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Abstract

Sparse polynomial chaos expansions (PCE) are a popular surrogate modelling method
that takes advantage of the properties of PCE, the sparsity-of-effects principle, and powerful
sparse regression solvers to approximate computer models with many input parameters,
relying on only few model evaluations. Within the last decade, a large number of algorithms
for the computation of sparse PCE have been published in the applied math and engineering
literature. We present an extensive review of the existing methods and develop a framework
for classifying the algorithms. Furthermore, we conduct a unique benchmark on a selection
of methods to identify which approaches work best in practical applications. Comparing
their accuracy on several benchmark models of varying dimensionality and complexity, we
find that the choice of sparse regression solver and sampling scheme for the computation of a
sparse PCE surrogate can make a significant difference, of up to several orders of magnitude
in the resulting mean-squared error. Different methods seem to be superior in different
regimes of model dimensionality and experimental design size.

1 Introduction

Computer modelling is used in nearly every field of science and engineering. Often, these com-
puter codes model complex phenomena, have many input parameters, and are expensive to
evaluate. In order to explore the behavior of the model under uncertainty (e.g., uncertainty
propagation, parameter calibration from data or sensitivity analysis), many model runs are re-
quired. However, if the model is costly, only a few model evaluations can be afforded, which
often do not suffice for thorough uncertainty quantification. In engineering and applied sciences,
a popular work-around in this situation is to construct a surrogate model. A surrogate model
is a cheap-to-evaluate proxy to the original model, which typically can be constructed from a
relatively small number of model evaluations and approximates the input-output relation of the
original model well. Since the surrogate model is cheap to evaluate, uncertainty quantification
can be performed at a low cost by using the surrogate model instead of the original model.
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Therefore, surrogate modelling aims at constructing a metamodel that provides an accurate
approximation to the original model while requiring as few model evaluations as possible for its
construction.

In this article, we focus on nonintrusive regression-based sparse polynomial chaos expansions
(PCE), which is a popular surrogate modelling technique, and within the last decade is has
received attention from the communities of applied mathematics and engineering. PCE express
the computational model in terms of a basis of polynomials orthonormal with respect to the in-
put random variables (Xiu and Karniadakis, 2002) and work well for globally smooth problems,
which are common in many engineering applications. In addition to being a surrogate model,
PCE are also often used for uncertainty propagation and sensitivity analysis, since moments
and Sobol’ sensitivity indices can be computed analytically (Sudret, 2008). Nonintrusive PCE
treat the model as a black box (unlike intrusive PCE commonly used for solving stochastic
PDEs). It is often advantageous to compute a sparse PCE, which is an expansion for which
most coefficients are zero. This can be justified by the sparsity-of-effects principle and by com-
pressibility: The sparsity-of-effects principle is a heuristic stating that most models describing
physical phenomena are dominated by main effects and interactions of low order (Montgomery,
2004). Furthermore, PCE of real-world models are usually either sparse or at least compressible,
meaning that the PCE coefficients, sorted by magnitude, decay quickly. Additional advantages
of sparse expansions are given in Section 2.2.

Within the last decade, a large number of articles has been published on the topic of regression-
based sparse PCE, each containing promising improvements on how to perform sparse PCE but
often lacking a thorough comparison to previously published methods. In this work, we survey
the state-of-the-art literature, develop a general framework into which the various approaches
can be fit, and carry out a numerical benchmark of a selection of methods to assess which of the
many sparse PCE methods perform best on a representative set of realistic benchmark models.

The paper is structured as follows. Section 2 contains the description of our framework for
classifying the sparse PCE literature as well as the extensive literature review. Section 3 contains
the benchmark description and the numerical results. Finally, conclusions are drawn in section 4.
More detailed descriptions of selected sparse solvers and experimental design techniques are given
in the Appendices using unified notation.

2 Framework and literature survey for sparse polynomial chaos
expansions

2.1 Regression-based polynomial chaos expansions

Let X be a d-dimensional random vector on a domain D ⊂ Rd with independent components
and probability density function fX(x) = ∏d

i=1 fXi(xi). Let L2
fX

(D) be the space of all scalar-
valued models with finite variance under fX , i.e., L2

fX
(D) = {h : D → R | VarX [h(X)] < +∞}.

Under certain assumptions on the input distribution fX (Xiu and Karniadakis, 2002; Ernst
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et al., 2012), there exists a polynomial orthonormal basis {ψα : α ∈ Nd} for L2
fX

(D). Since the
components of X are assumed to be independent, the basis elements are products of univariate
orthonormal polynomials and are characterized by the multi-index α ∈ Nd of polynomial degrees
in each dimension.

We consider a particular model M ∈ L2
fX

(D) and denote by Y = M(X) the corresponding
output random variable. Y can be represented exactly through an infinite expansion in {ψα :
α ∈ Nd}. In practice, however, not all infinitely many coefficients can be computed, and we are
interested in a truncated expansion

Y =M(X) ≈MPCE(X) =
∑

α∈A
cαψα(X) (1)

whose accuracy depends on the choice of the finite set A ⊂ Nd (i.e., on the basis elements used
for the expansion) as well as on the coefficients cα. Several truncation techniques are described
in Section 2.4.

To compute the coefficients, one well-known and practical approach is regression (Isukapalli,
1999; Berveiller et al., 2006)1. The basic regression approach is ordinary least squares (OLS).
Let {x(k)}Nk=1 ⊂ D be a sample of the input space called experimental design (ED). Let
y = (y(1), . . . , y(N))T be the vector of model responses with y(k) =M(x(k)). Define the matrix
of basis function evaluations Ψ with entries Ψij = ψj(x(i)), where the basis functions are enu-
merated in an arbitrary way. Denoting the number of basis functions with P , we see that the
regression matrix Ψ is an N × P -matrix. Then, the OLS regression problem can be written as

ĉ = arg min
c∈RP

‖Ψc− y‖2 . (2)

For a unique and robust solution, a heuristic number of model evaluations is N ≈ 2P, 3P (Hosder
et al., 2007; Fajraoui et al., 2017), which can be infeasible for high-dimensional or high-degree
PCE approximations.

2.2 Sparse PCE

Sparse coefficient vectors are determined through sparse regression, which, in addition to a good
regression fit, requires that the solution be sparse. This constraint on sparsity is realized e.g.
by adding as a regularization term the `0-“norm” or the `1-norm of the coefficient vector to the
OLS formulation of (2) (see Appendix B for more details). Many sparse regression methods
used in PCE were originally developed in the context of compressive sensing (Donoho, 2006;
Candès et al., 2006). For an introduction to the concepts and ideas of compressive sensing, see,
e.g., Candès and Wakin (2008); Bruckstein et al. (2009); Kougioumtzoglou et al. (2020).

Unlike OLS, compressive sensing methods allow one to use fewer design points N than basis
functions P and still recover the true sparse solution, or find a good sparse approximation to it.

1Other, earlier approaches for computing the coefficients are stochastic Galerkin and stochastic collocation
methods (Ghanem and Spanos, 1991; Xiu and Hesthaven, 2005; Shen et al., 2020). For a comparison of their
performance to regression-based PCE, see, e.g., Berveiller (2005); Hosder et al. (2007); Doostan and Owhadi
(2011); Mathelin and Gallivan (2012).
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This and its robustness to noise, both of which are induced by the sparsity constraint, are the
main reasons why sparse PCE are preferred to full PCE in practical settings when the number
of model evaluations necessary for OLS-based PCE would be infeasible to compute. Note that
while the use of sparse PCE for engineering models can be justified by compressibility and
the sparsity-of-effects heuristic (section 1), the main goal in sparse PCE is to compute a good
surrogate model from a few model evaluations and not to find the sparsest possible expansion.
The assumption of sparsity is used as a tool for finding robust solutions to underdetermined
systems of linear equations.

The first publications on sparse regression-based PCE proposed greedy forward-backward se-
lection algorithms (Blatman and Sudret, 2008, 2010a) and introduced the LARS algorithm for
sparse PCE (Blatman and Sudret, 2011). On the mathematical side, Doostan and Owhadi
(2011) analyzes convergence properties for sparse Legendre PCE when the design points are
sampled from the uniform distribution. Another early work is Mathelin and Gallivan (2012)
demonstrating that sparse PCE are less costly and more accurate than PCE based on Smolyak
sparse grids. Since then, a large number of articles has been published on the topic of sparse
PCE suggesting new methods for specific aspects of the sparse regression procedure. In the
following, we present a framework into which the existing literature can be fit. The framework
provides an overview of the available choices and enables a structured comparison of their impact
on the performance of the resulting sparse PCE. Naturally, some new combinations of methods
arise that have not yet been considered in the literature.

2.3 Framework: Classifying the literature on sparse PCE

Here, we present the framework we developed in order to gain an overview of the extensive
literature proposing new methods for computing sparse PCE. Figure 1 shows a sketch of this
framework. To compute a sparse PCE, the first step is to choose a setA of candidate polynomials
for the expansion (Section 2.4) as well as an experimental design (Section 2.5). The experimental
design defines the locations of the model evaluations. Once the model evaluations are obtained,
the sparse solution can be computed by applying a sparse regression solver (see Section 2.6).
This solver often depends on a number of hyperparameters that have to be selected carefully in
order to get good results. Then, a suitable model selection criterion is evaluated (Section 2.7).
If the obtained solution is satisfactory, the process can be stopped. Otherwise, the basis can be
adapted (usually augmented; see Section 2.4), and/or the experimental design can be enriched
(see Section 2.5.4). This process is repeated until the value of the model selection criterion either
is satisfactory or cannot be reduced.

In addition to the components shown in Figure 1, there are methods (we call them enhancements)
that aim at generally improving the solution to the sparse regression problem by, e.g., adapting
the input space or preconditioning the regression matrix. They are discussed in Section 2.8.
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Figure 1: Framework for computing sparse PCE. For each component of the framework,
a number of methods has been proposed in the literature. In the first part (section 2)
of this paper, we review the literature for each of the components. Details on selected
methods are given in Appendices A and B. In the second part (section 3), we conduct
a benchmark of selected methods for the components marked in orange, performing a
single iteration of the framework. Iterative basis adaptation and experimental design
enrichment are not considered in this work and are left for future benchmarks.

2.4 Choice of basis and basis adaptation

The approximation quality of a truncated PCE hinges on the polynomial functions available
for building the surrogate model, which are characterized by the associated set of multi-indices
A ⊂ Nd. We call the finite set of polynomials {ψα : α ∈ A} included in the current truncated
PCE model basis and call its members candidate polynomials or candidate basis functions. A
sparse PCE algorithm will find nonzero coefficients only for a subset Aactive ⊂ A of the basis
functions, which we call active basis functions. On the one hand, A should include enough
candidate polynomials to facilitate a good approximation. On the other hand, unnecessary basis
functions decrease the ratio N/P of model evaluations to unknown coefficients and deteriorate
the regression matrix. Therefore, it is beneficial to carefully select the polynomials to be included
in the expansion.

The choice of basis is often motivated by the sparsity-of-effects principle, a heuristic guideline
stating that most real-world models are well approximated by terms of low degree and low
interaction order. The following are popular ways to construct a basis:

• Total-degree A total-degree basis of degree p is defined by Ap = {α : ‖α‖1 ≤ p}.

• Hyperbolic truncation Let p be fixed. Define the q-norm-truncated basis

Ap,q = {α : ‖α‖q ≤ p} (3)

with q ∈ (0, 1] (Blatman and Sudret, 2011) and the quasi-norm ‖x‖q =
(∑d

i=1 |xi|q
) 1
q .

For q = 1, Ap,1 is the total-degree basis of order p. For smaller q, this truncation scheme
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excludes terms with high interaction order while keeping univariate polynomials up to
degree p.

• Interaction order The interaction order of the basis can be restricted by defining

Ap,r = {α ∈ Ap : #{i : αi 6= 0, i = 1, . . . , d} ≤ r} (4)

(Blatman and Sudret, 2008; Marelli and Sudret, 2019). This is useful for reducing the
number of basis functions especially in high dimensions and when it is known (e.g., for
physical reasons) that only a certain number of variables might interact.

Instead of using a fixed basis A, it can be beneficial to employ an iterative scheme which
starts from a small set of basis functions (low-dimensional, low-order) and, after computing a
sparse solution, repeatedly adapts the basis by including a set of the most promising candidate
polynomials and possibly removing others. This is called basis adaptivity (not to be confused
with Gaussian adaptation (Tipireddy and Ghanem, 2014); see also Section 2.8).

A simple instance of basis adaptivity is degree adaptivity (Blatman and Sudret, 2010a), which
is based on total-degree bases. The procedure starts with a basis of low total degree and
iteratively increases the total degree of the basis. Finally, a model selection criterion is used to
select the best basis and associated sparse solution. Similarly, q-norm and interaction order, or
a combination of all three, can also be used to design a basis adaptation scheme (Blatman and
Sudret, 2010a, 2011). This basis adaptivity is solution-agnostic in the sense that it does not
use any information from the solutions computed in previous runs for the augmentation of the
basis. Another solution-agnostic method is the dimension- and order-incrementing algorithm
of Alemazkoor and Meidani (2017). Two methods that adapt the basis based on the active
terms of the previous sparse solution are forward neighbor basis adaptivity (Sargsyan et al.,
2014; Jakeman et al., 2015) and anisotropic degree basis adaptivity (Hampton and Doostan,
2018). These approaches keep the size of the basis small by strictly controlling which functions
are added to the basis, often starting with a constant surrogate model and adding dimensions
only when necessary. A discussion and benchmark of basis-adaptive methods for sparse PCE is
available in Lüthen et al. (2021).

2.5 Experimental design

Generally, experimental design techniques aim to select points in order to achieve certain goals
related to exploration of the space (space-filling design), or to achieve certain properties of
the regression matrix such as (in expectation) orthonormal columns, small determinant, small
condition number, etc. For regression-based PCE, there are several main classes of experimental
design techniques:

• Sampling based on the input distribution. The samples are drawn from the input dis-
tribution. Techniques like Latin hypercube sampling (LHS) can be used to improve the
space-filling properties.
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• Sampling from a different distribution (also called induced sampling (Guo et al., 2020)).
A different distribution and associated basis are constructed that have better properties
than the input distribution and its basis.

• Choosing points according to an optimality criterion from a candidate set. Certain prop-
erties of the regression matrix are optimized by choosing the design points from a suitable
candidate set.

Note that none of these sampling methods considers the evaluations y of the computational
model. For model-aware sampling techniques (active and supervised learning), see Section 2.5.4.

The following sections contain an overview of available sampling methods for sparse PCE. Se-
lected experimental design techniques are described in more detail in Appendix A. Note that due
to the large amount of literature on experimental design for sparse PCE, our review cannot be
exhaustive. There are many more approaches available, including the deterministic Weil points
(Zhou et al., 2014), sparse grids (Perkó et al., 2014), randomized or subsampled quadrature
points (Berveiller et al., 2006; Tang and Iaccarino, 2014; Guo et al., 2017), etc.

2.5.1 Sampling based on the input distribution

The most basic sampling method is Monte Carlo (MC) sampling, where the points are sampled
independently from the input distribution (Doostan and Owhadi, 2011; Hampton and Doostan,
2015b). LHS (McKay et al., 1979) aims at distributing the design points in a more space-filling
way than MC sampling, using a stratification of the input quantile space in each dimension.
LHS is known to filter main effects; i.e., it reduces the variance of linear regression estimators
when the quantity of interest is dominated by terms of interaction order one (Shields and Zhang,
2016). LHS with sample decorrelation can further reduce the variance (Owen, 1994). LHS can
also be used together with a criterion such as maximin distance (maximize the minimal distance
between the design points in quantile space) (Pronzato and Müller, 2012), where several LHS
designs are generated and the one that optimizes the criterion is returned.

A generalization of LHS that combines it with stratified sampling is Latinized partially stratified
sampling (Shields and Zhang, 2016), which filters both main effects and low-order interaction
terms and has been shown to consistently outperform LHS in high-dimensional cases.

Other space-filling/low-discrepancy methods are Sobol’ sequences (Sobol’, 1967) and Halton
sequences (Halton, 1960), which are deterministic but appear to be quasi-random and space-
filling in low dimensions.

2.5.2 Sampling from a different distribution

Several methods consider the coherence parameter of a basis, defined by

µ(A, {ψα}) = sup
x∈D

max
α∈A
|ψα(x)|2, (5)
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which can be used to bound the number of samples needed for accurate recovery by `1-minimization
(Candès and Plan, 2011; Hampton and Doostan, 2015b). For Hermite and Legendre polynomial
bases, the coherence parameter of a total-degree basis grows exponentially with the total degree
p (Rauhut and Ward, 2012; Yan et al., 2012; Hampton and Doostan, 2015b).

To construct a coherence-optimal design, a new probability distribution and its associated
orthonormal basis are constructed that achieve minimal coherence (Hampton and Doostan,
2015b,a). The new basis can be derived from the original PCE basis by multiplying each member
by a weight function. Coherence-optimal samples can be drawn by Markov Chain Monte Carlo
(MCMC) (Hampton and Doostan, 2015b) or by rejection sampling (see section A.2.3). A re-
lated sampling scheme is obtained by constructing a new probability distribution and associated
orthonormal basis which have improved but not optimal coherence; however, the distribution
is constructed to belong to some classical family and is therefore straightforward to sample.
This is called asymptotic sampling (Hampton and Doostan, 2015b,a) and results in a Chebyshev
distribution for uniform input, and in a uniform distribution (within a ball of degree-dependent
radius) for Gaussian input. Numerical experiments confirm the expected performance gain of
coherence-optimal sampling over both MC and asymptotic sampling, and of asymptotic sam-
pling over MC in the case of low dimension d and high total degree p. For high-dimensional
problems with low degree, MC often performs better than asymptotic sampling (Hampton and
Doostan, 2015b).

The so-called Christoffel sparse approximation (CSA) (Jakeman et al., 2017; Narayan et al.,
2017; Cohen and Migliorati, 2017) is a related approach which constructs a new orthonormal
basis that minimizes the quantity

µ̃(A, {ψα}) = sup
x∈D

(
1
|A|

∑

α∈A
|ψα(x)|2

) 1
2

. (6)

As for coherence-optimal sampling, the new basis can be derived from the original basis by
multiplying each member by a weight function, which results in a weighted regression problem.
The corresponding probability distribution is chosen to be the so-called weighted pluripoten-
tial equilibrium measure, which for bounded distributions is the Chebyshev distribution. For
one-dimensional Gaussian input, this measure is a symmetric Beta distribution with degree-
dependent bounds.

Note that all three sampling methods described in this section introduce weights and therefore
modify the objective function into a weighted regression problem WΨc ≈ Wy. Since the
objective function belongs to the scope of the solver, these methods cannot be considered as
pure sampling methods in the sense of being completely independent of the solver.

2.5.3 Choosing points according to an optimality criterion from a candidate set

The following methods choose points from a candidate set in order to optimize properties of the
regression matrix. Candidate points can be sampled, e.g., using MC, LHS (Fajraoui et al., 2017),
coherence-optimal sampling (Diaz et al., 2018; Alemazkoor and Meidani, 2018a), or Christoffel
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sampling (Shin and Xiu, 2016b). Note that some of these methods introduce weights, resulting
in a weighted regression problem. The candidate set can have a large influence on the resulting
design.

• D-optimal sampling aims at maximizing the determinant D(Ψ) = det( 1
NΨTΨ) 1

P of the
information matrix (Kiefer and Wolfowitz, 1959). Note that D(Ψ) = 0 if N < P . Maxi-
mizing the D-value is connected to minimizing the variance of the coefficients of the PCE
estimate (Zein et al., 2013). Algorithms for D-optimal designs include greedy augmenta-
tion (Dykstra, 1971), exchange techniques (Fedorov, 2013; Cook and Nachtsheim, 1980;
Nguyen and Miller, 1992; Zein et al., 2013), maxvol (Mikhalev and Oseledets, 2018), gra-
dient descent (Zankin et al., 2018), and rank-revealing QR decomposition (RRQR)/subset
selection (Diaz et al., 2018; Gu and Eisenstat, 1996). The advantage of the last method is
that it can also be applied for wide matrices Ψ ∈ RN×P where N < P .

• S-optimal sampling (also called “quasi-optimal” in Shin and Xiu (2016a)) selects samples
from a large pool of candidate points so that the PCE coefficients computed using the
selected set are as close as possible to the coefficients computed from the whole set of
candidate points (Shin and Xiu, 2016a). The S-value is defined by2

S(Ψ) =
(√

det ΨTΨ
∏P
i=1 ‖Ψi‖2

) 1
P

(7)

where Ψi denotes the ith column of the regression matrix. Its maximization has the effect
of maximizing the column orthogonality of the regression matrix while at the same time
maximizing the determinant of the information matrix (Shin and Xiu, 2016a). Note that
S(Ψ) = 0 if N < P . An S-optimal experimental design can be computed using a greedy
exchange algorithm (Shin and Xiu, 2016a,b; Fajraoui et al., 2017).

• Near-optimal sampling simultaneously minimizes the two matrix properties mutual co-
herence and average cross-correlation (Alemazkoor and Meidani, 2018a), both of which
quantify the correlation between normalized columns of the regression matrix (see sec-
tion A.3.3 for the definitions of these properties). A near-optimal design can be built by a
greedy algorithm (Alemazkoor and Meidani, 2018a). Note that for near-optimal sampling,
it is not necessary that N ≥ P , since this method does not rely on the determinant of the
information matrix.

2.5.4 Sequential enrichment of the experimental design

Instead of sampling the whole experimental design at once, it has been proposed to use sequential
enrichment. Starting with a small experimental design, additional points are chosen based on the
last computed sparse PCE solution or on an augmented basis. In the context of machine learning,
sequential sampling is also known as active learning (Settles, 2012). Sequential enrichment

2This definition assumes that the columns of the matrix Ψcand, containing the evaluations of all candidate
points, are mutually orthogonal.
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has been proposed in the context of S-optimal sampling (Fajraoui et al., 2017), D-optimal
sampling (Diaz et al., 2018), and coherence-optimal sampling (Hampton and Doostan, 2018).
Zhou et al. (2019) suggest an enrichment strategy based on approximations to the expected
quadratic loss function, i.e., the mean-squared error. Ji et al. (2008) and Seeger and Nickisch
(2008) propose choosing points that minimize the differential entropy of the posterior distribution
of the coefficients (using a Bayesian regression setting). In all cases, numerical examples show
that the sequential strategy generally leads to solutions with a smaller validation error compared
to nonsequential strategies. Due to the complexity of the topic and the already large extent of
our benchmark, this strategy, albeit promising, is not explored further in this paper.

2.6 Solution of the minimization problem

There are many formulations of the regression problem that lead to a sparse solution, such as `0-
minimization, `1-minimization (basis pursuit denoising (BPDN), LASSO), `1− `2 minimization,
Bayesian methods, etc. (see also Appendix B). Based on these formulations, a vast number of
sparse solvers has been proposed in the compressed sensing literature; see, e.g., Carron (2013)
and the surveys of Qaisar et al. (2013); Zhang et al. (2015); Arjoune et al. (2017). We focus here
on solvers that have been proposed in the context of sparse PCE. Of course, it is straightforward
to use any other sparse solver to compute a sparse PCE.

The following solvers have been proposed in the sparse PCE literature:

• Convex optimization solvers. `1-minimization in its various formulations is a (constrained)
convex optimization problem. Least angle regression (LARS) (Efron et al., 2004; Blatman
and Sudret, 2011; Marelli and Sudret, 2019) is an iterative method that adds regressors
one by one according to their correlation with the current residual, and updates the co-
efficients following a least angle strategy. With the LARS-LASSO modification, which
allows for backwards elimination of regressors, LARS is able to generate the whole LASSO
path (Efron et al., 2004). Unmodified LARS can also be classified as a greedy method.
SPGL1 (van den Berg and Friedlander, 2008; Van den Berg and Friedlander, 2015) solves
the BPDN formulation by solving a succession of LASSO instances using the spectral pro-
jected gradient (SPG) method. Other solvers belonging to this class are e.g. the solvers
implemented in `1magic (Candès and Romberg, 2005) and SparseLab (Donoho et al.,
2007).

• Greedy methods are variants of stepwise regression where the regressors are added to the
model one by one according to some selection criterion, aiming at finding a heuristic
solution to the intractable `0-minimization formulation. Orthogonal matching pursuit
(OMP) (Tropp and Gilbert, 2007; Doostan and Owhadi, 2011; Marelli and Sudret, 2019)
is a classical forward selection algorithm in which orthonormalized regressors are added to
the model one by one according to their correlation with the residual, and the coefficients
are computed by least-squares. Baptista et al. (2019) suggests extensions to OMP such
as parallelization, randomization and a modified regressor selection procedure. Subspace
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pursuit (SP) (Dai and Milenkovic, 2009; Diaz et al., 2018; Diaz, 2018) is an iterative
algorithm that repeatedly uses least squares on a subset of regressors. LARS (Efron
et al., 2004; Blatman and Sudret, 2011) without the LASSO modification (allowing for
removal of regressors) can also be classified as a greedy method. Another greedy method is
ranking-based sparse PCE (Tarakanov and Elsheikh, 2019) which employs batch updating,
coordinatewise gradient descent of the elastic net formulation, and a correlation- and
stability-based ranking procedure for the regressors. Many more greedy stepwise regression
techniques have been proposed, utilizing various selection criteria, solvers, and stopping
criteria. An overview of methods following this scheme is given in section B.6.

• Bayesian compressive sensing (BCS) (a.k.a. sparse Bayesian learning) is a class of meth-
ods that use a Bayesian setting to find a sparse solution. They impose a sparsity-inducing
prior on the coefficients, whose parameters are again considered to be random variables
with a hyperprior (Tipping, 2001; Ji et al., 2008; Sargsyan et al., 2014; Tsilifis et al., 2020).
The solution is typically the maximum a posteriori estimate of the coefficients and can be
computed e.g. by differentiation (Tipping, 2001), expectation-maximization (Figueiredo,
2003; Wipf and Rao, 2004), expectation-propagation (Seeger and Nickisch, 2008), varia-
tional inference (Tsilifis et al., 2020; Bhattacharyya, 2020), or a fast approximate algorithm
(Faul and Tipping, 2002; Tipping and Faul, 2003). An extension called FastLaplace with
an additional layer of hyperparameters has been proven to attain even sparser solutions
(Babacan et al., 2010; Babacan, 2011). A greedy algorithm using the Bayesian setting
to select the regressors is the greedy Bayesian Kashyap information criterion (KIC)-based
algorithm (Shao et al., 2017).

• Iteratively reweighted methods. Iteratively reweighted `1-minimization uses the coefficients
computed in a previous iteration to construct a weighted `1-minimization problem (Candès
et al., 2008; Yang and Karniadakis, 2013). Cheng and Lu (2018b) suggest an iterative
reweighted method with D-MORPH regression (Li and Rabitz, 2010) as its computational
core, which is a technique that follows a certain path, defined by a quadratic objective
function, on the manifold of solutions to the underdetermined system.

Each of the solvers mentioned above features one or more hyperparameters whose values must be
calibrated. This is usually done by cross-validation. Popular choices are leave-one-out (LOO)
cross-validation (accelerated for least-squares solutions) (Blatman and Sudret, 2010a, 2011),
LOO cross-validation with a modification factor for small sample sizes (Chapelle et al., 2002;
Blatman and Sudret, 2011), and k-fold cross-validation (Doostan and Owhadi, 2011; Jakeman
et al., 2015; Huan et al., 2018).

Selected sparse regression solvers are described in more detail in Appendix B.

2.7 Model selection criterion

To decide whether to continue iterating in the framework or stop the process, we need to assess
how well the current sparse solution performs. Our main quantity of interest is the generalization
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error, which quantifies the mean-square accuracy of the surrogate. It is given by

Egen = EX

[(
M(X)−MPCE(X)

)2
]

(8)

whereM is the computational model, X is the random input vector, andMPCE is the sparse
PC surrogate.

The generalization error can be approximated by the validation error, which is the MC estimate
of (8) on a validation set {(x(i)

val, y
(i)
val) : x(i)

val ∼i.i.d. fX , y
(i)
val =M(x(i)

val), i = 1, . . . , Nval}. To make
the validation error independent of the scaling of the model, it is convenient to use the relative
mean-squared error defined by

RelMSE =
∑Nval
i=1 (y(i)

val −MPCE(x(i)
val))2

∑Nval
i=1 (y(i)

val − ȳ)2
(9)

where ȳ = 1
Nval

∑Nval
i=1 y

(i)
val .

The best surrogate modelMPCE (defined by A and c) is the one that has the smallest general-
ization error. In practical applications, the generalization error typically cannot be computed,
and a large validation set is not available due to computational constraints. Instead, we define
a model selection criterion that acts as a proxy for the generalization error. A typical stopping
criterion in the PCE framework of Figure 1 is the observation that the model selection criterion
no longer improves. The following model selection criteria have been proposed in the sparse
PCE literature:

• k-fold cross-validation (CV) (Hastie et al., 2001; Jakeman et al., 2015; Hampton and
Doostan, 2018), which approximates the validation error by building a surrogate several
times on different subsets of the data, and evaluating the error on the remaining data
points.

• Leave-one-out (LOO) cross-validation (Hastie et al., 2001; Blatman and Sudret, 2010a,
2011), which is N -fold cross-validation (where N is the size of the experimental design).
For PCE approximations computed by OLS, there exists an efficient formula to evaluate
the LOO error (Blatman and Sudret, 2011, Appendix D).

• Modified LOO (Blatman and Sudret, 2011), which uses a correction factor for the LOO
which was derived for the empirical error for OLS with small sample size (Chapelle et al.,
2002). The correction factor depends on the experimental design and the active basis
functions.

• Kashyap information criterion (KIC) (Shao et al., 2017; Zhou et al., 2019), an approxi-
mation to the Bayesian model evidence, which is the likelihood of observations given the
model.

• Sparsity (Alemazkoor and Meidani, 2017), which uses the idea that a larger basis should
lead to a sparser solution when the necessary basis functions enter the model, unless the
ratio of basis functions to model evaluations becomes too large.
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A model selection criterion is also often used to determine the hyperparameter of the sparse
solver (see Section 2.6).

If cross-validation is used to select the solver hyperparameter, this estimate of the validation
error is often too optimistic due to model selection bias. Instead of reusing this estimate for
model selection, it is better to perform an outer loop of k-fold or LOO cross-validation, a
procedure called double cross-validation or cross-model validation (Baumann and Baumann,
2014; Liu et al., 2020b).

2.8 Further enhancements of sparse PCE

There are many enhancements to the simple scheme for sparse PCE presented in Figure 1. The
following methods have been suggested to improve the accuracy of the solution and reduce the
number of model evaluations needed:

• Alemazkoor and Meidani (2018b) construct a preconditioning matrix for a given regression
matrix which reduces the mutual coherence while avoiding deterioration of the signal-to-
noise ratio.

• Huan et al. (2018) suggest a technique called stop-sampling, which guides the decision of
whether to obtain more samples (sequential ED enrichment) by observing the decrease of
the CV error.

• In the case when prior information about the magnitude of the coefficients is available,
Peng et al. (2014) use this information to construct a weighted regression problem which
allows a more accurate solution with fewer points (similar to iteratively reweighted `1-
minimization).

• Liu et al. (2020a) use resampled PCE, which is a technique for improving the PCE solution
by aggregating the results of several solver runs on different subsets of the data. Only the
terms that are chosen most often by the solvers are retained in the final solution.

• Several methods exist to reduce the dimension of the input space before computing the
sparse PCE. Unsupervised methods are principal component analysis (PCA) and kernel
PCA (Lataniotis et al., 2019). “Basis adaptation” methods (referring to a basis of the
input random space) determine a suitable rotation of the input space, often assumed to
be independent standard Gaussian, into new coordinates which permit a sparser represen-
tation in fewer coordinates (see Tipireddy and Ghanem (2014); Yang et al. (2018); Tsilifis
et al. (2019) and others). A related technique is nonlinear PCE-driven partial least squares
(PLS) (Papaioannou et al., 2019; Zhou et al., 2020), which reduces the input dimension by
identifying directions in the input space that are able to explain the output well in terms
of a sum of one-dimensional PCEs.
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3 Numerical results

3.1 Benchmark design

While the number of methods for computing sparse PCE is large, to the best of the authors’
knowledge there is no comprehensive benchmark study on this topic. Most publications only
compare the newly developed method to one or two baseline methods. An overview of publica-
tions containing comparisons of sparse PCE methods is presented in Appendix D.

Since the number of possible combinations of sampling schemes, sparse regression solvers, basis
adaptation schemes, model evaluation criteria etc. is huge (see Section 2.3 and thereafter), we
restrict our benchmark as follows to some of the most promising and best-known methods:

• We consider the sampling schemes MC, LHS, coherence-optimal, and D-optimal. LHS is
used together with a maximin criterion to improve the space-filling property (using the
MATLAB function lhsdesign). D-optimal designs are constructed from a coherence-
optimal candidate set3 using the subset selection/RRQR algorithm, which allows for the
construction of D-optimal experimental designs with size N smaller than the number of re-
gressors P (Diaz et al., 2018). There is no such algorithm for S-optimal sampling, which is
why we do not consider the latter in this benchmark. We do not consider Sobol’ sequences,
since they have been shown to be outperformed by LHS in sparse PCE applications (Fa-
jraoui et al., 2017). Near-optimal sampling can realistically be used only for rather small
bases (P ∈ O(100)), since its algorithm scales as O(MP 2), with M = 10P as suggested
by (Diaz et al., 2018) (see below). We use it with a coherence-optimal candidate set for
two models with small basis.

• We consider the sparse regression solvers LARS, OMP, subspace pursuit (SP), FastLaplace
(which we call here BCS), and SPGL1. Each of these solvers involves at least one hyperpa-
rameter, whose range is chosen according to reasonable guesses. For LARS and OMP, the
hyperparameter is the number K of selected regressors and its range is [1,min{P,N − 1}].
For SP, K must fulfill 2K ≤ min{P,N}. For BCS and SPGL1, the hyperparameter σ
is chosen from the range σ2 ∈ N ·V̂ar [y] ·[10−16, 10−1] which resembles a suitable range
of possible relative MSE values. The hyperparameter values of LARS and OMP are de-
termined by modified LOO cross-validation, while the hyperparameters of SP, BCS, and
SPGL1 are determined by k-fold cross-validation (Section 2.6). In addition, we consider
a variant of SP which uses LOO cross-validation instead of k-fold cross-validation, which
we name SPLOO.

• We only consider the nonadaptive setting, in which both the basis and the size of the
experimental design are fixed before the sparse PCE is computed.

3We have also conducted all benchmark experiments with D-optimal designs constructed from LHS candidate
sets, but we do not display these results, because we found that in most cases, D-opt(LHS) sampling performs
(significantly) worse than most other sampling schemes, and often worse than its candidate set LHS. This matches
with the results of Fajraoui et al. (2017) who observed this in a sequential enrichment setting and with the LARS
solver.
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• For each model, we define a reasonable range of 5–7 experimental design sizes. Each
experiment is repeated 30–50 times to account for statistical uncertainty. The experimental
designs are generated anew for each repetition and each ED size. All solvers are tested on
the same ED realizations.

• The coherence-optimal candidate sets from which the D-optimal designs are selected have
size M = 10P as in (Diaz et al., 2018). For computational reasons, they are not sampled
completely anew for each replication, but are rather drawn uniformly at random without
replacement from a larger set of size 2M = 20P as in (Diaz et al., 2018).

• Since we are interested in sparse PCE for the purpose of surrogate modelling, our main
quantity of interest is the relative mean-squared error45 (RelMSE) as defined in (9). We
investigate the RelMSE for several models, sparse solvers, and experimental design tech-
niques. Typically, the practical interest lies in small experimental designs.

• Since the experimental design is random, the resulting validation error is a random vari-
able. We visualize the data with boxplots. When comparing the performance of different
methods, we consider the median performance and the spread of the resulting valida-
tion error. However, often there can be considerable overlap of validation errors between
methods.

3.2 Software

For the implementation of the benchmark, we use the general-purpose uncertainty quantification
software UQLab (Marelli and Sudret, 2014). UQLab supports the integration of other software
packages.6 We utilize the following code:

• UQLab for MC sampling and LHS (Marelli and Sudret, 2014).

• DOPT_PCE for D-optimal sampling (subset selection/RRQR) and subspace pursuit (Diaz
et al., 2018; Diaz, 2018).

• An in-house developed rejection-based implementation of coherence-optimal sampling.
4Note that some authors such as Doostan and Owhadi (2011); Hampton and Doostan (2015b); Diaz et al.

(2018); Alemazkoor and Meidani (2018a) choose to normalize instead by
∑

x∈Xval
M(x)2 or use the unnormalized

mean-squared error (Shin and Xiu, 2016b). To assess the recovery of sparse vectors just as in compressed sensing,
some consider the error in the coefficient vector instead of the error in the model approximation (Alemazkoor and
Meidani, 2018a).

5Since a typical application of PCE is the computation of moments and Sobol’ indices, the error in these
quantities is another possible performance measure. However, globally accurate prediction as considered in this
paper is more challenging that the prediction of moments and Sobol’ indices, which are accurate if the largest-
in-magnitude coefficients are estimated accurately. If a globally accurate surrogate model can be constructed,
typically also the moments and Sobol’ indices are accurate.

6A description of how to use custom sparse solvers and sampling schemes in the UQLab framework can be
found in the supplementary material.
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• An in-house implementation of near-optimal sampling based on the description by Ale-
mazkoor and Meidani (2018a).

• UQLab for the solvers LARS and OMP (Marelli and Sudret, 2014).

• spgl1-1.9 for SPGL1 (van den Berg and Friedlander, 2008; Van den Berg and Friedlander,
2015).

• FastLaplace for the hierarchical implementation “FastLaplace” of BCS (Babacan et al.,
2010; Babacan, 2011).

3.3 Benchmark: Considered models

Our benchmark is performed on a selection of 11 computational models of varying complexity
and input dimensionality, which are typical benchmark models in the context of sensitivity and
reliability analysis. An overview of these models is given in Table 1. For details on the models,
we refer the reader to the respective publications supplied in the last column of the table.
While of course not representative of all possible classes of engineering models, we believe that
this sample provides a good testing ground for the comparative performance among different
approaches for computing sparse PCE.

In addition to analyzing aggregated performance on all 11 models, we investigate the behavior of
the methods in detail on a subset of four spotlight models, each of which possesses characteristic
properties that might influence the approximation quality of sparse PCE methods: the Ishigami
function is low-dimensional and highly compressible in the PCE basis but requires a high-
degree basis to be approximated accurately. The borehole function is smooth and nonlinear
and therefore is an example for a well-behaved engineering model. A two-dimensional diffusion
model, a stochastic heat diffusion PDE in two physical dimensions, is high-dimensional, not
analytical, and the magnitude of its expansion coefficients decays only slowly. Finally, the 100D
function is high-dimensional, analytical, and compressible.

The Ishigami model is the well-known three-dimensional, highly nonlinear, smooth analytical
function

f(X1, X2, X3) = sin(X1) + a sin2(X2) + bX4
3 sin(X1) (10)

taking uniform input X ∼ U([−π, π]3). A typical choice is a = 7, b = 0.1. For this function, any
sparse solver should be able to find a sparse solution.

The borehole function simulates the water flow through a borehole between two aquifers (Harper
and Gupta, 1983). It is an eight-dimensional nonlinear function which, despite having an ana-
lytical form, is not trivial to approximate. It is defined by

B(rw, L,Kw, Tu, Tl, Hu, Hl, r) = 2πTu(Hu −Hl)
ln (r/rw)

(
1 + 2LTu

ln(r/rw)r2
wKw

+ Tu
Tl

) . (11)

Its input random variables and their distributions are provided in Table 2.
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Table 1: Overview of the 11 computational models used in our benchmark. Italic font
denotes finite element (FE) models , all other models are analytical. For each model,
a static total-degree basis with hyperbolic truncation defined by p and q is used. The
values are chosen to fulfill P ≈ 10

3 Nmax, where Nmax is the largest tested experimental
design size. The values for p in parentheses for the Ishigami and borehole models refer
to the smaller basis used in Section 3.6. The column “Reference” provides the relevant
literature in which the models and their probabilistic inputs are described in detail.

Model Dimension Input distributions Basis Nmax Reference

Ishigami function 3 uniform p = 14 (12),
q = 1

200 (Blatman
and Sudret,

2011)

Undamped oscillator 6 Gaussian p = 5,
q = 1

150 (Echard
et al., 2013)

Borehole function 8 Gaussian, lognormal,
uniform

p = 5 (4),
q = 1

300 (Harper and
Gupta,
1983)

Damped oscillator 8 lognormal p = 5,
q = 1

400 (Dubourg,
2011)

Wingweight function 10 uniform p = 4,
q = 1

300 (Forrester
et al., 2008)

Truss model 10 lognormal, Gumbel p = 4,
q = 1

300 (Blatman
and Sudret,

2011)

Morris function 20 uniform p = 8,
q = 0.5

400 (Blatman
and Sudret,

2010b)

Structural frame model 21 lognormal, Gaussian;
dependent input

variables

p = 8,
q = 0.5

400 (Blatman
and Sudret,

2010a)

2-dim diffusion model 53 Gaussian p = 4,
q = 0.5

500 (Konakli
and Sudret,

2016)

1-dim diffusion model 62 Gaussian p = 4,
q = 0.5

500 (Fajraoui
et al., 2017)

100D function 100 uniform p = 4,
q = 0.5

1400 UQLab
example7
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Table 2: Borehole function: Input random variables and their distributions

Variable Distribution Description
rw N (0.10, 0.0161812) borehole radius
L U([1120, 1680]) borehole length
Kw U([9855, 12045]) borehole hydraulic conductivity
Tu U([63070, 115600]) transmissivity of upper aquifer
Tl U([63.1, 116]) transmissivity of lower aquifer
Hu U([990, 1110]) potentiometric head of upper aquifer
Hl U([700, 820]) potentiometric head of lower aquifer
r Lognormal([7.71, 1.0056]) radius of influence

The two-dimensional heat diffusion model (Konakli and Sudret, 2016) is defined by the partial
differential equation (PDE)

−∇ · (κ(x)∇T (x)) = Q1A(x) in Ω = [−0.5, 0.5]2 (12)

with boundary conditions T = 0 on the top boundary and ∇T ·n = 0 on the left, lower, and right
boundaries of the square domain Ω, where n denotes the outer unit normal (see (Konakli and
Sudret, 2016) for an illustration of the setup). Here, the source is in A = [0.2, 0.3]2 with strength
Q = 500. The output quantity of interest is the average temperature in B = [−0.3,−0.2]2.
The diffusion coefficient κ(x) is modelled by a lognormal random field with mean µκ = 1 and
standard deviation σκ = 0.3. The autocorrelation function of the underlying Gaussian random
field is an isotropic squared-exponential with length scale l = 0.2. The random field κ(x) is
discretized using the EOLE method (Li and Der Kiureghian, 1993) with d = 53 terms, which
comprises 99% of its variance. The solution to an individual heat diffusion problem is computed
using an in-house finite element code (Konakli and Sudret, 2016). The input comprises d = 53
independent standard normal random variables.

Finally, the so-called 100D function is an analytical model of the form

f(X) = 3− 5
d

d∑

i=1
iXi + 1

d

d∑

i=1
iX3

i + 1
3d

d∑

i=1
i ln

(
X2
i +X4

i

)
(13)

+X1X
2
2 +X2X4 −X3X5 +X51 +X50X

2
54

taking uniform inputs Xi ∼ U([1, 2]), i 6= 20, and X20 ∼ U([1, 3]). We use d = 100. This function
was designed for sensitivity analysis: the first-order sensitivity indices of the input variables are
generally nonlinearly increasing with their index, with certain variables having especially high
sensitivity. The model also contains four interaction terms. It is an example from UQLab.7

For each of the models, we use a fixed basis for the benchmark. In general, the best total degree
p and the hyperbolic truncation q are a priori unknown. We heuristically choose q = 1 for
low-dimensional models (d ≤ 10) and q = 0.5 for high-dimensional models (d ≥ 20). The degree
p is chosen so that the number of basis functions P is approximately 10

3 Nmax, where Nmax is the
largest number of experimental design points for the specific benchmark. This choice is based

7https://www.uqlab.com/sensitivity-high-dimension
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on the reasoning that for an experimental design of size N , sparse solvers like LARS often select
an active basis of size ≈ N

3 , and that the candidate basis might be 10 times larger than the final
active basis to be sufficiently rich. We focus on rather small experimental designs, since our goal
is not to investigate the convergence of the methods as N →∞ (which has been demonstrated
elsewhere), but to decide which methods are most efficient for small N . This results in the
choice of values for p, q, and Nmax displayed in Table 1.

3.4 Results: Comparison of solvers

First, we use a fixed sampling scheme (LHS) to compare the performance of the six solvers
LARS, OMP, subspace pursuit (SP) using k-fold cross-validation, Subspace Pursuit using LOO
cross-validation (SPLOO), FastLaplace (BCS), and SPGL1 on all 11 benchmark models described
above.

In Figure 2 we display boxplots (50 replications) of relative MSE against experimental design
size for all six solvers for the four spotlight models. For the remaining seven models, the
corresponding boxplots (30 replications) of relative MSE against experimental design size are
provided in Figure 10 in Appendix C. In the plots, the lines as well as the dot inside the white
circle denote the median of the relative MSE. We make the following observations:

• For the smallest experimental designs, all solvers perform similarly poorly: there is not
enough information in the ED to construct an accurate surrogate model. For larger exper-
imental designs, there can be considerable differences between the solvers’ generalization
errors of up to several orders of magnitude, which demonstrates that the solvers do not
use the available information in identical ways.

• BCS, SPLOO, and OMP are often among the best solvers. BCS performs especially well
for smaller experimental design sizes. In the case of the Ishigami model, it seems to
plateau earlier than the other solvers. It also tends to find sparser solutions than the other
solvers (not shown in plots), which might explain these observations: sparse solutions are
advantageous when only limited data is available, but at the same time they carry the risk
of ignoring important terms. For large ED sizes and the two highly compressible models
(Ishigami and 100D function), BCS has a larger spread than the other solvers, possibly
because the sparsity-enforcing procedure does not always include all of the important
terms. In contrast, the greedy solver OMP returns rather dense solutions, which seem to
generalize well. SPLOO performs well in general for low-dimensional models.

• SP does not perform well for small ED sizes, but for large ED sizes it sometimes outper-
forms the other solvers. Together with BCS, it tends to find sparser solutions than the
other solvers (not shown in plots).

• LARS and SPGL1 often achieve a similar generalization error, which is often larger, some-
times significantly, than that of the other solvers. SPGL1 tends to return rather dense
solutions (not shown in plots), which might not generalize as well as other solutions.

19



• Some models characterized by relatively poor compressibility (e.g. diffusion and frame)
show comparable performance among all solvers. This is expected, as in such cases the
sparsity assumption is a rather weak proxy for solution quality.

• The exceptions to the general observations outlined above are the damped oscillator and
the Morris function, for which the solver performance is reversed, with LARS and SPGL1
among the best solvers, and OMP and SPLOO among the worst. In these cases, however,
none of the methods achieves satisfactory accuracy within the available computational
budget.
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(c) Two-dimensional diffusion
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Figure 2: Boxplots of relative MSE against ED size from the solver benchmark for the
four spotlight models. Results for six sparse solvers and LHS design. For the correspond-
ing plots for the seven remaining models, see Figure 10 in Appendix C.

To objectively assess the performance of the methods, we now aggregate the results across
models. Since all solvers are tested on the same set of experimental designs, we can determine
the ranking of solvers for each experimental design (50 replications × 6−7 ED sizes for the four
spotlight models, and 30 replications × 5− 7 ED sizes for each of the seven additional models,
resulting in 2620 PCEs) and count how often each solver achieved each rank. This is displayed
in Figure 3 in the form of stacked bar plots, where the counts are given as percentages. The
counts have been normalized by the number of replications and ED sizes used for each model,
so that each of the models contributes equally to the final percentages.

This ranking alone, however, does not provide a complete picture; e.g., a solver ranked last can
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be off by orders of magnitude or barely worse than the best-performing one. Therefore, we added
an additional set of triangle markers detailing for how many of the EDs the respective solver
returned a result that was within two, five, or 10 times the smallest relative MSE attained by
any of the six solvers on the same ED. For example, the red triangle in the top row of Figure 3a
indicates that in ca. 30% of the runs, the solution returned by LARS had a validation error that
was at most twice as large as that of the best solution on the same ED.

We have grouped the analysis results separately for the 6 low-dimensional (d ≤ 10) and the 5
high-dimensional (d ≥ 20) models, because we observed that dimension had a significant impact
on the rankings, and this information is readily available even for black-box models. We also
analyze small and large ED sizes separately, where the first half of considered ED sizes (3–4)
are regarded small, and the second half large.
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(a) low-dim models (d ≤ 10), small ED sizes
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(c) high-dim models (d ≥ 20), small ED sizes

0 0.2 0.4 0.6 0.8 1

Ranking percentage

SPGL1

BCS

SP-LOO

SP

OMP

LARS

Rank 1 Rank 3 Rank 6

within 2*best

within 5*best

within 10*best

(d) high-dim models (d ≥ 20), large ED sizes

Figure 3: Aggregated results for the solver benchmark (Section 3.4), separately for low-
dimensional (a),(b) and high-dimensional models (c),(d). Left: small ED sizes. Right:
large ED sizes. For each model and experimental design, the ranking of the six solvers is
determined. The stacked bar plots visualize how often each solver achieved the respective
rank. The triangle markers in hues of red additionally demonstrate in how many runs
the obtained relative MSE was within a factor of {2, 5, 10} of the smallest relative MSE
achieved on this experimental design.

We make the following observations:

• Low-dimensional models, small ED sizes: BCS is the best solver most often (31% of runs)
and also most often within two times the smallest error (72% of runs). However, it comes
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within one order of magnitude of the smallest relative MSE (a property which we here call
robustness) in only 87% of runs, while SPLOO achieves this in 94% of runs. In the two
former metrics, SPLOO comes second. LARS and SP perform worst, followed by OMP and
SPGL1. Here and in the following, we observe that OMP and SPLOO often result in quite
robust solutions.

• Low-dimensional models, large ED sizes: SPLOO outperforms the other solvers in all re-
spects. It provides the smallest relative MSE of all solvers in 42% of runs, is in 73% of
runs within two times of the smallest relative MSE, and is even in 99% of runs within
one order of magnitude of the smallest relative MSE. For the other solvers, the statistics
confirm the observations highlighted by the spotlight models: LARS and SPGL1 overall
do not perform well. SP and BCS come close to the best solution quite often, but are less
robust, whereas OMP is robust but often not as close to the best solution.

• High-dimensional models: For the small as well as the large ED sizes, we see that BCS
performs exceptionally well. It is the best solver in 45% (53%) of runs and comes within
two times the smallest relative MSE in even 96% (97%) of runs. Both BCS and OMP
attain in all cases a relative MSE within 10 times the smallest relative MSE. SP performs
better for large rather than small ED sizes. While SPLOO performed best for the low-
dimensional models, here it shows poor performance. Note that all solvers come within 10
times the smallest relative MSE in more than 89% of all runs, showing that the choice of
solver has a smaller impact for high-dimensional than for low-dimensional models.

3.5 Results: Comparison of sampling schemes together with solvers

We pair the five solvers LARS, OMP, SP, SPLOO, and BCS8 with the sampling schemes MC,
LHS, coherence-optimal, and D-optimal based on a coherence-optimal candidate set. We use
the abbreviations coh-opt and D-opt(coh-opt) for the latter two. Since SPLOO performed poorly
for high-dimensional models in the solver benchmark of the previous section, we do not consider
it here for the high-dimensional models.

We run the benchmark for the low-dimensional models Ishigami, undamped oscillator, borehole,
damped oscillator, and wingweight function, and for the high-dimensional models Morris func-
tion, two-dimensional diffusion, one-dimensional diffusion, and 100D function. The truss model
has Gumbel input, for which we (as of now) cannot construct a coherence-optimal sample. The
same holds for the structural frame model with its dependent input.

Detailed boxplots of the relative MSE against ED size for the spotlight models, showing how
each solver performed when paired with the sampling schemes, can be found in Appendix C,
Figures 11–14. For the sake of readability, in this section we only show results that are aggregated
over models, separately for the low- and high-dimensional cases. For every model and repetition
index, we determine the relative ranking of the 20 (16) combinations (5 (4) solvers × 4 sampling

8Since SPGL1 did not perform well in the previous section, and is quite slow, we do not include it further in
this benchmark.
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strategies). We also determine which of the combinations came within a factor of {2, 5, 10} of the
smallest relative MSE among this set (robustness). Then, we count how often each combination
achieved each rank, and how often each combination achieved a relative MSE within a factor of
the smallest relative MSE. The results are displayed in Figure 4 in the form of stacked bar plots
for the ranks, with triangle markers denoting the percentage of robust runs. The combinations
are sorted by the percentage of runs in which they achieved a relative MSE within two times
the smallest relative MSE, because we find that this metric is a good compromise between
performance and robustness. We analyze small and large ED sizes separately, where the first
half of considered ED sizes (3–4) are regarded as small and the second half as large.

Note that, as opposed to the aggregated results in Figure 3, where the solvers are compared on
the same experimental designs, here the comparison is done on different experimental designs,
which are matched randomly.9 Our results in Figure 4 are bootstrapped four times using random
permutations of the replication index, corresponding in total to 250 replications, to minimize the
influence of this randomness (which is in any case not large, as can be seen from permutation
tests).

From Figure 4 and Figures 11–14, we make the following observations:

• There can be considerable differences in the performance of different combinations of
solvers and sampling schemes. The differences are larger for low-dimensional models,
visible in the spread of triangle markers in Figures 4a and 4b. For high-dimensional mod-
els, many combinations find an error that is close to the smallest error, which can be seen
from the red triangle markers at high percentages in Figures 4c and 4d, and from the
clustered boxplots in Figures 13 and 14, (e) and (f).

• MC and LHS perform comparably, and for the high-dimensional models almost identically.
For the low-dimensional models, LHS sampling has, in most cases, median error and
variability that are the same as or smaller than MC. This is consistent with the literature
(Shields and Zhang, 2016). These observations are confirmed by the plots in Figure 4: for
almost every solver, the combination with LHS is slightly better than the corresponding
one with MC in each of the metrics.

• The advanced sampling schemes coh-opt and D-opt(coh-opt) show a clear advantage over
MC and LHS sampling for low-dimensional models and large experimental designs (consis-
tent with theoretical considerations and numerical experiments (Hampton and Doostan,
2015b)). For low-dimensional models and small experimental designs, they show mixed
performance; for high-dimensional models, they perform the same as or worse than LHS
and MC.

9The relative MSE of each combination is interpreted as a random variable Esampling
solver , where the randomness

is induced by the randomness in the experimental design. E.g., ELHS
BCS is the random variable of relative MSE

attained by BCS applied to an LHS design of specified size. The reference error (“smallest relative MSE”) E∗

is a random variable as well, defined as the minimum over one realization of each combination of methods:
E∗ = mins∈sampling,t∈solversE

t
s. The plots in Figure 4 are therefore read as follows: e.g., in the low-dimensional,

small ED size case (Figure 4a): P
(
ED-opt
BCS = E∗

)
= 0.16, P

(
ED-opt
BCS ≤ 10E∗

)
= 0.78.

23



0 0.2 0.4 0.6 0.8 1

Ranking percentage

LARS & coh-opt

OMP & MC

OMP & LHS

SP & D-opt

SP & coh-opt

LARS & MC

LARS & LHS

SP & MC

SP & LHS

SP-LOO & MC

SP-LOO & LHS

OMP & coh-opt

LARS & D-opt

SP-LOO & D-opt

SP-LOO & coh-opt

OMP & D-opt

BCS & MC

BCS & coh-opt

BCS & LHS

BCS & D-opt

Rank 1 Rank 10 Rank 20

within 2*best

within 5*best

within 10*best

(a) d ≤ 10, small ED sizes

0 0.2 0.4 0.6 0.8 1

Ranking percentage

OMP & MC

OMP & LHS

LARS & coh-opt

SP-LOO & MC

LARS & MC

BCS & MC

LARS & LHS

SP-LOO & LHS

BCS & LHS

SP & MC

SP & LHS

LARS & D-opt

BCS & D-opt

BCS & coh-opt

SP & D-opt

OMP & D-opt

OMP & coh-opt

SP & coh-opt

SP-LOO & D-opt

SP-LOO & coh-opt

Rank 1 Rank 10 Rank 20

within 2*best

within 5*best

within 10*best

(b) d ≤ 10, large ED sizes

0 0.2 0.4 0.6 0.8 1

Ranking percentage

OMP & coh-opt

LARS & coh-opt

OMP & MC

OMP & D-opt

LARS & D-opt

SP & coh-opt

OMP & LHS

SP & D-opt

SP & LHS

SP & MC

LARS & MC

LARS & LHS

BCS & coh-opt

BCS & D-opt

BCS & MC

BCS & LHS

Rank 1 Rank 8 Rank 16

within 2*best

within 5*best

within 10*best

(c) d ≥ 20, small ED sizes

0 0.2 0.4 0.6 0.8 1

Ranking percentage

OMP & MC

OMP & coh-opt

OMP & LHS

OMP & D-opt

LARS & coh-opt

LARS & D-opt

SP & coh-opt

LARS & MC

LARS & LHS

BCS & coh-opt

SP & D-opt

SP & LHS

SP & MC

BCS & D-opt

BCS & LHS

BCS & MC

Rank 1 Rank 8 Rank 16

within 2*best

within 5*best

within 10*best

(d) d ≥ 20, large ED sizes

Figure 4: Aggregated results for the five low-dimensional models Ishigami, undamped
oscillator, borehole, damped oscillator, and wingweight (top), and for the four high-
dimensional models Morris function, structural frame, two-dimensional diffusion, and
100D function (bottom). Separately for small (a),(c) and large (b),(d) experimental de-
signs. For the low-dimensional (high-dimensional) case, we investigate five (four) solvers
and four sampling schemes, resulting in 20 (16) combinations. For each model and repeti-
tion, the ranking of all the combinations is determined (note that as opposed to Figure 3,
here the comparison is done on different EDs, which are matched randomly. Results are
bootstrapped four times by random permutations to increase robustness). The stacked
bar plots visualize how often each combination achieved the respective rank. The triangle
markers in hues of red additionally demonstrate in how many runs the obtained relative
MSE was within a factor of {2, 5, 10} of the smallest relative MSE achieved in this com-
parison. The combinations are sorted by the percentage of runs in which they achieved a
relative MSE within two times the smallest relative MSE of the respective random pairing
(red triangle marker). Plots of relative MSE against ED size for the spotlight models can
be found in Appendix C, Figures 11–14.
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It is known that coh-opt sampling leads to a greater improvement over MC sampling for
low-dimensional, high-degree expansions than for high-dimensional, low-degree expansions
(Hampton and Doostan, 2015b; Alemazkoor and Meidani, 2018a). Note also that all
numerical experiments in the literature testing coh-opt sampling were performed in d ≤ 30
dimensions, using only models with uniform input, or manufactured sparse PCE, i.e.,
polynomial models with an exactly sparse representation (Hampton and Doostan, 2015b,a;
Alemazkoor and Meidani, 2018a; Diaz et al., 2018).

Both coh-opt and D-opt are sampling methods that aim to improve properties of the
regression matrix. They are adapted to the candidate basis. If the candidate basis is
large and contains many regressors that are not needed in the final sparse expansion, this
adaptation might even deteriorate the solution.

• BCS is one of the best-performing solvers, almost regardless of sampling scheme. The
exceptions are low-dimensional models with large experimental designs, where SPLOO with
coh-opt sampling outperforms all other solvers. This might be related to BCS plateauing
earlier than other solvers (see Figure 2a and 2b). It seems BCS is preferable whenever the
information content is low (small ED sizes or high-dimensional models).

• OMP and SPLOO are generally quite robust (within one order of magnitude of the best
solution). However, OMP often does not come close to the best solution, especially when
paired with LHS or MC. BCS is more robust for high-dimensional models than for low-
dimensional models. LARS and SP show mixed performance, with LARS being one of the
least robust solvers.

• Aggregating the results for each sampling scheme separately (not shown), we observe that
the behavior of the solvers is very similar in terms of ranking and robustness to the behavior
observed on LHS (Figure 3), suggesting that the ranking of solvers is mostly independent
of the sampling scheme.

Note that the results in Figures 11, 12, and 14 exhibit plateauing for larger sample sizes. This
indicates that the maximal accuracy achievable with this set of basis functions has been reached.
Using a larger basis might lead to more accurate solutions, if it contains an important regressor
that was previously missing. However, note that a larger basis can also lead to less accurate
solutions: when the experimental design size is held fixed while a larger basis is used, the ratio
of experimental design points to basis functions is smaller, and the properties of the regression
matrix might deteriorate.

3.6 Results: Comparison of sampling schemes together with solvers, using a
smaller candidate basis

We repeat the experiments from the previous section for the Ishigami and borehole models,
using a smaller candidate basis for which near-optimal sampling is feasible. The tested solvers
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are LARS, OMP, SP, SPLOO, and BCS. We use the sampling schemes MC, LHS, coh-opt, D-
opt(coh-opt) and near-opt(coh-opt). Boxplots of relative MSE against ED size are shown in
Figures 5 and 6. For the sake of conciseness, we only show the combinations involving OMP
and SPLOO. The remaining plots are provided in Appendix C, Figure 15.

We observe the following:

• Since the basis is smaller, the relative MSE reaches a plateau already for smaller experi-
mental design sizes.

• Most qualitative observations regarding solver and sampling performance are the same as
in the previous section, where a larger basis was used.

• Near-optimal sampling often achieves the same or a slightly smaller error than coh-opt
sampling, which is consistent with (Alemazkoor and Meidani, 2018a). In many cases,
near-optimal sampling achieves the smallest median error. For the Ishigami model, near-
optimal sampling additionally exhibits small variability, while for the borehole model, it
has a rather large spread, i.e., several outliers.
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Figure 5: Results for the Ishigami model with a smaller basis (d = 3, p = 12, q = 1).
Results for two sparse solvers and five experimental design schemes. 50 replications. For
the remaining plots, see Figure 15 in Appendix C.
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Figure 6: Results for the borehole model with a smaller basis (d = 8, p = 4, q = 1).
Results for two sparse solvers and five experimental design schemes. 50 replications. For
the remaining plots, see Figure 15 in Appendix C.

4 Discussion and conclusions

In this paper, we investigated sparse PCE methods with the goal of computing accurate surrogate
models based on a few model evaluations.

We presented a literature survey and a framework describing the general computation procedure
for sparse PCE. We have seen that the existing literature on sparse PCE can be fit into this
framework and that methods developed for different components of the framework can naturally
be combined.

In order to give recommendations to practitioners who want to use sparse PCE surrogates for
their applications, we performed a numerical benchmark based on 11 example functions which
are intended to resemble real-world engineering problems presenting different challenges. We
tested several popular sparse solvers and sampling schemes on a fixed set of basis functions, using
a range of experimental design sizes and 30–50 replications, and made the following observations:

• The choice of sampling scheme and sparse regression solver can make a difference of up
to several orders of magnitude for the relative MSE. Mostly, the rankings of solvers and
sampling schemes seem to be independent of one another: an experimental design that
works best for one solver will also perform well with other solvers, and the ranking of
solvers looks similar independent of which sampling scheme is used. Both solvers and
sampling schemes make a greater difference for low-dimensional models.

• For low-dimensional models and small ED sizes, the solver BCS performs best, regardless
of sampling scheme (with D-opt(coh-opt) being slightly preferable), while the solver SPLOO

(a variant of SP) appears to be especially robust.

• For low-dimensional models and large ED sizes, SPLOO together with coherence-optimal
sampling outperforms all other combinations.
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• For low-dimensional models, and when the basis is small enough to make it feasible, near-
optimal sampling outperforms all other sampling schemes, regardless of the solver.

• For high-dimensional models, BCS is by far the best solver. All solvers perform better
when paired with LHS; in other words, no advanced sampling scheme appears competitive
compared to LHS for such problems, whatever the solver used.

The benchmark results demonstrate that in costly, real-world applications it is worth choosing
the sparse PCE training strategy carefully, since the methods can make a substantial difference
in the quality of the resulting surrogate. While a more accurate surrogate model is generally
desirable, in industrial applications it might have a higher impact for purposes such as optimiza-
tion, rather than, e.g., sensitivity analysis.

Our conclusions are based on a number of benchmark models, which we consider representative of
engineering models in terms of dimensionality and complexity. Naturally, however, no selection
of models can cover the whole space of engineering models. Further work would be required to
understand the connection among model properties, basis choice, experimental design size, and
sparse PCE techniques like solvers and sampling schemes.

All results were obtained using a fixed basis based on a heuristic choice (see Section 3.3). Gen-
erally, when the optimal degree of the basis is unknown, degree adaptivity (based on a cross-
validation error) can be a useful strategy. Due to time and space constraints, this was not
investigated in the present work. Adaptivity critically depends on the availability of an ac-
curate error estimator. Some of the best solvers in this study (i.e., OMP and BCS) tend to
underestimate the generalization error (not shown in the plots), which might be a drawback in
the setting of adaptive degree selection and might change the effect and ranking of solvers and
sampling methods. For a detailed discussion and benchmark of basis-adaptive schemes, we refer
the reader to (Lüthen et al., 2021).

As evident from the extensive literature on the topic, sparse PCE is an already well-established
technique, as well as an active field of methodological research. Recent innovations include
Bayesian techniques for sparse PCE and the identification of suitable rotated coordinates for
the expansion. Such innovative ideas are expected to lead to further improvements in the
computation of sparse PCE, which will in turn benefit applications as well as all advanced
methods that use sparse PCE as one of their building blocks (see, e.g., (Schöbi et al., 2015;
Chatterjee et al., 2019; Zhu and Sudret, 2020; Marelli et al., 2021)).

PCE is a popular metamodelling tool in the engineering community, and many different methods
are available. Up to now, the choice of which of the many PCE methods to apply was mostly
left to chance or the personal experience of the practitioner. In our benchmark, we explored
a significant set of methods that have received attention in the past few years. We hope that
this work can serve as a basis for further benchmarking efforts, in order to identify which of
the many available methods are most suitable for real-world problems. These might include
sequential enrichment of experimental design, Gaussian adaptation of the input space, stepwise
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regression algorithms and many other ideas for sparse solvers, as well as methods for extremely
high-dimensional problems.

Our benchmark code is available on request. The solvers BCS and SPLOO will be made available
in the 1.4.0 release of UQLab. For a description of how to add custom sampling schemes and
sparse solvers for PCE to UQLab, we refer the reader to the supplementary material accom-
panying this paper. To facilitate easier benchmarking of PCE techniques on a large number
of examples in a standardized setup, we are actively engaging in designing and developing a
benchmarking platform for surrogate modelling methods similar to the UCI machine learning
repository10 or the structural reliability platform RPrepo11 where data sets, models, and meth-
ods can be made available for testing and benchmarking.
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A Details on experimental design sampling techniques

It depends on certain properties of the regression matrix Ψ whether or not sparse regression
techniques are able to find the true sparse solution of a linear system of equations (assuming
that it exists). In the context of polynomial chaos, the entries of the regression matrix are the
basis polynomials evaluated at the design points. The basis polynomials are determined by the
distribution of the input random variables and the choice of the index set A, while the design
points {x(j)}Nj=1 can be chosen freely from the input space to optimize properties of the resulting
regression matrix.

In the following, we present sampling schemes that have been proposed in the literature for
the computation of sparse PCE. Some of the schemes come with theoretical results about their
performance for sparse PCE, others have heuristic justification or have guarantees for least-
squares regression. They can be broadly grouped into three categories:

• Sampling according to the input distribution

– MC (Doostan and Owhadi, 2011; Hampton and Doostan, 2015b)

– LHS (McKay et al., 1979)

• Sampling from a modified distribution (induced sampling)

– asymptotic (Hampton and Doostan, 2015b)

– coherence-optimal (Hampton and Doostan, 2015b)

– Christoffel sparse approximation (Jakeman et al., 2017)

• Optimizing matrix properties

– D-optimal (Diaz et al., 2018)

– S-optimal (Shin and Xiu, 2016a; Fajraoui et al., 2017)

– near-optimal (Alemazkoor and Meidani, 2018a)

Some of the sampling schemes are nontrivial or costly to evaluate, or even not available for all
input distributions. However, the bottleneck in surrogate modelling for practical applications
is typically the repeated evaluation of the model, which justifies the use of a complex sampling
scheme if it allows better approximation with fewer samples.

A.1 Sampling according to the input distribution

This class of sampling methods consists of all methods that are oblivious to the choice of trunca-
tion set A and whose main objective is to distribute design points evenly in the quantile space.
Heuristically, the more uniformly the points are distributed in the quantile space, the more
information about the model is captured in the model evaluations, since no region of the input
domain is forgotten.
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LHS is one technique for achieving a space-filling design. For each component of the input
random vectorX, the corresponding quantile space is divided into N intervals. In each interval,
one point is sampled uniformly at random. Then, the points for each dimension are combined
randomly into vectors and finally transformed into the input space using an isoprobabilistic
transform. LHS can be shown to reduce the variance of linear regression estimates when the
main effects are dominant, i.e., when the most important terms have interaction order one
(Shields and Zhang, 2016). LHS can be combined with heuristic criteria such as the maximin
distance strategy, where among several random LHS designs the one with the largest minimal
pairwise distance between points is chosen, to further improve on the space-filling property.

Stratified sampling is a related sampling technique in which the input space is divided into
disjoint regions, called strata, from which points are sampled and weighted according to the
probability mass of their stratum. Stratified sampling reduces the variance of statistical esti-
mators (McKay et al., 1979). There exists a range of methods between stratified sampling and
LHS, called partially stratified sampling, which are able to reduce the variance of statistical es-
timators when interaction terms are dominant (Shields and Zhang, 2016). The authors propose
an additional method called Latinized partially stratified sampling (LPSS) which combines LHS
and stratified sampling with the aim tif minimizing the variance of the resulting estimator. It
is especially beneficial when there is prior knowledge about which variable groups interact, and
it has been used for several problems with input dimension d = 100.

MC sampling, i.e., sampling from the input distribution, is a special case of the coherence-based
theory detailed in Section A.2.1 below, and bounds on the coherence and the associated number
of points needed for recovery can be derived (Doostan and Owhadi, 2011; Rauhut and Ward,
2012; Yan et al., 2012; Hampton and Doostan, 2015b).

A.2 Sampling from a different distribution

The ability of sparse regression to recover the true sparse solution (if it exists; otherwise it
recovers the best sparse approximation) largely depends on the regression matrix. In the case of
PCE, the entries of this matrix are the evaluations of the basis polynomials at the experimental
design points. The points can be chosen in a way that improves the recovery properties of the
matrix.

Several approaches exist in which the `1-minimization problem is modified into a weighted
problem and samples are drawn not from the input distribution, but from a suitable modified
distribution. The idea of these approaches is as follows. Define a weight function w(x) : Ω→ R

in a suitable way, which will be explained later. For an ED {x(k)}Nk=1, define the diagonal matrix
W = diag(w(x(1)), . . . , w(x(N))). Then the following modified system is solved:

min
c
‖c‖1 s.t. ‖WΨc−Wy‖2 ≤ ε. (14)

Depending on w(x), this modification can improve or deteriorate the solution c. Of course, the
weight function is chosen to improve the solution. The matrix WΨ can also be interpreted as
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the evaluation of a modified basis {ψ̃α(x) = w(x)ψα(x)}α∈A. To ensure orthonormality of the
columns of WΨ, the design points are drawn from a suitably modified input distribution fX̃ .

A.2.1 Coherence, isotropy, and weighted orthonormal systems

In this section, we define concepts that are the basis for guarantees on accuracy and stability
for different sampling distributions. We mainly follow the exposition in (Hampton and Doostan,
2015b).

In the setting of PCE, the coherence of an orthonormal system {ψα}α∈A is defined by

µ(A, {ψα}) = sup
x∈D

max
α∈A
|ψα(x)|2. (15)

For distributions for which this quantity would be ∞, such as a Gaussian distribution, see the
remark below.

A second important concept is isotropy (Candès and Plan, 2011): a random matrix, whose rows
are chosen randomly following some distribution a ∼ Fa, is isotropic if it holds that E

[
aTa

]
= 1.

In the case of PCE, Fa is induced by propagating the input distribution FX through the basis
functions. By construction, the regression matrix of standard PCE is isotropic if the ED is
sampled from the input distribution. Under the assumption that the regression matrix Ψ is
isotropic, the number of samples needed for perfect recovery of sparse solutions in the noiseless
case is proportional to µ(A, {ψα})s log(P ) with high probability (Candès and Plan, 2011), where
s is the sparsity of the solution vector and P = |A| is the number of basis functions. A similar
result holds in the noisy case.

Thus, an orthonormal system {ψα}α∈A with low coherence µ(A, {ψα}) requires fewer samples
for perfect recovery. The goal of coherence-optimal sampling is to find a weighted system
{ψ̃α(x) = w(x)ψα(x)}α∈A that achieves µ(A, {ψ̃α}) < µ(A, {ψα}) and is orthonormal with
respect to some distribution f̃X .

The ideas of isotropy and coherence were applied to PCE by Hampton and Doostan (2015b),
who construct an isotropic regression matrix with improved coherence as follows. Let B : D → R

be the tight upper bound for the polynomial basis,

B(x) = max
α∈A
|ψα(x)|. (16)

Let G : D → R be a loose upper bound with G(x) ≥ B(x) ∀x ∈ D. (G is useful because using
a simple expression for the upper bound can in some cases result in f̃X being a well-known
distribution that can be sampled from easily.) Define a new probability distribution f̃X(x) by

f̃X(x) = c2G(x)2fX(x), (17)

where c =
(∫

Ω fX(x)G(x)2dx
)− 1

2 is the normalizing constant. Then, with the weight function

w(x) = 1
cG(x) , (18)

the set of functions {ψ̃α(x) = w(x)ψα(x)}α∈A is an orthonormal system with respect to the
distribution f̃X . This follows directly from the orthonormality of {ψα}α∈A with respect to fX .
Furthermore, if G = B, the coherence µ(A, {ψ̃α}) is minimal.
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Remark Some polynomial bases (e.g. Hermite polynomials) do not have a finite upper bound.
It is still possible to obtain similar results by considering a smaller domain S ⊂ D on which the
upper bound is finite and the isotropy is still approximately fulfilled. The modified probability
distribution is then f̃X(x) = c2G(x)2fX(x)1S(x).

A.2.2 Sampling using a loose upper bound ("asymptotic sampling")

In the case of Legendre and Hermite polynomials, and using a certain loose upper bound
G(x) ≥ maxα∈A |ψα(x)|, analytical expressions for distributions with improved coherence can
be obtained (Hampton and Doostan, 2015b).

In the case of Legendre polynomials on [−1, 1]d, a loose upper bound on the polynomials is given
by G(x) ∝ ∏d

i=1(1 − x2
i )−

1
4 , which leads to the Chebyshev distribution f̃X(x) = ∏d

i=1
1

π
√

1−x2
i

and to the weight function w(x) = ∏d
i=1(1− x2

i )
1
4 .

In the case of Hermite polynomials for standard Gaussian variables, a loose upper bound on the
polynomials is given by G(x) ∝ exp(1

4 ‖x‖
2
2), and the subset S is chosen to be the d-dimensional

ball with radius
√

2
√

2p+ 1. This leads to a uniform distribution f̃X on S and to the weight
function w(x) = exp(−1

4 ‖x‖
2
2).

Additionally, asymptotic distributions for Laguerre polynomials (corresponding to the Gamma
distribution) and for Jacobi polynomials (Beta distribution) have been implemented in the
software package COH-OPT (Hampton and Doostan, 2017).

For Legendre polynomials, asymptotic sampling has a smaller coherence than standard sampling
in the case d < p (asymptotically). In the case d > p, which is more common in applications,
standard sampling has (asymptotically) a smaller coherence. According to theory, the sam-
pling scheme with smaller coherence should exhibit better recovery rates. This is confirmed
numerically (Hampton and Doostan, 2015b, section 5.1). For Hermite polynomials, the same
observation is made.

A.2.3 Coherence-optimal sampling

The choice G = B leads to the minimum possible coherence µ(A, {ψ̃α}) (Hampton and Doostan,
2015b, Theorem 4.5). B is simple to evaluate for a single point x ∈ D, but its functional form is
in general not known. Therefore, Hampton and Doostan (2015b) suggest sampling f̃X ∝ B2fX

using Markov chain Monte Carlo (MCMC) sampling with proposal distribution equal to the
input distribution in the case d ≥ p and equal to the asymptotic distribution in the case d < p.
The resulting (unnormalized) weights are w(x) = 1

B(x) . As expected from theory, numerical
examples indicate that coherence-optimal sampling achieves better recovery and a smaller error
in various norms than both standard and asymptotic sampling (Hampton and Doostan, 2015b).
Coherence-optimal sampling can be shown to have good properties also when used as a sampling
scheme for least-squares regression (Hampton and Doostan, 2015a).
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MATLAB code for MCMC-based coherence-optimal sampling is available (Hampton and Doostan,
2015a,b). However, MCMC-based coherence-optimal sampling can be very slow for high-dimensional
input. An alternative is rejection-based coherence-optimal sampling. Here, samples xcand are
generated from a proposal distribution fprop, which has the property that there is a γ ∈ R such
that γfprop(x) ≥ f̃X(x) for all x ∈ D. Uniform random numbers u ∼i.i.d. U([0, 1]) are generated.
A proposed point xcand is accepted if u ≤ f̃(xcand)

γfprop(xcand) . This is the implementation used in this
benchmark. We use a product proposal density whose marginals are determined by the input
marginals, the dimension of the problem, and the degree of the expansion: we choose uniform
proposal marginals for uniform input marginals. For Gaussian input marginals, we use Gaussian
proposal marginals if d ≥ p; otherwise, we use the corresponding asymptotic distribution. As
usual, lognormal input is mapped to Gaussian random variables before sampling (Blatman and
Sudret, 2011).

Note that for Gaussian input, coherence-optimal and asymptotic sampling have a significantly
larger spread than input sampling, as can be seen from Figure 8. Their support is the ball of
radius r =

√
2
√

2p+ 2 (as implemented in (Hampton and Doostan, 2017)). This can potentially
cause problems in engineering applications, for which simulations may be less accurate when the
input parameters are far from typical operating conditions.

A.2.4 Christoffel sparse approximation

A similar weighted sampling scheme is Christoffel sparse approximation (Narayan et al., 2017;
Jakeman et al., 2017; Cohen and Migliorati, 2017). Those authors propose to use the weight
function

w(x) =
(

1
|A|

∑

α∈A
|ψα(x)|2

)− 1
2

(19)

which leads to a modified basis that has pointwise minimal average squared basis magnitude
(compare to (18) with G = B). This quantity (6) is a measure similar to coherence (5) and
is used by Hampton and Doostan (2015a) and Cohen and Migliorati (2017) together with the
induced probability measure to obtain convergence results for weighted least-squares regression.
Narayan et al. (2017) and Jakeman et al. (2017) choose as probability distribution the so-called
weighted pluripotential equilibrium measure (possibly degree-dependent), which asymptotically
coincides with f̃(x) = c2w(x)2f(x) when the total degree of the truncated basis p → ∞.
However, the modified basis is not orthonormal with respect to this measure, which leads to
weaker theoretical recovery results. Theoretical results are available only for the univariate
case. In numerical examples, the method performs well for low-dimensional high-degree cases
and often very similarly to asymptotic sampling. In high dimensions, it performs worse than
input sampling (i.e., MC). It has not been compared to coherence-optimal sampling.
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A.3 Choosing points according to an optimality criterion from a candidate
set

The following methods aim to improve the properties of the regression matrix by choosing the
“best” design points from a large candidate set. The methods differ in the criterion defining what
are the “best” points. Most presented algorithms are greedy or heuristic and are actually only
able to find a suboptimal design (local optimum). The choice of the candidate set obviously
influences the quality of the resulting design. In the literature, candidate sets were sampled
from MC (Diaz et al., 2018), LHS (Fajraoui et al., 2017), coherence-optimal sampling (Diaz
et al., 2018; Alemazkoor and Meidani, 2018a), or Christoffel sparse approximation (Shin and
Xiu, 2016b). In the case of coherence-optimal sampling or Christoffel sparse approximation,
the resulting optimized sample inherits the weights. It also often preserves the spread of the
candidate set, as can be seen in Figure 8.

A.3.1 D-optimal sampling

D-optimal design of experiments (Kiefer andWolfowitz, 1959; Dykstra, 1971) aims at maximizing
the determinant of the so-called information matrix 1

N
ΨTΨ ∈ RP×P . The D-value is defined

as
D(Ψ) = det(ΨTΨ). (20)

Sometimes the determinant of the inverse information matrix is minimized (Nguyen and Miller,
1992), or the P th root is taken for normalization purposes (Diaz et al., 2018). The maximization
of this determinant is connected to the minimization of the variance of the PCE coefficient
estimate (Nguyen and Miller, 1992; Zein et al., 2013). Note that D(Ψ) = 0 if N < P .

There exists a large selection of methods for constructing D-optimal experimental designs. For
an overview of methods for constructing designs following alphabetic optimality criteria (such
as A-, D-, or E-optimality), see (Hadigol and Doostan, 2018, Section 4.5).

Here, we only discuss D-optimal sampling based on rank-revealing QR decomposition (RRQR)
(Diaz et al., 2018), since this is the technique used in our benchmark. We decided to use RRQR-
based D-optimal sampling because it can be used even in the case N < P when other D-optimal
methods fail due to singularity of the information matrix. Note that RRQR is not guaranteed
to find a design with maximal D-value but only a local optimum (Diaz et al., 2018, Section 3.4).

Let Ψcand ∈ RM×P be the regression matrix evaluated at a set of M candidate points. The
goal is to select N ≤ M points from this candidate set with the property that the D-value
of the resulting regression matrix Ψ ∈ RN×P is as large as possible. Since in the case of
sparse PCE often N < P , which leads to D(Ψ) = 0, another strategy is necessary. The RRQR
decomposition, also known as pivoted QR, aims at permuting the columns of the original matrix
in a way that ensures the R-matrix of the associated QR decomposition is as well-behaved12

12R =

(
Ak Bk

0 Ck

)
where Ak is well-conditioned and ‖Ck‖2 is small
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as possible. This is useful for inexpensively determining the numerical rank of a matrix (Hong
and Pan, 1992; Gu and Eisenstat, 1996). RRQR has a strong connection to SVD and to the
selection of submatrices of maximal determinant (Hong and Pan, 1992). Gu and Eisenstat (1996)
propose a pivoted QR decomposition where pivots are chosen to maximize the determinant of
the resulting quadratic submatrix of R. The exchange of rows is based on a formula relating
the determinant of the quadratic submatrix of R before and after the row exchange by a simple
factor (Gu and Eisenstat, 1996, Lemma 3.1). This algorithm can be used together with SVD to
perform subset selection to construct an initial experimental design from a large set of candidate
samples (Seshadri et al., 2017; Diaz et al., 2018). Here, first an SVD of the matrix ΨT

cand is
computed. Then RRQR is applied to the transpose of the matrix consisting of the first N right
singular vectors. The resulting permutation matrix is used to determine the points to be chosen
from the candidate set.

A.3.2 Quasi-optimal sampling based on the S-value

Here, the idea is to select samples from a pool of candidate points so that the PCE coefficients
obtained using the selected set are as close as possible to the coefficients that would be obtained
if the whole set of candidate points was used (Shin and Xiu, 2016a). Under the assumption that
the columns of the matrix Ψcand are mutually orthogonal, the S-value is defined by

S(Ψ) =
(√

det ΨTΨ
∏P
i=1 ‖Ψi‖2

) 1
P

, (21)

where Ψi denotes the ith column of the regression matrix Ψ. Its maximization has the (heuristic)
effect of maximizing the column orthogonality of the regression matrix while at the same time
maximizing the determinant of the information matrix (Shin and Xiu, 2016a). It holds that
S(Ψ) ∈ [0, 1] due to Hadamard’s inequality. If N < P , S(Ψ) = 0. If N ≥ P , S(Ψ) = 1 if
and only if the columns of Ψ are mutually orthogonal. There exists an update formula for the
S-value when the regression matrix is augmented by one row, which thus avoids the repeated
calculation of determinants.

Shin and Xiu (2016a) suggest a greedy algorithm that in every iteration augments the current
matrix by an additional row which maximizes the S-value of the resulting matrix among all
candidate rows. When the current number of rows in the matrix Ψ is smaller than the number
of columns, the procedure can be adapted to avoid S(Ψ) = 0. We do not include it in our bench-
mark because it is not well suited for situations where there are more basis polynomials than
design points, which is the case in sparse PCE without experimental design enrichment. How-
ever, in a sequential enrichment context (Fajraoui et al., 2017) and for least-squares regression
(Shin and Xiu, 2016b), this algorithm performs well.

A.3.3 Near-optimal sampling

The coherence parameter (15) gives a bound on the recovery rate, but it is not the only criterion
that has been studied with respect to recovery accuracy. Two other matrix properties related to
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recovery accuracy are mutual coherence and average cross-correlation. Both of them consider
the correlation between normalized columns of the regression matrix, i.e., their scalar product.
They are scalar measures of how “orthonormal” the columns of a rectangular matrix Ψ ∈ RN×P

with N < P are. The heuristic idea is that columns should point in as different directions
as possible, so that the multiplication with sparse coefficient vectors, which results in a linear
combination of a subset of the columns, is “as unique as possible”. This facilitates the recovery
of the true sparse solution (assuming that it exists).

The mutual coherence is defined by

µ(Ψ) = max
i 6=j

|ΨT
i Ψj |

‖Ψi‖2 ‖Ψj‖2
, (22)

where Ψi denotes the ith column of the regression matrix Ψ ∈ RN×P . The mutual coher-
ence is the worst-case cross-correlation between any two columns of the matrix. It is zero for
orthonormal matrices and positive for N < P .

The average (squared) cross-correlation is defined by

γ(Ψ) = 1
P (P − 1)

∥∥∥1P − Ψ̃T Ψ̃
∥∥∥

2

F
= 1
P (P − 1)

∑

i 6=j

|ΨT
i Ψj |2

‖Ψi‖22 ‖Ψj‖22
(23)

where Ψ̃ is the column-normalized version of Ψ, and Ψi denotes the ith column of the regression
matrix. The norm is the Frobenius-norm, taking the sum of squares of all matrix entries, and
the factor P (P − 1) is the number of column pairs.

Alemazkoor and Meidani (2018a) suggest simultaneously optimizing mutual coherence and av-
erage cross-correlation by using the greedy procedure described in Algorithm 1 below: In each
iteration, the current regression matrix is augmented by one row. This row corresponds to that
point xj from the large pool of candidate points which minimizes the (normalized) distance of
(µ′j , γ′j) ∈ R2 to the “utopia point” (min(µ′),min(γ ′)) among all candidate points.

Algorithm 1 Near-optimal sampling (Alemazkoor and Meidani, 2018a).
1: Sample a large number M of candidate points from the coherence-optimal distribution and

compute candidate rows arranged in a matrix Ψcand

2: Initialize Ψopt(1) to be a random row from Ψcand

3: for i = 2 . . . N do
4: for j = 1 . . .M do
5: Ψtemp = row-concatenate(Ψopt(i-1),Ψ

(j)
cand)

6: µ′j = µ(Ψtemp) and γ′j = γ(Ψtemp)
7: end for
8: µ′ = (µ′1, . . . , µ′M ) and γ ′ = (γ′1, . . . , γ′M )

9: j∗ = arg minj
(

µ′j−min(µ′)
max(µ′)−min(µ′)

)2
+
(

γ′j−min(γ′)
max(γ′)−min(γ′)

)2

10: Ψopt(i) = row-concatenate(Ψopt(i-1),Ψ
(j∗)
cand)

11: end for
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The algorithm is called near-optimal because it is a greedy algorithm, finding only a local op-
timum, and because optimized mutual coherence and average cross-correlation are only hinting
at, but not guaranteeing, good recovery accuracy (Alemazkoor and Meidani, 2018a). Its compu-
tational complexity is O(NMP 2), where N is the size of the final experimental design, M is the
number of candidate samples (chosen to be, e.g., proportional to P (Diaz et al., 2018)), and P is
the number of regressors. This makes the algorithm prohibitively expensive in the case of large
bases (P in the order of thousands), which is why we do not use it for some of the benchmark
examples.

A.4 Illustration of sampling schemes

In Figures 7 and 8, we show illustrations of experimental designs in d = 2 dimensions with
N = 100 and p = 12 for selected sampling techniques. The candidate set has a size ofM = 1000.
Figure 7 presents experimental designs for uniform input in the interval [−1, 1], while Figure 8
presents experimental designs for standard Gaussian input.

Note that in the standard Gaussian case, the asymptotic distribution, the coherence-optimal
distribution, and the matrix-optimal distributions based on a coherence-optimal candidate set
all have a very large spread that grows with the total degree of the basis. For degree p =
12, some points are seven standard deviations away from the mean. Engineering models are
typically calibrated only for a certain region of the input domain corresponding to nonnegligible
probability, and they may be less accurate (or even fail) outside of this region.
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Figure 7: Visualization of experimental designs constructed for uniform input in [−1, 1]2

for degree p = 12. Red filled points denote the chosen experimental design, while blue
circles denote the candidate set. Size of the ED: N = 100, size of the candidate set:
M = 1000.
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Figure 8: Visualization of the experimental design constructed for standard Gaussian
input in d = 2 dimensions for degree p = 12. The gray surface plot illustrates the
Gaussian probability density function. Red filled points denote the chosen experimental
design, while blue circles denote the candidate set. Size of the ED: N = 100; size of
the candidate set: M = 1000. The support of the asymptotic and the coherence-optimal
distribution is the ball of radius r =

√
2
√

2p+ 2 ≈ 7.2. Note that engineering models
may be less accurate in regions where the input distribution has negligible mass.
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B Details on sparse regression solvers

In this appendix, we describe the sparse solvers used in our benchmark in more detail: LARS,
OMP, subspace pursuit, SPGL1 and FastLaplace (BCS). In addition, we present an overview of
greedy stepwise regression solvers for sparse PCE.

There exist various formulations for the sparse regression problem. The typical form minimizes
the `2-norm of the empirical error under an additional constraint that is designed to enforce
sparsity.

Sparsity is measured by the number of nonzero entries in a vector, formally denoted by ‖c‖0 =
∑
i 1{ci 6=0} (even though this expression is not a norm). This results in the sparse regression

problem
ĉ = arg min

c
‖Ψc− y‖22 + λ ‖c‖0 (24)

called `0-minimization. The only way to solve this problem exactly is by a combinatorial search
through all possible nonzero patterns for c, which is infeasible for large problem sizes.

The convex relaxation of this problem is `1-minimization, where ‖c‖0 is replaced by ‖c‖1 =
∑
i |ci|. There are several equivalent formulations of the relaxed problem, namely

ĉ = arg min
c
‖Ψc− y‖22 + λ ‖c‖1 (25)

ĉ = arg min
c
‖c‖1 s.t. ‖Ψc− y‖2 ≤ σ (26)

ĉ = arg min
c
‖Ψc− y‖2 s.t. ‖c‖1 ≤ τ (27)

called Lagrangian formulation, basis pursuit denoising (BPDN), and least absolute shrinkage
and selection operator (LASSO), respectively. It has been shown that under certain conditions,
the solutions to `0-minimization and `1-minimization coincide (Bruckstein et al., 2009). However
contrary to (24), formulations (25)–(27) are convex problems and allow a numerical solution with
considerably smaller cost. The three formulations (25), (26), and (27) are equivalent in the sense
that if ĉ is solution to one of the formulations, there exists a value of constraint parameter σ, τ ,
or λ so that ĉ is also a solution to the other formulations. However, the relationship between the
parameters σ, τ, λ that makes the problems equivalent depends on Ψ and y and is not known in
advance (van den Berg and Friedlander, 2008).

There exist other sparsity-enforcing formulations, such as `p-norms (Bruckstein et al., 2009),
`1 − `2-minimization (Yin et al., 2015), or elastic net (Tarakanov and Elsheikh, 2019). One
example that we will describe is Bayesian compressive sensing, where a sparsity-enforcing prior
is used for the coefficients of the PCE, resulting in a formulation that is equivalent to a sparse
regression problem with a different kind of sparsity constraint, e.g., one related to the Student-t
distribution (Tipping, 2001).

In the following descriptions of the algorithms, A ⊂ Nd with various sub- or superscripts denotes
a set of multi-indices, which by definition of PCE can be identified with a set of basis polynomials.
With the notation of Section 2.1, y ∈ RN denotes the vector of model responses, Ψ ∈ RN×P

denotes the regression matrix of basis polynomials evaluated at the N experimental design
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points, and c ∈ RP denotes the coefficients of a PCE. The residual is defined by r = y−Ψc, so
that the norm of the residual is the empirical error.

The polynomials used for building the PCE are sometimes also called basis functions, regressors,
or predictors. A sparse PCE is a PCE for which only some of the basis functions have nonzero
coefficients: these basis functions are called active. We assume the regressors are normalized,
so that the correlation between two regressors is equivalent to their inner product (and to the
cosine of the angle between them).

B.1 Orthogonal matching pursuit (OMP)

Orthogonal matching pursuit (OMP), also called forward stepwise regression, is a classical greedy
technique for finding approximate solutions to the `0-minimization problem (24) (Pati et al.,
1993; Bruckstein et al., 2009). Despite its being a heuristic method, under certain assumptions
there are theoretical guarantees for the solutions returned by OMP (Tropp and Gilbert, 2007;
Bruckstein et al., 2009). OMP is an iterative algorithm that starts out with an empty model
and adds the regressors one by one to the set of active regressors. In each iteration, OMP
selects the regressor that is most correlated with the current residual, adds it to the set of active
regressors, and then updates the coefficients of all active regressors to make sure the new residual
is orthogonal to all of them and has smallest possible norm. The updating of the coefficients can
be done through an update formula (Berchier, 2015) or by computing the least-squares solution
to the system of equations involving only the active regressors (Marelli and Sudret, 2019).

The technique is presented in Algorithm 2. The iterations are continued until min{N,P} basis
functions are in the active set (then either all polynomials are selected, or there are not enough
points in the experimental design to use least-squares anymore).

OMP does not, per se, return a sparse solution. If a desired level of sparsity K is known a priori,
the algorithm can be stopped after K iterations. Another possibility is to stop the algorithm as
soon as the residual norm is smaller than some error threshold (Bruckstein et al., 2009; Doostan
and Owhadi, 2011; Jakeman et al., 2015), where the best error threshold is determined through
cross-validation. A third possibility is to determine the best number of active basis functions
through a model selection criterion, e.g. the LOO error (Marelli and Sudret, 2019). Since
the coefficients are computed by OLS on the active basis, the LOO can be computed cheaply
(Chapelle et al., 2002; Blatman and Sudret, 2011). Typically, for an increasing sequence of basis
functions the LOO error first decreases (reduction of underfitting), then increases (overfitting).
This can be utilized to terminate the algorithm early once the LOO error starts rising (early-stop
criterion) (Marelli and Sudret, 2019).

The computational complexity of OMP isO(mNP ) (Tropp and Gilbert, 2007; Dai and Milenkovic,
2009), where m ≤ min{N,P} is the number of iterations. The computation of the correlations
of the current residual with all regressors is O(NP ) and has to be performed m times. The
computation of the least-squares solution in step i can be done in O(iN), e.g., by maintaining
a QR factorization of the information matrix (Tropp and Gilbert, 2007), or by using Schur’s
complement to update the information matrix inverse whenever a new regressor is added.
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Algorithm 2 Orthogonal matching pursuit (OMP) (Pati et al., 1993; Tropp and Gilbert, 2007;
Marelli and Sudret, 2019).
1: Given a set of candidate basis functions Acand

2: Initialize all coefficients to zero: c0 = 0. Set A0 = ∅
3: Set the residual vector r := y

4: for i = 1, . . . ,m do . m ≤ min{N,P}
. OMP can be stopped early when the error did not decrease anymore for a while

5: Find α∗ ∈ Acand \ Ai−1 with maximal correlation with the residual by solving

α∗ = arg max
α∈Acand\Ai−1

|rTψα|

. The entries of vector ψα are evaluations of the basis function ψα at the ED
6: Ai = Ai−1 ∪ {α} . Current set of active predictors
7: Compute the coefficients ci by least-squares using only the active indices Ai

. This can be done in O(iN) when maintaining a QR factorization (Tropp and Gilbert,
2007)

8: Update the residual r = y −ΨAici
9: end for

From the authors’ experience, OMP often suffers from overfitting and can produce an unreliable
LOO error estimate, which can be detrimental in basis-adaptive settings (see also (Lüthen et al.,
2021)).

OMP is available in many software packages, among them UQLab (Marelli and Sudret, 2014).

B.2 Least angle regression (LARS)

Least-angle regression (LARS, sometimes also abbreviated LAR) is a greedy technique that finds
an approximate solution to the `1-minimization problem (Efron et al., 2004). It is similar to OMP
in that the algorithm starts out with an empty model and adds regressors one by one based
on their correlation with the residual. However, unlike OMP, which updates the coefficients
using least-squares (making the residual orthogonal to all active regressors in each step), LARS
updates the coefficients in such a way that all active regressors have equal correlation with
the residual. LARS can be interpreted as producing a path of solutions to (27), corresponding
to increasing τ . The coefficients are increased in the equiangular direction until a nonactive
regressor has as much correlation with the residual as all the active regressors. This regressor is
then added to the set of active regressors and the new equiangular direction is computed. The
optimal stepsize between the addition of subsequent regressors can be computed analytically
(Efron et al., 2004). This algorithm solves (27) approximately. A slightly modified version of
LARS, called LARS-LASSO, removes regressors whenever the sign of their coefficient changes,
and it has been proven to solve (27) (or its noiseless counterpart) exactly under certain conditions
(Efron et al., 2004; Bruckstein et al., 2009).
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Algorithm 3 Least angle regression (LARS) (Efron et al., 2004; Blatman and Sudret, 2011).
1: Given a set of candidate basis functions Acand

2: Initialize all coefficients to zero: c0 = 0. Set A0 = ∅
3: Set the residual vector r := y

4: for i = 1, . . . ,m do . m = min{N,P}
5: Find α ∈ Acand \ Ai−1 with maximal correlation with the residual

. For i > 1, αi is the element "responsible for" γi
6: Ai = Ai−1 ∪ {α} . Current set of active predictors
7: Compute ci . Equiangular direction for all α ∈ Ai

. c1 is equal to the first selected predictor
. (Efron et al., 2004, Eq. 2.6)

8: Compute γi . Optimal stepsize: using this, there is a new regressor that is as much
correlated with r as all regressors in Ai are

. (Efron et al., 2004, Eq. 2.13)
9: Compute the new coefficients ci = ci−1 + γici . Move the coefficients jointly into the

direction of the least-squares solution until one of the other predictors in Acand \ Ai has as
much correlation with the residual as the predictors in Ai (ensured by choice of γi and ci)

10: Update the residual r = y −Ψici

11: end for

The LARS technique is presented in Algorithm 3. It returns a sequence A1 ⊂ A2 ⊂ . . . ⊂ Am
of sets containing indices of active basis functions, with m = min{N,P}. Just like OMP, LARS
can be stopped when a predefined sparsity K is reached or when the norm of the residual ‖r‖2
falls below a predefined error threshold.

A modified version of LARS, called ybrid LARS, uses the equicorrelated approach to select the
predictors, but computes the coefficients of the metamodel by least-squares (Efron et al., 2004;
Blatman and Sudret, 2011). Once the LARS algorithm has finished and returned the sequence of
basis setsA1, . . . ,Am, the corresponding coefficients are recomputed by least squares, ci = cLSQ

i ,
which ensures minimal empirical error for every metamodel (Ai, ci). Hybrid LARS facilitates
another way to choose the best sparsity level: as for OMP, a model selection criterion (e.g. LOO)
for each metamodel can be evaluated, and the best one is chosen. This procedure is detailed
in Algorithm 4. Cheap OLS-based computation of LOO (Chapelle et al., 2002; Blatman and
Sudret, 2011) and the early-stop criterion (Marelli and Sudret, 2019) can be applied as well.

As for OMP, the computational complexity of LARS (in the case N < P ) is O(mNP ), where
m ≤ min{N,P} is the number of iterations. This is due to matrix-vector multiplication and
matrix inversion which have to be performed in every iteration. The latter can be computed in
O(mN), when using techniques such as Schur’s complement to update the information matrix
inverse whenever a new regressor is added.

LARS is available in many software packages, e.g., as MATLAB implementation in UQLab
(Marelli and Sudret, 2014).
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Algorithm 4 Hybrid LARS with LOO-CV (Blatman and Sudret, 2011; Marelli and Sudret,
2019)
1: Initialization as in LARS (Algorithm 3)
2: for i = 1, . . . ,m do
3: Run one step of LARS and obtain (Ai, ci) . Algorithm 3
4: Recompute the coefficient vector using least-squares on the selected basis Ai only, ob-

taining cOLS
i (the coefficients corresponding to A \ Ai are set to zero) . Hybrid

LARS
5: Compute the LOO error εLOO(i) for cOLS

i . OLS-based LOO computation (Chapelle
et al., 2002; Blatman and Sudret, 2011)

6: end for . early stopping possible by monitoring the LOO error (Marelli and Sudret, 2019)
7: Return the metamodel (Ai∗ , ci∗) with i∗ = arg mini εLOO(i)

B.3 Subspace pursuit (SP)

Another formulation of the `0-minimization problem is

min
c∈RP

‖Ψc− u‖2 s.t. ‖c‖0 = K (28)

which is equivalent to (24) for a certain choice of λ.

Subspace pursuit (SP) seeks to identify a solution to (28) by iteratively and greedily enlarging
and shrinking the set of active basis functions (Dai and Milenkovic, 2009). As with LARS and
OMP, regressors are added to the set of active basis functions according to their correlation with
the residual. However, the regressors are not added one by one, but batchwise. More precisely,
SP maintains at all times an active basis of size K, where K denotes the desired sparsity. In
each iteration, it adds K regressors at once and computes the coefficients of the active regressors
by OLS. Then, it removes the K regressors with the smallest-in-magnitude coefficients. This
is continued until convergence. Under certain assumptions, there are theoretical guarantees for
the solution that SP returns (Dai and Milenkovic, 2009). To make the augmentation of the basis
and the OLS regression feasible, it must hold that 2K ≤ min{N,P}.

The technique is described in Algorithm 5 for a fixed value of sparsity K. The residual of a
vector and a regression matrix is defined as

residual(y,Ψ) = y −ΨΨ†y (29)

where Ψ† denotes the pseudoinverse of Ψ and Ψ†y = c is the least-squares solution to Ψc ≈ y
(the case of an overdetermined system). The algorithm returns a set A containing K multi-
indices.

For arbitrary sparse vectors, the computational complexity isO(N(P+K2)K) (Dai and Milenkovic,
2009). For very sparse vectors with K2 ∈ O(P ), the complexity thus becomes O(NPK), com-
parable to the runtime of OMP. The number of iterations that the SP algorithm performs can
be shown to be O(K) in general and even O(logK) in certain cases (Dai and Milenkovic, 2009).
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Algorithm 5 Subspace pursuit (SP) (Dai and Milenkovic, 2009).
1: Given desired sparsity K ≤ min{N2 , P2 }
2: Given the experimental design and the candidate basis Acand, compute the associated re-

gression matrix Ψ and the right-hand-side y
3: A0 = {K indices corresponding to the largest magnitude entries in ΨTy}

. Scalar product of columns of Ψ with y
4: y0

res = residual(y,ΨA0) . Residual of least-squares solution based on active basis
5: for l = 1, 2, . . . do
6: S l = Al−1 ∪ {K indices corresponding to the largest magnitude entries in ΨTyl−1

res }
. Augment by indices of full basis that correlate best with the residual

7: c = Ψ†Sly . Least-squares solution based on set S l of size 2K
8: Al = {K indices corresponding to the largest magnitude entries in c}
9: ylres = residual(y,ΨAl) . Residual of least-squares solution based on Al
10: if

∥∥∥ylres

∥∥∥
2
≥
∥∥∥yl−1

res

∥∥∥
2
then . if new K-sparse approx. is worse than the previous one

11: STOP iteration and return Al−1.
12: end if
13: end for
Remark: In line 10, the original publication (Dai and Milenkovic, 2009) uses “>” instead of
“≥”, but we also want to stop when the set has converged.

When the optimal sparsity level K is unknown, it can be determined e.g. by cross-validation:
Diaz et al. (2018) suggest running Algorithm 5 for a range of NK = 10 different values for K and
choosing the one with the smallest 4-fold cross-validation error. In this paper, we propose to
use leave-one-out cross-validation instead of 4-fold cross-validation, resulting in the SP variant
SPLOO.

A related algorithm is CoSAMP (Needell and Tropp, 2009), which differs from SP mainly in the
number of regressors added in each iteration.

Subspace pursuit is available as MATLAB implementation in the software package DOPT_PCE
(Diaz et al., 2018; Diaz, 2018).

B.4 SPGL1

`1-minimization is a convex problem, since both the objective function and the constraint are
convex functions. Therefore, convex optimization methods can be used to find a solution. In
this section, we describe the algorithm SPGL1 (van den Berg and Friedlander, 2008).

For a given value of τ , formulation (27) (LASSO) can be solved by spectral projected gradient
(SPG) descent (Birgin et al., 2000; van den Berg and Friedlander, 2008).13 However, for real-
world problems, we often do not know a priori an appropriate value for τ . On the other hand,

13SPG is a gradient-based optimization algorithm with several enhancements (Barzilai–Borwein spectral step
length and the Grippo–Lampariello–Lucidi scheme of nonmonotone line search) and projection onto the feasible
set Ωτ = {c ∈ RP : ‖c‖1 ≤ τ}
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a sensible range of values for σ in formulation (26) (BPDN) can typically be estimated based
on the noise level in the data and the expected model fit. In the case of PCE metamodelling, σ
can be related to an estimate of the relative MSE through RelMSE = σ2

NV̂ar[y] , whose values are
for engineering models typically between 10−10 and 100 = 1.

The main idea of the solver SPGL1 is to solve BPDN through a detour over LASSO. Let cτ be
the solution to LASSO for a given τ . Define a function φ : R+ → R+ by

φ(τ) := ‖Ψcτ − y‖2 . (30)

Then the solution to BPDN with σ := φ(τ) is cτ . In other words, φ is the functional relationship
between σ and τ that makes the two formulations BPDN and LASSO equivalent for given Ψ
and y. φ is the Pareto front of LASSO and BPDN and shows the trade-off between the minimal
achievable `1-norm of the coefficients and the minimal `2-norm of the corresponding residual.
The Pareto front is convex, nonincreasing and differentiable with an analytically computable
derivative (van den Berg and Friedlander, 2008).

To find a solution to BPDN with a given σ, LASSO is solved with SPG several times for a
sequence of τ until one is found with φ(τ) = σ. The sequence of τ is created by performing
Newton’s root finding algorithm on the function f(τ) = σ − φ(τ).

Each SPG iteration has a computational complexity of O(NP + P logP ) (from matrix-vector
multiplication and `1-projection). Multiplying this with the number of SPG steps and the
number of Newton steps yields the computational complexity of SPGL1.

This algorithm is available as MATLAB package SPGL1 (van den Berg and Friedlander, 2008;
Van den Berg and Friedlander, 2015).

In our numerical benchmarks computing sparse PCE for compressible models, SPGL1 was among
the slowest solvers and often returned rather dense solutions.

B.5 Sparse Bayesian learning

Methods from the class of Bayesian compressive sensing (BCS), also known as sparse Bayesian
learning (SBL), embed the regression problem in a probabilistic framework (Tipping, 2001; Ji
et al., 2008; Babacan et al., 2010; Sargsyan et al., 2014; Tsilifis et al., 2020). The goal is to
compute, for a given model response vector y and a regression matrix Ψ, the coefficient vector
cMAP which maximizes the posterior distribution p(c|y). Another quantity of interest could be
the most probable value y∗ at a new point x∗ maximizing p(y∗|y).

In BCS, it is assumed that the “measurements” y are generated by adding zero-mean, finite-
variance noise to the evaluations of the true model. This noise is often assumed to be Gaussian
white noise with standard deviation σ, which, for a given input x, results in a Gaussian distri-
bution for its output y with mean Ψc and covariance matrix σ21 , i.e., y|c,x, σ ∼ N (Ψc, σ21).
Note that in the case of PCE, this is generally not a valid assumption: when an important term
is missing from the PCE model, the discrepancy between measurements and PCE model eval-
uations can be highly correlated, heteroscedastic, and non-Gaussian, and have nonzero mean.

56



However, even though the assumptions might not be fulfilled, this framework can still be useful
for finding sparse solutions.

The class of BCS algorithms comprises several methods that differ in the assumptions on the dis-
tributions of the various hyperparameters and in the (usually iterative, approximate) techniques
for computing the posterior quantities.

In Figure 9a we present the general setup of sparse Bayesian learning. The measurements y
are assumed to follow a Gaussian distribution as described above. The noise variance σ2 is
assumed to be a random variable whose distribution has to be specified (e.g. fixed, uniform, or
inverse-Gamma). The coefficients ci are assumed to be random variables as well, drawn from a
normal distribution with mean zero and variance γi, i.e., each weight has its own variance. γ is
a so-called hyperparameter, parametrizing the distribution of a parameter.

γ

c σ2

y

p(γi)

p(c|γ) = ∏
iN (ci|0, γi)

p(σ2)

p(y|c, σ2) = N (y|Ψc, σ21)

(a) General setup of BCS

γ

c σ2

y

p(c|γ) =
∏
iN (ci|0, γi)

p(y|c, σ2) = N (y|Ψc, σ21)

λ

p(γi|λ) = λ
2 exp

(
−λ2γi

)

p(λ|ν) = Γ
(
λ|ν2 , ν2

)

ν

(b) Setup by (Babacan et al., 2010)

Figure 9: Illustration of the general setup of BCS (a) and the hierarchical generalization
of (Babacan et al., 2010) (b). (a): The likelihood and the prior on the coefficients are
usually Gaussian, but the choice of p(σ2) and p(γ) differs between publications, as well
as the resulting solution algorithm. (b): Babacan et al. (2010) makes a specific choice
for p(γ) and includes an additional layer of hyperparameters. Shaded variables are held
fixed.

So far, the described setup with fixed σ2 and γi would yield (weighted) ridge regression. The
sparsity comes into play through an assumption on the distribution of the hyperparameter γ.
For specific choices of p(γi), it can be shown that the resulting effective prior on the coefficients
p(c) =

∫
p(c|γ)p(γ)dγ is a sparsity-encouraging distribution, i.e., one that has a sharp peak at

zero, encouraging zero values, while at the same time a heavy tail, allowing for large coefficient
values as well. Examples are the Laplace distribution and the generalized Student-t distribution
(Wipf et al., 2004; Babacan et al., 2010; Figueiredo and Nowak, 2001).

Such sparsity-encouraging distributions are often intractable to use, because they do not allow for
analytical computation of the desired values (such as the most likely coefficients given the data,
or the prediction of the measurement value at a new point). However, feasible algorithms can
be developed based on a suitable approximation step. Various frameworks for sparse Bayesian
learning have been proposed whose setup follows the general structure of Figure 9a, but which
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differ in the choice of priors for the hyperparameters and employ different solution algorithms for
the MAP estimate of these hyperparameters (Tipping, 2001; Faul and Tipping, 2002; Figueiredo,
2003; Tipping and Faul, 2003; Wipf and Rao, 2004; Ji et al., 2008; Seeger and Nickisch, 2008;
Babacan et al., 2010; Sargsyan et al., 2014; Tsilifis et al., 2020; Bhattacharyya, 2020). The MAP
estimate of the hyperparameters is inserted into the distribution for c. Because p(c|γ) and
p(y|c, σ2) are normal distributions, all subsequent computations can be carried out analytically
(Tipping, 2001; Wipf et al., 2004; Wipf and Rao, 2004). The sparsity of c is enforced because
by the choice of p(γ) and the other distributions, many of the components γMAP

i of γMAP will
actually be zero, forcing the corresponding ci to be zero as well.

BCS in the implementation of (Babacan et al., 2010) was suggested for sparse PCE by (Sargsyan
et al., 2014). This approach employs an additional layer of hyperparameters as displayed in Fig-
ure 9b. The prior on the coefficient variances is an exponential distribution p(γi|λ) = Exp

(
γi
∣∣λ

2

)

with shared hyperparameter λ. The hyperparameter λ follows a Gamma distribution p(λ|ν) =
Γ(λ|ν2 , ν2 ) with hyperparameter ν. ν → 0 implies p(λ) ∝ 1

|λ| (improper prior) and ν →∞ implies
the certain value λ = 1. In practice, (Babacan et al., 2010) find that ν = 0 gives the best results.
The prior on β = σ−2 is a Gamma distribution p(β) = Γ(β|a, b) with hyperparameters a, b. In
practice, the algorithm does not estimate β well, which is, however, crucial; therefore, it is set
to a fixed value (e.g. β−1 = 0.01 ‖y‖22 in (Babacan et al., 2010); in our benchmark, we use cross-
validation to determine the best value for this parameter, similarly to the strategy for SPGL1).
The objective function is the logarithm of the joint distribution L(γ, λ, β) = log p(y,γ, λ, β),
which is an analytical expression. To maximize it, Babacan et al. (2010) adapt the fast ap-
proximate algorithm of Tipping and Faul (2003); Faul and Tipping (2002) to their generalized
hierarchical setting. Here, the derivatives of the objective function with respect to the hyper-
parameters λ, β, and γi, i = 1, . . . , P are computed. This results in an iterative scheme where
these parameters are optimized one at a time while the other ones are held fixed. The algo-
rithm is explained in detail in Babacan et al. (2010, Algorithm 1) and has been implemented in
MATLAB under the name FastLaplace (Babacan, 2011).

B.6 Greedy stepwise regression solvers

Many of the sparse regression solvers that have been proposed for computing sparse PCE belong
to the class of greedy stepwise regression. Here, starting from an empty model, the regressors
are added one by one according to a selection criterion (forward selection). Some methods
also include a backward elimination step. Then the coefficients of the selected regressors are
computed. The procedure is iterated until a stopping criterion is reached. Alternatively, several
models are built and one is selected in the end using a model selection criterion. We summarize
some greedy stepwise regression techniques proposed for sparse PCE, together with their choices
for selection criterion, coefficient computation, and stopping criterion, in Table 3, including the
well-known methods OMP and LARS.

New greedy methods in the fashion of Table 3 can easily be derived by pairing other methods
for the regressor selection, the coefficient computation method, and the model selection crite-
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rion. Note that except for LARS and OMP, these greedy methods are heuristic (no theoretical
guarantee of convergence) and often depend on a number of tuning parameters.
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C Additional results

In this appendix, we display additional results that complement the results shown in Sections 3.4–
3.6. For a detailed description of the setup, we refer the reader to Section 3.

C.1 Comparison of sparse solvers

In Figure 10 we display the boxplots of relative MSE for the seven additional models presented
in Table 1.

C.2 Comparison of sampling schemes together with solvers

In Section 3.5, Figure 4 we showed aggregated results for the benchmark of solvers and sampling
schemes. To give a more tangible impression of the data, in Figures 11–14 we display the box-
plots of relative MSE against ED size for the four models Ishigami, borehole, two-dimensional
diffusion, and 100D function. We show all combinations of solvers and sampling schemes, re-
sulting in 16–20 combinations. Solvers are denoted by different colors. Sampling schemes are
shown in varying shades and line styles. We also show the same results sliced at small and large
ED sizes to compare the performance between solvers.

C.3 Comparison of sampling schemes together with solvers, using a smaller
candidate basis

Due to space limitations, in Section 3.6 (Figures 5 and 6) we only showed results for two of the
five solvers (OMP and SPLOO). In Figure 15, we show boxplots of relative MSE against ED size
for the three remaining solvers LARS, SP, and BCS.
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(a) Undamped oscillator (d = 6)
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(b) Damped oscillator (d = 8)
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(c) Wingweight function (d = 10)
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(d) Truss model (d = 10)
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(e) Morris function (d = 20)
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(f) Structural frame model (d = 21)
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(g) 1-dim diffusion model (d = 62)

Figure 10: Results for seven additional models (see Table 1 in Section 3.4 for more
details), complementing the results in Figure 2. Boxplots of relative MSE against ex-
perimental design for six sparse solvers and LHS design. Thirty replications. Note that
the damped oscillator and the Morris function are very challenging for PCE: no solver
achieves a relative MSE significantly smaller than 0.1, even when large EDs are used.

62



30 50 70 90 120 150 200
Size of ED

10 -10

10 -5

10 0

R
el

at
iv

e 
M

S
E

MC
LHS
coh-opt
D-opt(coh-opt)

(a) LARS
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(b) OMP
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(c) SP
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(d) SPLOO
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(e) BCS
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Figure 11: Boxplots of relative MSE from the benchmark of five solvers and four sam-
pling schemes for the Ishigami model (d = 3, p = 14, q = 1). Solvers are coded by colors.
Sampling schemes are shown in varying shades and line styles. In (f) and (g), we show
the relative MSE of each of the solvers combined with each sampling scheme in the order
MC–LHS–coh-opt–D-opt(coh-opt).
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(a) LARS
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(b) OMP

50 100 150 200 250 300
Size of ED

10 -6

10 -4

10 -2

10 0

R
el

at
iv

e 
M

S
E

MC
LHS
coh-opt
D-opt(coh-opt)

(c) SP
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(d) SPLOO
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(e) BCS
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Figure 12: Boxplots of relative MSE from the benchmark of five solvers and four sam-
pling schemes for the borehole model (d = 8, p = 4, q = 1). Solvers are coded by colors.
Sampling schemes are shown in varying shades and line styles. In (f) and (g), we show
the relative MSE of each of the solvers combined with each sampling scheme in the order
MC–LHS–coh-opt–D-opt(coh-opt).
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(a) LARS
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(b) OMP
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(c) SP
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Figure 13: Boxplots of relative MSE from the benchmark of four solvers and four
sampling schemes for the two-dimensional diffusion model (d = 53, p = 4, q = 0.5).
Solvers are coded by colors. Sampling schemes are shown in varying shades and line
styles. In (e) and (f), we show the relative MSE of each of the solvers combined with each
sampling scheme in the order MC–LHS–coh-opt–D-opt(coh-opt).
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(a) LARS
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(b) OMP

200 400 600 800 1000 1200 1400
Size of ED

10 -4

10 -2

10 0

R
el

at
iv

e 
M

S
E

MC
LHS
coh-opt
D-opt(coh-opt)

(c) SP

200 400 600 800 1000 1200 1400
Size of ED

10 -4

10 -2

10 0

R
el

at
iv

e 
M

S
E

MC
LHS
coh-opt
D-opt(coh-opt)

(d) BCS

LARS OMP SP BCS
Solvers

10 -4

10 -2

10 0

R
el

at
iv

e 
M

S
E

(e) Small ED (400 points)

LARS OMP SP BCS
Solvers

10 -4

10 -2

10 0

R
el

at
iv

e 
M

S
E

(f) Large ED (1200 points)

Figure 14: Boxplots of relative MSE from the benchmark of four solvers and four
sampling schemes for the 100D function (d = 100, p = 4, q = 0.5). Solvers are coded by
colors. Sampling schemes are shown in varying shades and line styles. In (e) and (f), we
show the relative MSE of each of the solvers combined with each sampling scheme in the
order MC–LHS–coh-opt–D-opt(coh-opt).
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(a) Ishigami model, LARS
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(b) Borehole model, LARS
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(c) Ishigami model, SP
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(d) Borehole model, SP
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(e) Ishigami model, BCS
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(f) Borehole model, BCS

Figure 15: Left column: results for the Ishigami model with a smaller basis (d = 3, p =
12, q = 1), complementing the plots in Figure 5. Right column: results for the borehole
model with a smaller basis (d = 8, p = 4, q = 1), complementing the plots in Figure 6.
Results for three sparse solvers and five experimental design schemes. Fifty replications.
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D Benchmark studies

An overview of articles and benchmark studies comparing sparse PCE methods, including their
main results, is given in Table 4.
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Table 4: Overview of some articles and benchmark studies comparing sparse PCE methods.
The “best method” listed in the last column is the one delivering the smallest target error,
as reported in the respective publications. Target quantities can be moments, Sobol’ indices
or the generalization error of the PCE surrogate. Abbreviations: ‘�’ stands for ‘better than’;
for the acronyms of solvers and sampling schemes see Sections 2.5 and 2.6 or the respective
publications; for the sampling schemes, the method given in parentheses indicates how the cor-
responding candidate set is created (e.g., D-opt(coh-opt) stands for D-optimal sampling based
on a coherence-optimal candidate set). If the cited paper proposed a new method, this method
is marked by a star (*).

Ref. Type Methods compared Result

(Hampton and
Doostan, 2015b,a)

sampling MC, asymptotic*, and coh-opt* coh-opt best

(Fajraoui et al.,
2017)

sampling LHS, Sobol, D-opt(LHS), S-opt(LHS)*;
sequential sampling*

sequential S-opt(LHS) best; D-
opt(LHS) worst

(Hadigol and
Doostan, 2018)

sampling
(OLS)

MC, LHS, coh-opt, A-opt(coh-opt)*, D-
opt(coh-opt)*, E-opt(coh-opt)*

D-opt(coh-opt) best for p > d;
MC, LHS best for p < d

(Jakeman et al.,
2017)

sampling MC, asymptotic, CSA* for p > d: CSA better than MC
and asymptotic

(Alemazkoor and
Meidani, 2018a)

sampling MC, coh-opt, near-opt(coh-opt)* near-opt(coh-opt) � coh-opt �
MC

(Diaz et al., 2018) sampling coh-opt, D-opt(coh-opt), sequential D-
opt(coh-opt)*

seq. D-opt(coh-opt) �
D-opt(coh-opt) � coh-opt

(Dutta and Gan-
domi, 2020)

sampling MC, LHS, Sobol, Importance Sampling LHS best

(Hu and Lud-
kovski, 2017)

solvers OMP, SPGL1, BCS(Babacan et al.,
2010)

BCS � OMP � SPGL1

(Huan et al., 2018) solvers l1_ls, SpaRSA, CGIST, FPC_AS,
ADMM with default parameters

all showed similar performance;
ADMM slightly advantageous

(Liu et al., 2020a) solvers OMP, LARS, rPCE* rPCE � LARS � OMP

(Baptista et al.,
2019)

solvers OMP, SPGL1, and two variants* of
OMP (modified regressor selection, ran-
domization)

best: OMP, and OMP with mod-
ified regressor selection

(Tarakanov and
Elsheikh, 2019)

solvers OMP, LARS, Rank-PCE* best: Rank-PCE

(Zhou et al., 2019) solvers LARS, BCS (Wipf and Rao, 2004), BCS
(Ji et al., 2008), D-MORPH-reweighted
(Cheng and Lu, 2018b), stepwise regres-
sion based on Bayesian ideas*

best: stepwise regression (based
on 1 Sobol’ design)
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This description refers to UQLabModules V1.4.0.

UQLab is designed to be augmented by external code. We describe briefly how to connect
external sampling schemes and solvers with the UQLab framework.

To use a custom sampling scheme, create the experimental design and add it to the structure
array of PCE options MetaOpts as follows:

MetaOpts.ExpDesign.Sampling = ’user’; % optional

MetaOpts.ExpDesign.X = X;

MetaOpts.ExpDesign.Y = Y;

Make sure to define a suitable input object so that UQLab knows which family of polynomials
to use. If the sampling scheme has weights, use the undocumented feature

MetaOpts.ExpDesign.CY = diag(1./(myWeights.^2));

where myWeights is the vector of weights corresponding to the points in X. This results in the
weighted problem W Ψc ≈ W y with the diagonal matrix W = diag(myWeights).

To use a custom solver “mySolver” for sparse PCE in UQLab, define the wrapper function
uq_PCE_mysolver.m (all lowercase) and use the option metaopts.Method = ’MYSOLVER’ (all
uppercase) for the PCE. A template for the implementation of uq_PCE_mysolver.m is displayed
in File 1. See also uq_PCE_lars.m for an example implementation.
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The function uq_PCE_mysolver takes the variables univ_p_val and current_model, where
the first contains the univariate polynomial evaluations. The second argument contains all
information about the PCE that is being constructed. Inside the wrapper function, call the
custom solver, perform hyperparameter selection and error estimation, etc. The return variable
results is a struct with the following fields:

• .coefficients : all coefficients, including the zeros, in the same order as the candidate
basis

• .indices : all basis indices, including the inactive ones, in the same order as the coefficients

• .normEmpErr : empirical error

• .LOO : leave-one-out error (or a similar criterion for model selection)

• Also, a field .optErrorParams is required that needs to have two fields .loo and .normEmpErr

(same as before).

Since basis adaptivity is independent of the choice of solver, each solver can make use of degree
adaptivity, q-norm truncation, interaction restriction etc. as usual in UQLab. If the sampling
scheme has weights, the solver must take them into account as displayed in File 1.
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function results = uq_PCE_mysolver(univ_p_val, current_model)

% Get the index of the current output (for models with vector-valued output)
current_output = current_model.Internal.Runtime.current_output;

% Generate the regression matrix
Psi = uq_PCE_create_Psi(current_model.PCE(current_output).Basis.Indices, univ_p_val);

% Get the experimental design model evaluations
Y = current_model.ExpDesign.Y(:,current_output);

% Take weights into account, if they exist
if isfield(current_model.ExpDesign, ’CY’)

CY = current_model.ExpDesign.CY;
CYinv = CY \ eye(size(CY));
L = chol(CYinv);
Psi = L*Psi;
Y = L*Y;

end

% Now implement your method here
% e.g. [coeffs, LOO] = mysolver(Psi, Y, some_other_params);
...

% Prepare results
results.coefficients = ...
results.indices = current_model.PCE.Basis.Indices; % ALL indices
results.LOO = ...
results.normEmpErr = ...

opt_results.loo = results.LOO;
opt_results.normEmpErr = results.normEmpErr;
results.optErrorParams = opt_results;

end

File 1: Template for the implementation of a custom sparse solver for use in UQLab
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