Bayram Cevdet Akdeniz 
  
Malcolm Egan 
  
A Reactive Signaling Approach to Ensure Coexistence Between Molecular Communication and External Biochemical Systems

Keywords: Molecular Communications, Coexistence, Reactive Signaling

In molecular communication systems operating in a crowded biochemical environment, there is the potential for unintended chemical or physical interactions with external biochemical systems. In order to avoid these interactions, or ensure coexistence, it is necessary to tailor the signaling scheme. In this paper, we propose a signaling strategy exploiting chemical reactions between different transmitted chemical species. While intuitively appealing, the non-linear nature of the governing partial differential equations (PDE) means that selecting the signaling strategy to minimize the probability of error is computationally challenging. To reduce this computational burden, we introduce a new proxy metric called the modified signalto-interference difference (mSID). We show that optimizing the mSID yields low complexity and near-optimal solutions, requiring only deterministic nonlinear programming rather than standard brute force Monte Carlo methods.

I. INTRODUCTION

Molecular communication-where information is encoded in the quantity, type or time of release of molecules-is increasingly expected to play an important role in the control of complex biochemical systems [START_REF] Nakano | Molecular communication: A 10 year retrospective[END_REF]. As such, the design of molecular communication systems must consider not only performance, but also the impact on external biochemical systems. This issue, called the coexistence problem in [START_REF] Egan | Coexistence in molecular communications[END_REF], [START_REF] Egan | Strategies for coexistence in molecular communication[END_REF] is an example of the difficulty of providing modularity in biological systems. Although such modularity has been widely studied within the system biology literature, there has only been limited attention to this issue focusing on molecular communications [START_REF] Mcbride | The effect of loads in molecular communications[END_REF].

On the other hand, the design of efficient signaling strategies for molecular communications via diffusion has progressed rapidly. A particularly promising approach is to exploit a number of different molecules in order to reduce intersymbol interference, leading to molecular shift keying (MoSK) schemes [START_REF] Tepekule | A novel pre-equalization method for molecular communication via diffusion in nanonetworks[END_REF], [START_REF] Shahmohammadian | Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels[END_REF].

Very recently, reactive signaling exploiting multiple information-carrying molecules has been introduced in [START_REF] Jamali | Diffusive molecular communications with reactive signaling[END_REF], [START_REF]Diffusive molecular communications with reactive molecules: Channel modeling and signal design[END_REF]. In this work, information is carried by molecules of Type-A and another chemical species of Type-B is introduced to remove molecules of Type-A within the channel. This approach differs from [START_REF] Noel | Improving receiver performance of diffusive molecular communication with enzymes[END_REF] where secondary chemical species are introduced within the channel by an external mechanism.

An important feature of reactive signaling, unlike MoSKtype schemes which exploit processing only in the receiver [5], [START_REF] Shahmohammadian | Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels[END_REF] is that it can play an important role in achieving coexistence. As signaling molecules of Type-A are removed in the channel, interactions with external biological systems can be reduced.

In this paper, we propose a reactive signaling scheme accounting both for the reliability of the communication system and coexistence with an external biological system. This is achieved by formulating a new optimization problem for the quantity of molecules of Type-B, as well as their time of release as previously proposed for a non-reactive scheme in [START_REF] Tepekule | A novel pre-equalization method for molecular communication via diffusion in nanonetworks[END_REF]. In previous reactive signalling studies, ( [START_REF] Jamali | Diffusive molecular communications with reactive signaling[END_REF], [START_REF]Diffusive molecular communications with reactive molecules: Channel modeling and signal design[END_REF]) the quantity of Type-B and release time of molecules were kept fixed, these two parameters may be adjusted to improve both the performance of reactive signaling satisfy the coexistence constraint.

Moreover, a key difficulty in obtaining optimal reactive signaling schemes is estimating the probability of error. In [START_REF] Jamali | Diffusive molecular communications with reactive signaling[END_REF], [START_REF]Diffusive molecular communications with reactive molecules: Channel modeling and signal design[END_REF], this was achieved via extensive Monte Carlo simulations. In order to avoid Monte Carlo simulations, we propose a new alternative metric, modified signal-to-interference difference (mSID). With the aid of the mSID, the quantity of released molecules and the time of release can also be obtained via the numerical solution of reaction-diffusion equations. We show that the mSID objective significantly reduces the computation time, while yielding a nearly optimal probability of error.

II. SYSTEM MODEL

Consider a point transmitter (Tx) that sends a sequence of binary messages s[k] ∈ {0, 1}, k = 0, 1, . . . , K -1 to a passive spherical receiver (Rx) with radius r at a distance d from the transmitter. The sequence s[k] = 0, k = 0, 1, . . . , K -1 is denoted by s 0 .

In the transmission of each binary message s[k] two types of molecules are sent, denoted by Type-A and Type-B, respectively. Let N A [k] denote the maximum number of molecules of Type-A released at the beginning of time slot k, N B [k] be the maximum number of molecules of Type-B released in time slot k, and τ denote the time of release of the Type-B molecules. The molecules released in time slot k can therefore be parameterized by

(N A [k], N B [k]
). We consider the scheme

(N A [k], N B [k]) = (N A , N B ) s[k] = 1 (0, 0) s[k] = 0. (1) 
For a symbol duration of t s seconds, the set of potential release times for molecules of Type-A and Type-B, respectively, are given by

T A = {t : t = kt s , k = 0, 1, . . . , such that s[k] = 1} T B = {t : t = kt s + τ, k = 0, 1, . . . , such that s[k] = 1}. (2) 
A key motivation for the introduction of Type-B molecules is to reduce intersymbol interference via chemical reactions. As such, we assume that

A + B κ → ∅, (3) 
where ∅ denotes any species that does not interact with the molecular communication system or its environment and κ represents the reaction rate.

Largely due to the difficulty of appropriately modeling the conditions under which a reaction will occur, there are three popular stochastic models for mesoscale reaction-diffusion systems; namely the Doi, Smoluchowski, and the reactiondiffusion master equation [START_REF] Isaacson | The reaction-diffusion master equation as an asymptotic approximation of diffusion to a small target[END_REF]. However, even restricted only to unimolecular and biomolecular reactions, these models have limited tractability. An alternative is to exploit a simplified model, where the quantity of molecules in a given domain at a given time is Poisson distributed. In particular, the number of molecules in the receiver at time t satisfies

y i ∼ Poi(y i (t)), i ∈ {A, B}, (4) 
where

y i (t) = r∈V Rx C i (x, t)dx, i ∈ {A, B} (5) 
with V Rx denoting the domain defining the receiver and C i , i ∈ {A, B} is defined by the reaction-diffusion equations

∂C A (x, t) ∂t = D A ∇ 2 C A (x, t) -κC A (x, t)C B (x, t) + G A (x, t) ∂C B (x, t) ∂t = D B ∇ 2 C B (x, t) -κC A (x, t)C B (x, t) + G B (x, t), (6) 
where

G i (x, t) = ti∈Ti N i δ(x, t -t i ), (δ(x, t -t i
) is Dirac delta function) and D i denotes the diffusion coefficient for i ∈ {A, B}. In [START_REF] Jamali | Diffusive molecular communications with reactive signaling[END_REF] and [START_REF]Diffusive molecular communications with reactive molecules: Channel modeling and signal design[END_REF], this simplified model has shown to be in good agreement with the stochastic model in [START_REF] Andrews | Stochastic simulation of chemical reactions with spatial resolution and single molecule detail[END_REF].

The mean y i (t) in ( 5) is obtained by integrating C i (x, t) via solving the system in [START_REF] Shahmohammadian | Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels[END_REF]. This can achieved by solving C i (x, t) iteratively as proposed in [START_REF] Jamali | Diffusive molecular communications with reactive signaling[END_REF] when the coexisting system does not absorb information molecules, and generic PDE solvers in the general case.

At time t = kT, k = 1, . . ., the receiver makes a decision by sampling the number of molecules of Type-A and applying the threshold test

ŝ[k] = 1, y A (kt s ) ≥ γ 0, otherwise. (7) 
In particular, the average bit error rate induced by ( 7) is given by

P e = 1 K K-1 k=0 P(s[k] = ŝ[k]), (8) 
and γ is chosen to minimize the average probability of error for the whole sequence s[0], . . . , s[K -1]. Note that by Corollary 1 in [START_REF]Diffusive molecular communications with reactive molecules: Channel modeling and signal design[END_REF] the test in [START_REF] Jamali | Diffusive molecular communications with reactive signaling[END_REF] corresponds to the maximum likelihood decision rule for symbol k, under the assumption that the past transmitted symbols forming the ISI are perfectly known.

A. Coexistence Constraints

In a crowded biochemical environment, it is necessary to account for the impact communication may have on external biological systems. For example, in [START_REF] Wicke | Molecular communication using magnetic nanoparticles[END_REF] magnetic nanoparticles are proposed as information carriers. Although they are used in many biomedical applications, in sufficiently high concentrations there is the potential for such nanoparticles to cause cellular damage [START_REF] Singh | Potential toxicity of superparamagnetic iron oxide nanoparticles (spion)[END_REF]. Another example is when Ca 2+ molecules are used as information carriers [START_REF] Nakano | Molecular communication and networking: Opportunities and challenges[END_REF]. In this case, the Ca 2+ molecules can interfere with the structure of the lipid bilayer, compromising the membrane of a cell [START_REF] Clapham | Calcium signaling[END_REF].

In order to account for undesirable interactions between information-carrying molecules and nearby biological systems, we introduce a coexistence constraint [2] [3]. In this paper, we desire that the communication system does not significantly change the expected total number of molecules that pass through the domain of an external biological systemwith domain V Bio -during the entire transmission of K bits. Formally, the coexistence constraint is given by

K i = E s[1],...,s[K-1] [Z i ] < δ i , i ∈ {A, B}, (9) 
where

Z i = Kts 0 b i (t)dt and b i (t) = x∈V Bio C i (x, t)dx, i ∈ {A, B}.
Note that b i (t) depends on the transmitted sequence via G i (x, t) in [START_REF] Shahmohammadian | Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels[END_REF].

III. OPTIMIZING THE REACTIVE SIGNALING SCHEME

In this section, we turn to the problem of optimizing the quantity and time of release for Type-B molecules in order to minimize the probability of error subject to the coexistence constraint in [START_REF] Noel | Improving receiver performance of diffusive molecular communication with enzymes[END_REF]. In order to select the quantity of molecules of Type-B, α, and the time of release, τ , it is necessary to solve the optimization problem min α,τ P e (α, τ )

subject to 0 ≤ α ≤ α max 0 ≤ τ ≤ t s K i (α, τ ) ≤ δ i , i ∈ {A, B}, (10) 
where the probability of error P e is given in ( 8) and the coexistence constraints K i are defined in [START_REF] Noel | Improving receiver performance of diffusive molecular communication with enzymes[END_REF]. For comparison, earlier studies of reactive signaling, [START_REF] Jamali | Diffusive molecular communications with reactive signaling[END_REF] and [START_REF]Diffusive molecular communications with reactive molecules: Channel modeling and signal design[END_REF] have used reactive signaling for ISI reduction by choosing the quantity of Type-B molecules same as the quantity of Type-A molecules and time of release as the peak time of Type-A molecules.

The key difficulty in solving the optimization problem in [START_REF] Isaacson | The reaction-diffusion master equation as an asymptotic approximation of diffusion to a small target[END_REF] is that under the proposed communication scheme and system model, to the best of our knowledge, there is not any tractable formula for P e in the literature. While it is possible to use the brute force approach to find good parameter choices, it requires extensive Monte Carlo simulations. An alternative approach is to use more sophisticated stochastic optimization methods. However, this approach still requires a number of Monte Carlo samples. A key question is therefore whether a lower complexity, yet near optimal solution method exists. This question is addressed in the following section.

A. Modified SID Optimization Problem

In [START_REF] Akdeniz | Optimal reception delay in diffusion-based molecular communication[END_REF] and [START_REF] Akdeniz | Molecular signal modeling of a partially counting absorbing spherical receiver[END_REF], the signal-to-interference difference (SID) was proposed to reduce inter-symbol interference interference (ISI) in diffusion-based molecular communication systems. In particular, the SID is the difference between the signal power and the interference power and it has been shown to be a good proxy for minimizing the probability of error in the presence of ISI.

A similar approach is also applicable for the reactive signaling scheme. Since both molecules of Type-A and Type-B are present in the channel, it is desirable to equalize the number of Type-A and Type-B molecules in order to balance the upcoming reactions for the next symbol intervals. In other words, when the number of remaining Type-A and Type-B molecules after the transmission interval are close to each other, there is less likely to be significant interference for future transmissions. Based on this intuition, a natural modification of the SID tailored to reactive signaling, called the modified signal-to-interference difference (mSID), can be written as

mSID(α, τ ) = y * A (t s ) - L m=2 (|y * A (mt s ) -y * B (mt s )|), (11) 
where y * A (mt s ) and y * B (mt s ) correspond to y i (t) obtained from ( 5) and ( 6) when the transmitted sequence is all zero except the first element. As such, y * A (mt s ) and y * B (mt s ) are obtained taking G A (x, t) = N A δ d (x, t) and G A (x, t) = αN A δ d (x, t -τ ). Note that the signal at time mt s is due to intersymbol interference from the one shot transmission. We highlight that due to the fact that a one-shot transmission is used to compute the mSID, the evolution of the system is governed by [START_REF] Shahmohammadian | Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels[END_REF] with initial conditions governed by the single transmission. The mSID can then be computed by numerically solving [START_REF] Shahmohammadian | Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels[END_REF], a single time.

The optimization problem in [START_REF] Isaacson | The reaction-diffusion master equation as an asymptotic approximation of diffusion to a small target[END_REF] can be approximated by max α,τ mSID(α, τ )

subject to 0 ≤ α ≤ α max 0 ≤ τ ≤ t s K i (α, τ ) ≤ δ i , i ∈ {A, B}. (12) 
The general procedure for solving [START_REF] Wicke | Molecular communication using magnetic nanoparticles[END_REF] is to first define the objective nonlinear objective function and constraints of the problem in [START_REF] Wicke | Molecular communication using magnetic nanoparticles[END_REF]. The mSID can then be optimized using standard methods from constrained nonlinear programming.

Therefore, a key feature of this approach based on the mSID is that no Monte Carlo simulations are required. For a comparison of complexities of mSID and P e , let O(c) be the required number operations to obtain the channel response due to any symbol s[k]. For the calculation of P e , one needs to calculate the channel response of the whole transmitted randomly selected K-length sequence and repeat this procedure R times in order to estimate the probability of error, which requires a number of computations on the order of O(N Rc). On the other hand, for calculation of mSID, the only requirement is calculation of the response of s [START_REF] Nakano | Molecular communication: A 10 year retrospective[END_REF] (i.e., setting s[1] = 1) which has complexity on the order of O(c).

IV. SIMULATION RESULTS AND DISCUSSION

In order to calculate P e , Monte Carlo simulations are performed by transmitting realizations of different sequences whose lengths are K = 50. In order to obtain statistically meaningful results, R = 10 3 realizations of the sequences are used. In particular, assuming the channel memory is L = 50 the response of the channel for any particular sequence is first obtained by using [START_REF] Tepekule | A novel pre-equalization method for molecular communication via diffusion in nanonetworks[END_REF]. The probability of error is then calculated for the corresponding sequence as described in [START_REF] Jamali | Diffusive molecular communications with reactive signaling[END_REF] and [START_REF]Diffusive molecular communications with reactive molecules: Channel modeling and signal design[END_REF]. To calculate the mSID, the only requirement is the calculation of [START_REF] Andrews | Stochastic simulation of chemical reactions with spatial resolution and single molecule detail[END_REF], which is independent from the transmitted sequence.

To solve the optimization problem for P e in [START_REF] Isaacson | The reaction-diffusion master equation as an asymptotic approximation of diffusion to a small target[END_REF], a brute force approach has been used. On the other hand, deterministic nonlinear programming is used for the proposed mSID-based approach. Although the simulations are conducted for various parameters, we present only one instance due to space constraints. The parameter set presented here is chosen to be the same as the parameter set used in [START_REF] Jamali | Diffusive molecular communications with reactive signaling[END_REF], with results given in Fig. 1.

We remark that in [START_REF] Jamali | Diffusive molecular communications with reactive signaling[END_REF] and [START_REF]Diffusive molecular communications with reactive molecules: Channel modeling and signal design[END_REF], α and τ are chosen to be 1 and the peak time of the Type-A molecules, respectively. On the other hand, as can be seen in Fig. 1a, a local minimum can be found and it does not necessarily correspond to α = 1. Furthermore, one can easily observe from Fig. 1a and1b, that the solution minimizing P e is very well approximated by the solution maximizing the mSID. As can be observed in Fig. 1c and 1d, as α increases, K B increases and K A decreases. This is expected since α is directly related to the amount of Type-B molecules in the environment and as the amount of Type-B increases, the number of reactions with Type-A molecules will also increase-leading to a decrease in the number of Type-A molecules.

Also observe that K A and K B do not change significantly with τ . Therefore, it is possible to reduce the selection interval of α. In particular, the coexistence constraints can be satisfied by reducing the possible choices of α. Suppose that α B is the value that satisfies K B = δ B and α A is the value that satisfies K A = δ A . Observe in Fig. 1c and Fig. 1d that if α A > α B , the solutions of the optimization problems in [START_REF] Isaacson | The reaction-diffusion master equation as an asymptotic approximation of diffusion to a small target[END_REF] and ( 12) are empty sets. For the other cases, the optimization problem in [START_REF] Wicke | Molecular communication using magnetic nanoparticles[END_REF] can be simplified to

max 0<τ <ts α A <α<α B mSID. (13) 
Depending on the coexistence constraints or constraints on the production of Type-B, it can also be possible that α B = α A , which implies that the minimization of P e (or maximization of mSID) only requires the optimization of τ . Fig. 2 corresponds to this scenario, with the optimal τ based on P e and the mSID for varying values of the diffusion coefficient D A and distance d. As can be seen in Fig. 2, both P e and the mSID yield quite similar results. This is also consistent with the results in Fig. 1a and1b. 

V. CONCLUSION

Reactive signaling was originally proposed to reduce intersymbol interference in molecular communications. In this paper, we have shown that reactive signaling can also provide a means of satisfying coexistence constraints, where the impact on an external biochemical system is limited. A key challenge-both with and without coexistence constraints-is that time-consuming Monte Carlo approaches are required for parameter optimization. We have shown that an alternative objective, the mSID, can be used instead of the error probability. This allows standard deterministic optimization methods to be used, which significantly reduces the required computation to obtain near-optimal solutions.
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 a1 Fig. 1: P e , mSID, K A and K B values of the system for N A = 5000, d = 250nm, D A = D B = 10 -9 m 2 s -1 r = 50nm, t s = 20µs and κ = 10 -17 molecule -1 m 3 s -1 . The labeled point corresponds to the optimal solution.
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 2 Fig.2: Comparison of minimum P e with brute force approach and P e obtained by using mSID.