
(21)

where W are model parameters. In contrast to the parameters in Eqs. (18) to (20), parameters in W have no
direct physical meaning, being instead calibrated through a fitting procedure based on observations of the actual
micromechanical model:

W = arg min
W

∑
i∈X

∥∥σ̂i (εΩ
i ,W

)
− σΩ

i

(
εΩ
i

)∥∥2
(22)

where X ∈ R2nε×P is a snapshot matrix with P εΩ-σΩ pairs obtained from micromodel executions. Given
enough parametric freedom, the surrogate should be able to encapsulate the observed constitutive information
(X) and provide accurate stress predictions when presented with previously unseen values of εΩ.

Here, S is chosen to be the feed-forward artificial neural network shown in Fig. 2, being composed of a
number of fully-connected neural layers (dense layers) followed by a dropout layer that regularizes the model.
When used to make predictions, strains are fed to the first neural layer (input layer) and values are propagated
until the final layer is reached (output layer), at which point the output neurons contain the predicted stress σ̂.
In the next sections, each component of the network is briefly described and further details are given on how
training is performed.
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Figure 2: A neural network acting as a surrogate constitutive model. An arbitrary number of dense neural layers
is combined with a single dropout layer that regularizes model response.

4.1 Dense layer
A dense neural layer i propagates neuron states (a) from the previous layer i − 1 and subsequently applies an
activation function ϕ to the resulting values in order to introduce nonlinearity in the network response:

vi = Wiai−1 + bi ⇒ ai = ϕ (vi) (23)

where Wi ∈ Rni×ni−1 is a weight matrix and bi ∈ Rni is a bias term, with ni being the number of neurons of
layer i. The activation function ϕ here represents the element-wise application of the sigmoid function:

ϕ (v) =
ev

ev + 1
(24)

on the neuron values, with the exception of the output layer which is left unactivated (al = vl). Different
activation functions are used depending on the intended application [35], with the sigmoid function being a
popular choice for building regression models. In general, increasing ni leads to a higher representational
capability, following from the intuitive fact that the amount of fitting freedom of the model increases with the
number of trainable parameters. In practice, however, models that are too large tend to exactly represent training
data but fail to generalize to unseen inputs (overfitting) [36].

4.2 Dropout layer
Dropout is an increasingly popular regularization strategy used avoid the phenomenon of overfitting [37]. Here,
a dropout layer is positioned immediately before the output layer and stochastically deactivates some of the
neurons coming from the previous layer:

al−1 =
1

1− rd
(r � al−2) (25)

where � indicates element-wise multiplication, rd ∈ (0, 1] is the probability that a given neuron is set to zero
and r ∈ {0, 1}nl−2 is a boolean vector determined by drawing from a uniform unit distribution and comparing
the value to rd. If the drawn value is lower than the dropout rate, the correspondent element of r is set to zero.
In order to keep the average of the neuron values unchanged after dropout, neurons that are not deactivated are
scaled by 1− rd.

During training, r is redrawn each time the network is used to make a prediction. This means that, on
average, neurons of layer l − 2 will have been deactivated at least once. This introduces a regularizing effect
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because the network cannot rely on the availability of any given neuron in order to make accurate predictions.
When using the network model online, the dropout layer is removed — which is equivalent to setting rd to zero
— and all neurons contribute to the response.

4.3 Training
The objective of the training process is to minimize a loss function that represents how well predictions match
actual model observations:

L =
1

P

P∑
j=1

1

2
‖σ (εj)− σ̂ (εj)‖2 (26)

where P is the number of snapshots and the 1/2 factor is added for convenience when computing the gradients
of L. In order to keep track of how well the model generalizes to unseen data, it is common to remove part
of the snapshots from the training process to act as a validation set and use them to compute a separate error
measure to be used as stopping criterion for the optimization.

Based on this objective function, a Stochastic Gradient Descent (SGD) optimization algorithm is used to
update the trainable parameters W and b:

Wn = Wo −A

 1

B

B∑
j

∂Lj
∂W

 bn = bo −A

 1

B

B∑
j

∂Lj
∂b

 (27)

where Lj is the loss term of the j-th sample, o indicates current values, n indicates updated values and B is the
size of the sample mini-batch used in the update. The idea behind using a mini-batch instead of updating the
parameters using either one sample at a time or all samples at once is that it provides a balance between speed
of convergence and gradient variance. In any case, a complete solver iteration (epoch) is only complete after
the model has seen every sample in the training set — i.e. after approximately P/B mini-batches. Finally, the
operatorA depends on the choice of solver. Here, the Adam solver proposed by Kingma and Ba [38] is adopted.

In order to compute the gradients appearing in Eq. (27), a backpropagation procedure is adopted: based
on the network state (v, a and r) after computing each1 training sample, the chain rule is used to propagate
the derivative of the loss function starting from the output layer and progressively moving back through the
network. For this, an auxiliary quantity di ∈ Rni is defined for each layer. At the output layer l, it is simply
defined as:

dl =
∂L

∂al
= σ̂ − σ (28)

Next, the effect of the activation function is taken into account:

di = di �
∂ϕ

∂v
(vi) (29)

after which it is possible to compute the gradients of the trainable parameters:

∂L

∂Wi
= dia

T
i

∂L

∂bi
= di (30)

Finally, the values of d of the previous layer (the next layer to be backpropagated) can be computed as:

di−1 = WT
i di (31)

and the algorithm moves to Eq. (29) for layer i − 1. For the dropout layer, since it does not have any trainable
parameters, the effect of the stochastic dropout is simply backpropagated to the previous layer:

di−1 = di =
1

1− rd
r� di (32)

1In practice, since the model is only updated between mini-batches, the feed-forward and backpropagations of all samples in a mini-
batch are performed at the same time, with v, a, r and d taking a matrix form. This reduces computational overhead and allows for fast
GPU computations to be performed.
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4.4 Use as constitutive model
To make new stress predictions, the input layer is set to the applied mesoscopic strain, a complete forward pass
is performed and the final activated neuron values of the output layer give the predicted stress:

a0 = εΩ σ̂ = al (33)

For the consistent tangent stiffness, it is necessary to compute the jacobian J of the network:

DΩ =
∂σ̂

∂ε
=
∂al
∂v0

= J (34)

which is obtained with a backward pass through the network (from output to input):

Ji = Ji+1I
ϕ′
i Wi with Jl+1 = I (35)

where Iϕ
′

i is a matrix whose diagonal contains the derivatives of the activation function with respect to the
neuron values v:

Iϕ
′

i = diag

(
∂ϕ

∂v
(vi)

)
(36)

5 Hyper-reduced-order modeling
Instead of resorting to surrogate mesoscopic models, FE2 can be made efficient by accelerating the associated
microscopic boundary-value problems. In this section, two complexity reduction operations are applied to the
equilibrium problem of Section 2.2. First, the number of degrees of freedom of the problem is drastically
reduced, followed by a hyper-reduction phase on which a reduced global integration scheme for internal forces
is defined. The techniques are only described briefly in order to keep the focus on their application to the
problem at hand. More details on the underlying formulations can be found in [39].

5.1 Proper Orthogonal Decomposition (POD)
The first strategy consists in projecting the original equilibrium problem of size N onto a reduced solution
manifold spanned by a basis matrix Φ ∈ RN×n:

Φ =
[
φ1 φ2 · · ·φn

]
(37)

where φi are a set of orthonormal basis vectors that represent global displacement modes. By constraining the
possible displacement configurations to the ones lying in the latent space defined by Φ, the number of degrees
of freedom of the problem is reduced from N to n � N . The full-order displacement field is recovered as a
linear combination of the latent variables α ∈ Rn:

uω = Φα (38)

In order to solve for α, the full-order residual of Eq. (10) is constrained to lie on the reduced space through
the Galerkin projection ΦTrω = 0, yielding reduced versions of the internal force vector and stiffness matrix:

fωr = ΦTfω Kω
r = ΦTKωΦ (39)

5.2 Empirical Cubature Method (ECM)
Even though the POD-reduced problem has only a small number of degrees of freedom, solving for α still
involves computing stresses at every integration point in order to obtain fω and Kω for use in Eq. (39). How-
ever, given the fact that fωr is of small dimensionality, it is intuitive to surmise that the amount of constitutive
information needed to define it is also significantly reduced.
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This hypothesis may be posited more formally as follows: From the complete set of M integration points
with original integration weights wi, it is possible to define a reduced set of m � M integration points with
modified integration weights $j such that the approximation:

fωr = ΦT

(
M∑
i=1

BT (xi)σ
ω (xi)wi

)
≈ ΦT

 m∑
j=1

BT (xj)σ
ω (xj)$j

 (40)

leads to a negligible loss of accuracy. This idea is the basis for the Empirical Cubature Method (ECM) proposed
by Hernández et al. [22]. The reduced set Z of m integration points is chosen from among the original M
points by using a Greedy least-squares procedure that solves:

(β,Z) = arg min
β≥0 ,Z

∥∥JZ β − b
∥∥2

(41)

where J and b are given by:
J =

[
Λ
√

w
]T

b =
[
0 ω

]T
(42)

where Λ is a basis matrix for the contribution of each integration point to the global reduced force vector fωr .
With β, the modified integration weights of points in Z are computed as $i =

√
wiβi. For details on the

Greedy selection procedure, the reader is referred to [22].
During the online FE2 analysis, the responses of integration points not included in Z are never computed,

leading to a full-order internal force vector composed almost solely by zeros. On the other hand, the homog-
enization procedure of Section 2.3 requires a complete assembly of fω and K. In order to bypass this issue, a
tangent mode contribution matrix H ∈ Rn×nε is computed for each micromodel such as to satisfy:

α = HεΩ (43)

whereα are the latent variable values resulting from solving the equilibrium problem with applied macroscopic
strains εΩ. With this operator, the homogenized stress and stiffness are computed as:

σΩ = HTfωr DΩ = HTKω
r H (44)

5.3 Training
Both reduction stages are constructed with mechanical behavior information that must be computed before
model deployment, similar to the calibration procedure of Section 4.3. For POD, the basis matrix Φ is computed
from a series of P displacement snapshots Xu ∈ RN×P decomposed into elastic and inelastic parts:

Xu =
[
Xe Xi

]
(45)

where a snapshot is considered inelastic if at least one integration point in ω has non-zero equivalent plastic
strain. Following the elastic/inelastic training strategy presented in [22], the basis Φ ∈ RN×(ne+ni) is given by:

Φ =
[
Ue Ui

]
(46)

where each portion of the basis (ne elastic and ni inelastic modes) is obtained through a truncated Singular
Value Decomposition (SVD) operation:

Xe ≈ UeSeT
T

e Xi ≈ UiSiT
T

i (47)

with the modified snapshot matrices

Xe = Y
(
YTX

)
Xi = X−Xe (48)
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and Y being a basis matrix computed from the SVD of Xe. In order to guarantee that every possible stress
state in the elastic regime is exactly reproduced by the reduced model, the decomposition that generates Ue is
truncated at nε components (nε = 6 for three-dimensional micromodels). For Ui, the basis includes all basis
vectors whose associated singular values satisfy the condition:

S
j

i

S
1

i

> εsv (49)

with S
1

i being the first (and highest) singular value and εsv a truncation tolerance.
For ECM, training consists in running the POD-reduced model for the same original training cases2 and

collecting snapshots of stresses at every integration point. Following again the elastic/inelastic strategy, a basis
matrix for stresses Ψ ∈ RMnε×q is computed, with q = ne +ni in order to keep the truncations consistent with
the ones from the first reduction phase.

With Φ, the basis matrix for internal forces used in Eq. (42) can be obtained:

Λ =
[
Λ1 Λ2 · · · Λq

]
(50)

with each of the q submatrices Λj ∈ RM×n being given by:

Λj =


√
w1

(
f1
rj (x1)− 1

ω fωrj
)

√
w2

(
f2
rj (x2)− 1

ω fωrj
)

...√
wM

(
fMrj (xM )− 1

ω fωrj
)
 (51)

and the contribution of each integration point being:

f irj = ΦT
i BT

i sjψj (52)

where Φi is the submatrix of Φ that contains the degrees of freedom of the finite element that contains point i,
Bi is the matrix of shape function derivatives evaluated at point i and sj and φj are respectively the singular
value and left-singular vector associated with the j-th mode of Ψ.

6 Comparing the strategies
The surrogate modeling strategies have been implemented in an in-house Finite Element code based on the
Jem/Jive C++ numerical analysis library [40]. All models were executed on a single core of a Xeon E5-2630V4
processor on a cluster node with 128 GB RAM running CentOS 7.

The micromodel used as a basis for training the reduced-order models is the one shown in Fig. 1. This is the
same RVE adopted by Van der Meer in [7] and is assumed to be sufficiently representative of the mechanical
response of a mesoscopic material point. Material properties for both the micromodel and the calibrated meso-
model of Section 3 are also adopted from [7]. In order to guarantee constant stress ratios in biaxial scenarios
while avoiding large strain steps during the perfect plasticity regime, a special arc-length constraint a is adopted:

a =

(∑
i

sign
(
fΓ
i

)
ui

)
− u = 0 with

∂a

∂λ
= 0

∂a

∂ui
= sign

(
fΓ
i

)
(53)

with which the load factor λ that scales unit forces applied at the corner nodes of the RVE is controlled so as
to guarantee that the unsigned sum of displacements at the same locations is equal to a prescribed value u. All
snapshots used for training come from models loaded monotonically with a constant stress ratio (proportional
loading) until the norm of the strain at controlled nodes reaches a value of 0.1. To test the trained surrogates,

2Since ECM is built as an approximation of the POD-reduced model response, this second training phase is performed for consistency.
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Figure 3: Hyper-reduced model trained with pure stress states. Predictions improve as the truncation tolerance
εsv is reduced.

a homogeneous mesoscopic 1-element model3 with a single integration point and the same dimensions as the
original micromodel is used, with the fiber direction (1-axis) aligned with the mesoscopic x-axis.

Neural networks with a single hidden dense layer are considered. Deeper networks with up to 5 hidden
layers have also been investigated, but were found to provide lower accuracy than shallow networks with a
similar number of parameters. Results from these deeper networks are therefore not included in the discussion.
Unless otherwise specified, training sets are formed by randomly drawing 80 % of the samples of the original
dataset without replacement, with the remaining 20 % serving as a validation set. At the beginning of training,
network biases are initialized as zero and weights are initialized with draws from an uniform distribution in
the interval [−1, 1] and scaled with the factor

√
6

ni+ni−1
[41]. The dropout rate is fixed at rd = 0.05 for all

models. Although this is a much lower rate than the one adopted for instance in [26], it is found to provide
sufficient regularization for the network and dataset sizes treated in this study. For the SGD solver, the default
values recommended in [38] are used for all hyperparameters. All models are trained for a total of 200 000
epochs and the final model parameters are the ones associated with the lowest historical validation error. The
only hyper-parameter to be studied is therefore the width n1 of the hidden dense layer.

6.1 Pure stress states
First, reduced models are trained to reproduce the material behavior of a single unidirectional composite layer
under isolated stress components, i.e. uniaxial cases in the parameter space. Here the training dataset consists
of twelve stress-strain curves, two for each of the nε = 6 mesoscopic strain components (positive and negative
directions). From this point on, strain and stress components are expressed in the local mesoscale coordinate
system — i.e. {ε11, ε22, ε33, γ12, γ13, γ23}, where the 1-axis is the fiber direction and the superscript Ω is
dropped for compactness.

Hyper-reduced models are trained with different values of the inelastic SVD tolerance εsv (Eq. (49)). The
resultant model predictions for the transverse stress σ22 are shown in Fig. 3. For high values of εsv — i.e.
with a small number of inelastic modes — the plasticity response is not correctly captured, with predictions
improving as the tolerance is lowered and more modes are added. Note that the snapshot decomposition of
Section 5.3 effectively guarantees an exact response during the elastic regime. A similar response is observed
for the remaining five strain components.

3For hyper-reduction, this is actually a 1-element FE2 problem with a hyper-reduced micromodel
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Figure 4: Average absolute errors of the hyper-reduced model for the pure stress dataset.

Using the surrogate models to reproduce stresses at the same strain values used for training, an average error
over the complete dataset comparing the training targets σ with the surrogate responses σ̂ can be defined:

E =
1

nε

nε∑
i

 1

nt
i

nt
i∑
j

|σi (tj)− σ̂i (tj)|

 (54)

with nti being the number of load steps comprising the stress-strain curve associated with each strain component
i. Errors are computed for different values of εsv, with results being shown in Fig. 4. As with Fig. 3, the error
starts at a high value when only elastic modes are used and decreases to values as low as 0.4 MPa for εsv = 0.01.
Fig. 4 also includes the average error of predictions made with the mesoscopic model of Section 3. Since that
model explicitly ensures no plasticity occurs in the fiber direction while the actual microscopic response in that
direction is slightly nonlinear, the average absolute error over the dataset appears to be high4 even though all the
other directions are very well captured. For this reason, Fig. 4 shows two accuracy levels for the mesomodel,
with and without including σ11.

Since controlling the tolerance only influences the number of modes n indirectly, the error tends to decrease
in discrete steps. This can also be observed in Fig. 5, which shows how the number of modes n and integration
points m increases as εsv is reduced. Since the reduction in the number of integration points is made possible
by the POD reduction, maintaining a low ECM integration error for higher values of n requires a larger set of
cubature points. In any case, the reduction remains relatively efficient even for the lowest εsv considered here
— with compression factors N/n ≈ 1284 and M/m ≈ 65.

The same dataset is used to train neural networks with a number of hidden units n1 ranging from 10 to 1000.
In order to track the training process, the evolution of the average absolute error over the validation set (20 % of
the complete dataset) is plotted in Fig. 6. The monotonic error decrease observed for all curves suggests that no
overfitting to the data is occurring. Increasing the size of the hidden layer improves the obtained predictions but
with diminishing returns for n1 larger than 100. Indeed, doubling the size of the hidden layer from 500 to 1000
leads to a negligible decrease in the error.

The same trend can be observed in Fig. 7, where online predictions are computed from a one-element model
loaded in the 2-direction (transverse direction). Although accurate predictions of the perfect plasticity plateau
can be obtained by using sufficiently large networks, both the initial stiffness and the response leading up to the
plasticity plateau are still slightly inaccurate even for n1 = 1000. The important observation to be made here is

4Due to the stiffness gradient between fiber and matrix, σ11 is the stress component with the highest order of magnitude. Even small
relative differences in this direction lead to high absolute errors.
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Figure 6: Evolution of the average validation error during training of networks with different hidden layer
widths (n1).
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Figure 7: Predictions of transverse stress made by neural network models with different hidden layer sizes (n1).

that even though neural networks are regarded as universal function approximators, the regularization brought
by the dropout layer has the adverse effect of making an exact fit with the training data very difficult to achieve.

The average absolute error for the complete dataset obtained with networks of different sizes is plotted in
Fig. 8. Although showing a similar trend as Fig. 6, two important differences between the errors in these two
cases should be noted. Firstly, errors in Fig. 8 take into account the whole dataset, while Fig. 6 only shows
errors computed for samples in the validation set. Secondly, while errors in Fig. 6 are computed by feeding the
network with the exact strain vectors coming from micromodels, Fig. 8 is obtained by using the trained network
online in a one-element model that includes numerical noise intrinsic to the Newton-Raphson procedure used
to solve it.

The presence of numerical noise combined with the fact that data-driven models lack any sort of physical
constraint to their behavior can lead to substantial error accumulation as the analysis progresses: wrong stress
predictions lead to wrong solutions for the displacements which in turn become wrong strains to be fed to the
network. After a few time steps, the network will be operating well outside of its training space and making
nonsensical predictions.

In order to demonstrate how the inclusion of a dropout layer increases model robustness against noise, two
networks — one of size n1 = 500 with dropout and the other of size n1 = 100 without dropout5 — are used to
predict the response of a model loaded in transverse tension (2-direction) with and without the inclusion of small
perturbations to all three shear components, ε12 = −ε13 = ε23 = 0.01ε22. Results are shown in Fig. 9. While
the regularized response remains unchanged after the introduction of noise, the unregularized model branches
off into an unphysical softening regime. Note how the unregularized model actually gives better predictions
than the regularized one before it starts to lose precision: training a robust and accurate model entails finding
a balance between the bias introduced by regularization and the variance introduced by allowing the model to
become overly complex (this is also known as the bias-variance tradeoff ).

Before moving on to more complex stress states, an interesting conclusion can be drawn by letting the
reduced models make predictions on a strain range beyond the one used during training. Fig. 10 shows the
straightforward case of tension in the fiber direction (σ11). The training snapshots teach the models how the
stress response should behave for strains in the range [0, 0.1], but in the range (0.1, 0.2] the models must rely on
their extrapolation capabilities. Owing to its stronger physical foundation, the hyper-reduced model correctly
predicts a nearly linear stress response, while the network deviates from linearity after only a few time steps and
transitions to an unphysical perfectly-plastic response. For hyper-reduced models, it is enough to stop training
after the material response stabilizes. For neural networks the requirement is slightly stronger, as the complete

5Unregularized networks need less parameters to fit the training data to any given level of precision when compared to regularized ones.
The size of the unregularized network is chosen by gradually increasing n1 until a validation error lower than 1MPa is obtained.
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Figure 8: Average absolute errors over the entire pure stress dataset for network models with different hidden
layer sizes (n1).
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Figure 9: Erroneous predictions by an unregularized neural network when making predictions on noisy strain
values. The robustness introduced by the dropout layer alleviates the issue.
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Figure 10: Surrogate models used to predict material behavior outside of the strain range seen during training.
The hyper-reduced model predicts the correct response, while the network shows an unphysical perfectly-plastic
behavior.

strain range to be encountered online should be seen by the model during training.
Finally, the impact on computational efficiency of increasing the size of the reduced models is investigated.

Execution times are related to model size (number of POD modes n or size of the hidden neural layer n1) in
Fig. 11, where the smallest model of each type (εsv = 1.0 or n1 = 10) is used to normalize the curves. For
the neural model, increasing the size of the model 100 times only leads to an execution time approximately
twice as long (0.09 s), indicating that other operations related to the 1-element FE model (e.g. solving the
24-DoF equilibrium system) are more expensive than the very efficient neural network computations. For the
hyper-reduced model, an increase of only 2.5 times on the number of POD modes leads to a 5 times longer
computation (20.70 s). In any case, both models are still significantly faster than the full-order one (3167 s)

For linear materials, a simple linear combination of the pure stress states considered in this section would
be enough to describe any combined stress state. Unfortunately, the material behavior being learned here is
highly nonlinear and path dependent. In the next sections, the accuracy impact incurred by using pure stress
combinations to approximate combined stress scenarios is investigated. Furthermore, the ability of surrogate
models to incorporate new information coming from additional micromechanical simulations (retraining) is
assessed.

6.2 Biaxial transverse tension
For the next set of examples, the trained models of Section 6.1 are used to predict material response under
biaxial transverse tension loading (a combination of σ22 and σ33). A common design practice when dealing
with plasticity is to compute a yield stress envelope by plotting the final stress levels for different stress ratios.
Fig. 12 shows an illustration of such an envelope, where the angle θ = arctan

(
σ22

σ33

)
defines the stress ratio.

Recalling that models in Section 6.1 are trained on pure stress states for all stress components, they are
already capable of predicting both the lower (θ = 0°) and upper (θ = 90°) bounds of the tension-tension
envelope of Fig. 12. In order to investigate the accuracy of the models upon extrapolation from the training set,
they are used to predict the response for θ = 45°. The models are also retrained by including extra training
cases that gradually approach the center of the envelope from both sides — with the limit of the new training
sets being represented by the angle θlim (Fig. 12) — and used to predict θ = 45°. For these new trainings,
εsv = 0.01 is adopted and the size of the hidden neural layer is fixed at n1 = 500. Error levels over the training
set similar to the ones in Figs. 4 and 8 are obtained for the retrained models.

Fig. 13 shows ε33-σ33 curves obtained with hyper-reduced models. The obtained responses are very accurate
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Figure 12: Illustration of a biaxial yield envelope. The angle θ defines the ratio between the two stress compo-
nents. When training surrogates, θlim is used to define the bounds of the training space.
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Figure 13: Hyper-reduced model predictions of the biaxial transverse tension response when θ = 45°. Curves
from models trained only on pure stress states (θlim = 0) as well as models retrained with additional biaxial
cases (θlim > 0) are shown.

even with no additional retraining (θlim = 0°). This is an interesting feature of the projection-based reduction:
an accurate response at θ = 45° hinges on correctly accounting for pressure-dependent yielding, which the POD
model does in an approximate way by using information obtained from pure compression snapshots. A similar
level of accuracy is obtained for σ22.

The network model does not perform as well. With no additional retraining, the stress stabilizes at a value
approximately 50 % lower than the reference one. Adding training cases closer to the one being predicted brings
the response closer to the target, but even with training points at θ = 40° and θ = 50° the maximum stress is still
approximately 10 MPa off. On the other hand, the regularization applied to the network does ensure a stable
response with physically-sound shape (linear, plastic hardening and perfect plasticity) even upon significant
extrapolation from the training set.

Although the robustness of the network model is an advantageous feature when working with nonlinear
solvers at the mesoscale, the model outputs the expected curve shape even when the actual stress values are far
from being correct and therefore does not provide any clue that it is operating outside of its training space. Ide-
ally, the analyst should be provided not only with a prediction but also with a measure of how much confidence
the model has in giving it.

The next example explores the bootstrap strategy, a popular approach for estimating uncertainty in neural
networks [42]. Instead of relying on the prediction of a single6 network, 50 different networks are trained
with all pure stress cases and one extra case with θ = 45° and used to predict the complete envelope. Each
network has different initial weights and different training sets obtained through a bagging process [43]: from
the complete bag of 3500 stress-strain pairs, samples are randomly drawn, included in the training set and placed
back in the bag until the training set has 3500 pairs. This process leads to sets that see approximately 63.2 % of
the original sample pool, with some pairs appearing more than once. The samples that remain unseen are used
as a validation set.

Fig. 15 shows the envelopes predicted by each of the 50 networks as well as the average prediction. Fol-
lowing [7], the stresses that define the envelope are computed at a strain level of

√
ε2

22 + ε2
33 = 0.04. Close to

trained points (0°, 45° and 90°), predictions from all networks are close to the average one, indicating a high
level of confidence in the prediction. Moving away from the trained points, the level of disagreement between
networks gradually increases, indicating that predictions in those ranges of θ should be used with care. Natu-

6Technically, a network with dropout can be seen as a combination of 2n1 slightly different networks sharing the same parameters, this
being the total number of possible dropout combinations [37]. However, since dropout is only applied during training, the average behavior
of this network ensemble is accessible online but its variance is not.
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Figure 14: Network model predictions of the biaxial transverse tension response when θ = 45°. Curves from
models trained only on pure stress states (θlim = 0) as well as models retrained with additional biaxial cases
(θlim > 0) are shown.
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Figure 15: Biaxial yield envelopes obtained by 50 different bootstrapped networks trained with pure stress states
plus the biaxial case θ = 45°.
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Figure 16: Biaxial yield envelopes obtained with the bootstrapped network ensemble trained on pure stress
cases plus θ = 45° and with a single network trained with all values of θ. The mesomodel envelope is shown
for comparison.

rally, this additional piece of information comes at the cost of computing 50 network responses instead of one,
but more efficient techniques such as Bayesian neural networks can also be used to derive network responses
with uncertainty intervals [42].

Plotting the ensemble response together with predictions obtained with the mesomodel of Section 3 in
Fig. 16, it can be seen that both give predictions with roughly the same level of accuracy, with errors of up to
10 MPa. The advantage of the network model over the mesomodel lies in the possibility of retraining. Fig. 16
also shows the prediction of a single network trained with all values of θ used to construct the envelope. Even
though this network is now trained on two complete datasets (pure stress states and biaxial transverse tension),
the size n1 = 500 of the network is kept unchanged. Nevertheless, the same level of accuracy shown in Fig. 8
is achieved.

Finally, an analogous study is performed with the hyper-reduced model. The response of models trained with
pure stress cases plus a single biaxial case (θ = 45°) and with all envelope points are shown in Fig. 17. With
only a single biaxial training point, the hyper-reduced model already outperforms the mesomodel. Expanding
the training set leads to an almost perfect agreement with the full-order model, but a price is paid in terms of
efficiency: the model including all stress ratios has a reduced space of size n = 30 and m = 714 cubature
points (compare with n = 18 and m = 241 for the model trained with only 0°, 45° and 90°). In practice and
depending on the application, it might be more advantageous to accept a relatively small loss of accuracy in
order to keep the surrogate model efficient.

6.3 Longitudinal shear and transverse tension
The next set of examples considers the combination of longitudinal shear (σ12) and transverse tension (σ22 or
σ33). This is a loading scenario commonly encountered by laminated composites in service. It is therefore
an important stress combination to consider when training surrogate models. Here, the relevant stress ratio is
θ = arctan

(
σ12

σtt

)
, where σtt can be either σ22 of σ33. Changing the direction of this transverse stress leads to

different micromodel responses, a distinction that is lost in the invariant-based mesomodel.
First, models are trained with a combination of pure stress states and a number of extra cases defined by the

limit stress ratio θlim ∈ [0°, 90°] (analogous to Fig. 12) and used to predict the response of θ = 45°. For this
first part, σtt = σ22. Fig. 18 shows results for hyper-reduced models. For this load combination, information
gathered from only pure stress cases (θlim = 0) is not enough to properly reproduce the response at θ = 45°,
with a relative error of 13 % for the maximum stress level. Adding extra training cases quickly reduces the
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Figure 17: Biaxial yield envelopes obtained with a hyper-reduced model trained on pure stress cases plus
θ = 45° and with another one trained with all values of θ. The mesomodel envelope is shown for comparison.

error, as expected. Although not shown in Fig. 18, a similar accuracy level is obtained for σ22. Interestingly,
predictions by the network model for this load combination are significantly better than the ones obtained for
biaxial transverse tension. With the addition of relatively few extra training cases (from θlim = 30°), the network
converges to the micromodel solution, as can be seen in Fig. 19.

For the next test, the network and hyper-reduced model of Figs. 18 and 19 trained with θlim = 40° and
σtt = σ22 are used to predict the curve with θ = 45° but this time with σtt = σ33. The obtained results can be
seen in Fig. 20. None of the surrogates is able to correctly predict the shear response when the direction of the
transverse stress is shifted. The hyper-reduced model is the one with the lowest error, being able to correctly
predict the response up to the perfect plasticity regime and overshooting the maximum stress by about 5 %.
Interestingly, the mesomodel is the one with the largest discrepancy. Since the model is invariant-based, no
distinction is made between σ22 and σ33 when combining them with τ12, leading to excellent agreement for the
σ22-τ12 combination but not for σ33-τ12.

Fig. 20 illustrates the high level of complexity of the parameter space being treated here and raises the
issue of how to best sample this parameter space in order to ensure accuracy under general stress states. For
the mesomodel, sampling is a simple task that consists of a small pre-defined amount of micromechanical
experiments (Section 3). But the underlying assumptions that allow for such a simple calibration process lead
to highly inaccurate predictions for this specific loading scenario which is still a relatively simple one. The
biggest drawback of the mesomodel is that there is no straightforward way to substitute these prior assumptions
by posterior knowledge coming from additional micromodel simulations.

For hyper-reduction and neural networks, the problem is the opposite: these models can readily incorporate
new epistemic information but must contend with sampling a potentially infinite parameter space. Although the
question of sampling is much simplified here by focusing on monotonic loading along a number of load paths
defined a priori, it is an open issue that should be addressed in tandem with the development of new surrogate
modeling techniques [25, 31].

Models trained with pure stress cases plus two combined stress cases — θ = 45° for σtt = σ22 and
σtt = σ33 — are used to predict the complete stress envelopes for σ22-τ12 and σ33-τ12. The bootstrap strategy
is once again employed in order to obtain the average and variance of a combination of 50 different network
models. Results are shown in Fig. 21, with each envelope point corresponding to predictions at a strain level√
ε2

tt + γ2
12 = 0.04.

It is interesting to note that the network ensemble gives more accurate and more confident predictions for
the region of the envelope dominated by shear than for the one dominated by transverse stresses. The average
response is compared with the one obtained from a single network trained on the complete dataset as well as
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Figure 18: Hyper-reduced model predictions of the biaxial σ22-τ12 response when θ = 45°. Curves from
models trained only on pure stress cases (θlim = 0) as well as models retrained with additional biaxial cases
(θlim > 0) are shown.
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Figure 19: Network model predictions of the biaxial σ22-τ12 response when θ = 45°. Curves from models
trained only on pure stress cases (θlim = 0) as well as models retrained with additional biaxial cases (θlim > 0)
are shown.
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Figure 20: Surrogate model predictions for σtt = σ33 after being trained with σtt = σ22 (θlim = 40°). The
curves show the predicted responses for θ = 45°.
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Figure 21: Biaxial yield envelopes for the σ22(33)-τ12 combination obtained by 50 bootstrapped networks
trained with pure stress cases plus the biaxial case θ = 45°.
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Figure 22: Biaxial yield envelopes (σ22(33)-τ12) obtained with the bootstrapped network ensemble trained on
pure stress states plus θ = 45° and with a single network trained with all values of θ. The mesomodel envelope
is shown for comparison.

with mesomodel predictions in Fig. 22. As in Section 6.2, adding extra training cases improves predictions.
Once again the same model size n1 used for pure stress cases is enough to learn the larger dataset considered
here without loss of accuracy.

For the hyper-reduced model, envelopes obtained with θ = 0°/45°/90° and with all angles are shown in
Fig. 23. The partially-trained model already gives excellent predictions for σ22-τ12 but fail to reproduce part
of the σ33-τ12 envelope. Regarding model size, the one trained with only pure stress cases has n = 17 and
m = 217. Adding the biaxial case for θ = 45° leads to a model with n = 19 and m = 317. Finally, adding
the remaining angles results in n = 23 and m = 509. In both Figs. 22 and 23, note that the mesomodel is only
capable of capturing the σ22-τ12 envelope.

6.4 Axial stress and longitudinal shear
One last stress combination is briefly examined, namely longitudinal shear (τ12) with tension in the fiber direc-
tion (σ11). For high σ11/τ12 ratios, the longitudinal shear response is heavily affected by the presence of plastic
strains in the fiber direction. Since the mesomodel of Section 3 explicitly eliminates the possibility of plasticity
developing under axial loading, its effect on the shear behavior is not captured. Van der Meer [7] points to this
as being a major weakness of Vogler’s mesomodel, so it is interesting to investigate how well the other surrogate
strategies can handle this scenario.

The hyper-reduced model trained only on pure stress cases is used to predict shear response for a set of ratios
σ11/τ12 ∈ [57, 29, 11, 6, 0]. Results are shown in Fig. 24. Without any additional training, the hyper-reduced
model reproduces the curves for all ratios remarkably well. On the other hand, a network without additional
retraining gives poor predictions (Fig. 25). This example illustrates the advantage of reduction methods that,
although constrained to a reduced solution manifold, are still driven by the original constitutive laws of the
full-order micromodel (see [44] for an interesting alternative involving neural networks infused with actual
constitutive laws).

The neural network is retrained by including every curve in Fig. 25 in addition to the pure stress curves. The
resultant curves are shown in Fig. 26. Although providing better predictions, the retrained network is still not
able to accurately capture the response leading up to the perfect plasticity plateau. This is consistent with the
observed, for instance, in Fig. 7 and seems to be a side effect introduced when regularizing the network.
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Figure 23: Biaxial yield envelopes (σ22(33)-τ12) obtained with a hyper-reduced model trained on pure stress
cases plus θ = 45° and with one trained with all values of θ. The mesomodel envelope is shown for comparison.

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

γ12 [-]

τ 1
2

[M
P
a

]

Micromechanics
Untrained hyper-reduced

Mesomodel

Figure 24: Hyper-reduced model predictions for the biaxial σ11-τ12 response under various stress ratios. The
model trained with only pure stress cases predicts these unseen scenarios remarkably well.
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Figure 25: Network model predictions for the biaxial σ11-τ12 response under various stress ratios. The curves
are not reproduced well without additional network retraining.
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Figure 26: Biaxial σ11-τ12 predictions for the retrained network model. The predictions improve but are still
not as accurate as the ones obtained with the untrained hyper-reduced model.
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Figure 27: Short-beam FE2 example. Loads and boundary conditions are shown as well as the plastic strain
field at the final time step.

6.5 FE2 example
As one final illustrative example, the surrogate models are used to simulate the interlaminar shear test shown in
Fig. 27. The model consists of a short beam composed of unidirectional composite layers with fibers aligned
in the 0° direction shown in Fig. 27. Symmetry is exploited by modeling only half of the span of the beam and
the problem is simplified by modeling the beam in 2D with a plane strain assumption. The model is discretized
with 484 constant-strain triangles each with a single integration point. For models requiring an embedded RVE
(full-order FE2 and hyper-reduced), the same 3D micromodel used for training the surrogate models is adopted
and only in-plane stress and stiffness components are upscaled. Due to the short span between supports, strain
localizes at mid-thickness (Fig. 27) in a region dominated by longitudinal shear (τ12).

The models of Section 6.1, trained only with pure stress cases, are used as surrogates (εsv = 0.01, n1 =
500). The full-order FE2 problem is also solved as reference. This is a challenging scenario for the surrogates
since the model experiences a complex combination of longitudinal shear, fiber stress and transverse tension and
compression close to the load and support. Furthermore, the plane strain assumption at the macroscale leads to
stress combinations not covered during training under pure stress states. The analysis is executed for 118 time
steps, after which global convergence cannot be obtained for the full-order FE2 model. None of the surrogates
show this lack of robustness, but for the sake of comparison with the full model they are also stopped after 118
time steps.

The resultant load-displacement curves are shown in Fig. 28. Despite operating under a complex scenario
not covered during training, all surrogates predict the response well. The network model is the one showing the
highest discrepancy, with predictions for the load factor approximately 5 % lower than the reference ones. This
lack of precision during the hardening regime is consistent with previous observations (c.f. Figs. 7 and 26).

Execution times and speedups are shown in Table 1. Even with a coarse mesoscopic mesh with only 484
embedded micromodels, the full-order model takes more than one week to run. Without additional techniques
such as parallelization or the construction of surrogates, FE2 is effectively unsuitable for any practical applica-
tion. Among the surrogate models, the mesomodel is the most efficient, followed by the neural network and the
more expensive hyper-reduced model.

Full Mesomodel Network Hyper-reduced

Runtime [s] 726 500 2.2 10.8 2692

Speedup [-] N/A 329 478 67 393 270

Table 1: Execution times and speedups for the FE2 examples. Full-order values are used as reference.

There is, however, no clear-cut recommendation to be made as to which strategy should be chosen. The
mesomodel is fast and robust but fails in predicting relevant loading combinations. The neural network is
fast, can be retrained to incorporate new information and its efficiency scales well with model size, but it
has poor extrapolation capabilities and grapples with the bias-variance tradeoff. The hyper-reduced model
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Figure 28: Load-displacement curves for the short beam FE2 example. Predictions made with all three surro-
gate modeling strategies are shown. The analysis is stopped before the perfect plasticity plateau due to non-
convergence of the full-order FE2 model.

retains relevant physical information, extrapolates well to unseen data and readily handles unloading and path-
dependency, but is inherently slower than the other options and scales poorly with the size of its latent space.

7 Conclusions
Three different approaches for constructing surrogate models for multiscale analysis of laminated composites
have been compared through an extensive series of numerical tests. Comparisons involved a state-of-the-art
orthotropic mesoscale model with pressure-dependent plasticity, feed-forward neural networks with dropout
regularization and hyper-reduced models combining the POD and ECM techniques. Even though substantial
computational efficiency gains could be obtained with all of the approaches, each comes with a particular set of
advantages and drawbacks:

• Vogler’s plasticity mesomodel is the fastest among the strategies and enjoys a robust physical foundation.
Simplifying assumptions adopted in its formulation allow for a simple calibration procedure and a reduced
number of model parameters. But these same assumptions lead to poor predictions for a number of
realistic loading scenarios (Figs. 23 and 24). Once formulated, it is not possible to easily include in the
model new epistemic information gained from running additional micromechanical models.

• Neural networks are fast, can be trained to reproduce general stress states and can be retrained to incor-
porate additional data (c.f. Figs. 25 and 26). However, their extrapolation capabilities are limited, which
makes using them away from their training sets risky (Fig. 14). Furthermore, unregularized networks
can lead to high errors and nonsensical predictions by feeding on their own inaccuracy (Figs. 9 and 10).
Finally, conventional feed-forward networks assume a unique relationship between stresses and strains
and therefore cannot handle unloading or strain path dependency.

• Hyper-reduction tends to give better predictions with a lower training effort by retaining physical infor-
mation from the original full-order model. Hyper-reduced models tend to generalize well to unseen data,
albeit with varying degrees of success (c.f. Figs. 13, 18 and 24), and can be retrained on new observations
(Fig. 23). On the other hand, they are significantly slower than the other surrogates and their efficiency
does not scale well as more precision is sought or as more training cases are added (Fig. 11).

Although none of the techniques were found to be optimally efficient and accurate in every situation, they
could be employed in combination in order to leverage their strengths and minimize their weaknesses. For
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instance, for a given mesoscopic structure to be modeled, one could first use the mesomodel to quickly solve
the problem, gather a number of representative strain histories from multiple integration points and inject those
in a single micromodel in order to generate highly-tailored training data for hyper-reduced models or neural
networks. This can be used to efficiently solve the issue of sampling over an extremely large space of possible
strain combinations without having to run full-order FE2 models. Alternatively, an adaptive approach could be
used to switch between surrogates: an ensemble of neural networks could be used to compute the response at all
points but predictions with low confidence would be substituted by those coming from a hyper-reduced micro-
model. In any case, the present in-depth investigation on the advantages and limitations of each technique may
serve as a valuable starting point for building smarter multiscale analysis frameworks for laminated composites.
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