
HAL Id: hal-02539750
https://hal.science/hal-02539750v1

Preprint submitted on 10 Apr 2020 (v1), last revised 20 May 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse polynomial chaos expansions: literature survey
and benchmark

N. Lüthen, S. Marelli, B. Sudret

To cite this version:
N. Lüthen, S. Marelli, B. Sudret. Sparse polynomial chaos expansions: literature survey and bench-
mark. 2020. �hal-02539750v1�

https://hal.science/hal-02539750v1
https://hal.archives-ouvertes.fr

SPARSE POLYNOMIAL CHAOS EXPANSIONS:
LITERATURE SURVEY AND BENCHMARK

N. Lüthen, S. Marelli and B. Sudret

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION

STEFANO-FRANSCINI-PLATZ 5
CH-8093 ZÜRICH

Risk, Safety &
Uncertainty Quantification

Data Sheet

Journal: -

Report Ref.: RSUQ-2020-002

Arxiv Ref.: https://arxiv.org/abs/2002.01290 [cs.NA, stat.CO, stat.ME]

DOI: -

Date submitted: February 4th, 2020

Date accepted: -

Sparse Polynomial Chaos Expansions: Literature Survey and
Benchmark

Nora Lüthen1, Stefano Marelli1, and Bruno Sudret1

1Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, Stefano-Franscini-Platz 5, 8093
Zürich, Switzerland

February 4, 2020

Abstract

Sparse polynomial chaos expansions are a popular surrogate modelling method that takes
advantage of the properties of polynomial chaos expansions (PCE), the sparsity-of-effects
principle, and powerful sparse regression solvers to approximate computer models with many
input parameters, relying on only few model evaluations. Within the last decade, a large
number of algorithms for the computation of sparse PCE have been published in the applied
math and engineering literature. We present an extensive review of the existing methods
and develop a framework to classify the algorithms. Furthermore, we conduct a benchmark
on a selection of methods to identify which methods work best in practical applications.
Comparing their accuracy on several benchmark models of varying dimension and complexity,
we find that the choice of sparse regression solver and sampling scheme for the computation of
a sparse PCE surrogate can make a significant difference, of up to several orders of magnitude
in the resulting mean-square error. Different methods seem to be superior in different regimes
of model dimensionality and experimental design size.

1 Introduction

Computer models are used in nearly every field of science and engineering. Often, these com-
puter codes model complex phenomena, have many input parameters, and are expensive and
time-consuming to evaluate. In order to explore the behaviour of the model under uncertainty
(e.g., uncertainty propagation, parameter calibration from data or sensitivity analysis), many
model runs are required. However, if the model is costly, only few model evaluations can be
afforded, which often do not suffice for thorough uncertainty quantification. In engineering and
applied sciences, a popular work-around in this situation is to construct a surrogate model. A
surrogate model is a cheap-to-evaluate proxy of the original model, which typically can be con-
structed from a relatively small number of model evaluations and approximates the input-output
relation of the original model well. Since the surrogate model is cheap to evaluate, uncertainty
quantification can be performed at low cost by using the surrogate model instead of the original

1

model. Therefore, surrogate modelling aims at constructing a metamodel that provides an ac-
curate approximation to the original model while requiring as few model evaluations as possible
for its construction.

In this publication, we focus on non-intrusive regression-based sparse polynomial chaos expan-
sions (PCE), which is a popular surrogate modelling technique that in the last decade has drawn
attention from the communities of applied mathematics as well as engineering. PCE express the
computational model in terms of a basis of polynomials orthonormal with respect to the input
random variables (Xiu and Karniadakis, 2002) and work well for globally smooth problems,
which are common in many engineering applications. In addition to being a surrogate model,
PCE are also often used for uncertainty propagation and sensitivity analysis, since moments
and Sobol’ sensitivity indices can be computed analytically (Sudret, 2008). Non-intrusive PCE
treat the model as a black box (unlike intrusive PCE commonly used for solving stochastic
PDEs). It is often advantageous to compute a sparse PCE, which is an expansion for which
most coefficients are zero. This can be justified by the sparsity-of-effects principle and by com-
pressibility: The sparsity-of-effects principle is a heuristic stating that most models describing
physical phenomena are dominated by main effects and interactions of low order (Montgomery,
2004). Furthermore, PCEs of real-world models are usually either sparse, or at least com-
pressible, meaning that the PCE coefficients, sorted by magnitude, decay quickly. Additional
advantages of sparse expansions are given in Section 2.2.

Within the last decade, a large number of articles has been published on the topic of regression-
based sparse PCE, each containing promising improvements on how to perform sparse PCE, but
often lacking a thorough comparison to previously published methods. In this work, we survey
the state-of-the-art literature, develop a general framework into which the various approaches
can be fit, and perform a numerical benchmark of a selection of methods to assess which of the
many sparse PCE methods perform best on a representative set of realistic benchmarks.

The paper is structured as follows: Section 2 contains the description of our framework for
classifying the sparse PCE literature as well as the extensive literature review. Section 3 contains
the benchmark description and the numerical results. Finally, conclusions are drawn in Section 4.
A more detailed description of selected sparse solvers and experimental design techniques is given
in the Appendices using unified notation.

2 Framework and literature survey for sparse polynomial chaos
expansions

2.1 Regression-based polynomial chaos expansions

Let X be a d-dimensional random vector on a domain D ⊂ R
d with independent components

and probability density function fX(x) = ∏d
i=1 fXi(xi). Let L2

fX
(D) be the space of all scalar-

valued models with finite variance under fX , i.e., L2
fX

(D) = {h : D → R | VarX [h(X)] < +∞}.
Under certain assumptions on the input distribution fX (Xiu and Karniadakis, 2002; Ernst

2

et al., 2012), there exists a polynomial orthonormal basis {ψα : α ∈ Nd} for L2
fX

(D). Since the
components of X are assumed to be independent, the basis elements are products of univariate
orthonormal polynomials and are characterized by the multi-index α ∈ Nd of polynomial degrees
in each dimension.

We consider a particular model M ∈ L2
fX

(D) and denote by Y = M(X) the corresponding
output random vector. Y can be represented exactly through an infinite expansion in {ψα :
α ∈ Nd}. In practice, however, not all infinitely many coefficients can be computed and we are
interested in a truncated expansion

Y =M(X) ≈MPCE(X) =
∑

α∈A
cαψα(X) (1)

whose accuracy depends on the choice of the finite set A ⊂ N
d (i.e., on the basis elements used

for the expansion) as well as on the coefficients cα. Several truncation techniques are described
in Section 2.4.

To compute the coefficients, one well-known and practical approach is regression (Isukapalli,
1999; Berveiller et al., 2006)1. The basic regression approach is ordinary least squares (OLS).
Let {x(k)}Nk=1 ⊂ D be a sample of the input space called experimental design (ED). Let
y = (y(1), . . . , y(N))T be the vector of model responses with y(k) = M(x(k)). Define the ma-
trix of basis function evaluations Ψ with entries Ψij = ψj(x(i)), where the basis functions are
enumerated in an arbitrary way. Denoting the number of basis functions with P , the regression
matrix Ψ is an N × P -matrix. Then, the OLS regression problem can be written as

ĉ = arg min
c∈RP

‖Ψc− y‖2 . (2)

For a unique and robust solution, a heuristic number of model evaluations is N ≈ 2P, 3P (Hosder
et al., 2007; Fajraoui et al., 2017), which can be infeasible for high-dimensional or high-degree
PCE approximations.

2.2 Sparse PCE

Sparse coefficient vectors are determined through sparse regression, which in addition to a good
regression fit requires that the solution be sparse. This constraint on sparsity is realized e.g.
by adding as a regularization term the `0-“norm” or the `1-norm of the coefficient vector to the
OLS formulation of Eq. (2) (see Appendix B for more details). Many sparse regression methods
used in PCE were originally developed in the context of compressive sensing (Donoho, 2006;
Candès et al., 2006). For an introduction to the concepts and ideas of compressive sensing, see
e.g. Candès and Wakin (2008); Bruckstein et al. (2009).

Unlike OLS, compressive sensing methods allow one to use fewer design points N than basis
functions P and still recover the true sparse solution, or find a good sparse approximation to

1Other, earlier approaches for computing the coefficients are stochastic Galerkin and stochastic collocation
methods (Ghanem and Spanos, 1991; Xiu and Hesthaven, 2005; Shen et al., 2020). For a comparison of their
performance to regression-based PCE, see e.g. Berveiller (2005); Hosder et al. (2007); Doostan and Owhadi (2011);
Mathelin and Gallivan (2012).

3

it. This and its robustness to noise, which are both induced by the sparsity constraint, are the
main reasons why sparse PCE are preferred to full PCE in practical settings, when the number
of model evaluations necessary for OLS-based PCE would be infeasible to compute. Note that
while the use of sparse PCE for engineering models can be justified by compressibility and
the sparsity-of-effects heuristic (Section 1), the main goal in sparse PCE is to compute a good
surrogate model from few model evaluations, and not to find the sparsest possible expansion.
The assumption of sparsity is used as a tool for finding robust solutions to underdetermined
systems of linear equations.

The first publications on sparse regression-based PCE propose greedy forward-backward selec-
tion algorithms (Blatman and Sudret, 2008, 2010) and introduce the LARS algorithm for sparse
PCE (Blatman and Sudret, 2011). On the mathematical side, Doostan and Owhadi (2011) anal-
yses convergence properties for sparse Legendre PCE when the design points are sampled from
the uniform distribution. Another early work is by Mathelin and Gallivan (2012) demonstrating
that sparse PCE are less costly and more accurate than PCE based on Smolyak sparse grids.
Since then, a large amount of articles has been published on the topic of sparse PCE, suggesting
new methods for specific aspects of the sparse regression procedure. In the following, we present
a framework into which the existing literature can be fit. The framework provides an overview
of the available choices and enables a structured comparison of their impact on the performance
of the resulting sparse PCE. Naturally, some new combinations of methods arise that have not
yet been considered in the literature.

2.3 Framework: Classifying the literature on sparse PCE

Here, we present the framework we developed in order to get an overview of the extensive
literature proposing new methods for computing sparse PCE. Figure 1 shows a sketch of this
framework. To compute a sparse PCE, the first step is to choose a setA of candidate polynomials
for the expansion (Section 2.4) as well as an experimental design (Section 2.5). The experimental
design defines the locations of the model evaluations. Once the model evaluations are obtained,
the sparse solution can be computed by applying a sparse regression solver (see Section 2.6).
This solver often depends on a number of hyperparameters that have to be selected carefully in
order to get good results. Then, a suitable model selection criterion is evaluated (Section 2.7).
If the obtained solution is satisfactory, the process can be stopped. Otherwise, the basis can be
adapted (usually augmented, see Section 2.4) and/or the experimental design can be enriched
(see Section 2.5.4). This process is repeated until the value of the model selection criterion is
satisfactory or cannot be reduced.

In addition to the components shown in Figure 1, there are methods (we call them enhancements)
that aim at generally improving the solution to the sparse regression problem by e.g. adapting
the input space or pre-conditioning the regression matrix. They are discussed in Section 2.8.

4

Experimental
design

Sparse
regression

ED
enrichment

Evaluation of model
selection criterion

Candidate
basis

sparse PCE
solution

Basis
adaptation

Figure 1: Framework for computing sparse PCE. For each component of the framework, a
number of methods has been proposed in the literature. In the first part of this paper, we
review the literature for each of the components. Details on selected methods are given in the
appendix. In the second part, we conduct a benchmark of selected methods for the components
marked in orange, performing a single iteration of the framework. Iterative basis adaptation
and experimental design enrichment are not considered in this work and are left for future
benchmarks.

2.4 Choice of basis and basis adaptation

The approximation quality of a truncated PCE hinges on the polynomial functions available to
build the surrogate model, which are characterized by the associated set of multi-indices A ⊂ N

d.
We call the finite set of polynomials {ψα : α ∈ A} included in the current truncated PCE
model basis and its members candidate polynomials or candidate basis functions. A sparse PCE
algorithm will find nonzero coefficients only for a subset Aactive ⊂ A of the basis functions, which
we call active basis functions. On one hand, A should include enough candidate polynomials to
facilitate a good approximation. On the other hand, unnecessary basis functions decrease the
ratio N/P of model evaluations to unknown coefficients and deteriorate the regression matrix.
Therefore, it is beneficial to carefully select the polynomials to be included in the expansion.

The choice of basis is often motivated by the sparsity-of-effects principle, a heuristic guideline
stating that most real-world models are well approximated by terms of low degree and low
interaction order. The following are popular ways to construct a basis:

• Total-degree A total-degree basis of degree p is defined by Ap = {α : ‖α‖1 ≤ p}.

• Hyperbolic truncation Let p be fixed. Define the q-norm-truncated basis

Ap,q = {α : ‖α‖q ≤ p} (3)

with q ∈ (0, 1] (Blatman and Sudret, 2011). For q = 1, this is the total-degree basis of
order p. For smaller q, this truncation scheme excludes terms with high interaction order
while keeping univariate polynomials up to degree p.

5

• Interaction order The interaction order of the basis can be restricted by defining

Ap,r = {α ∈ Ap : #{i : αi 6= 0, i = 1, . . . , d} ≤ r} (4)

(Blatman and Sudret, 2008; Marelli and Sudret, 2019). This is useful to reduce the number
of basis functions especially in high dimensions and when it is known (e.g., for physical
reasons) that only a certain number of variables might interact.

Instead of using a fixed basis A, it can be beneficial to employ an iterative scheme which starts
from a small set of basis functions (low-dimensional, low-order) and, after computing a sparse
solution, repeatedly adapts the basis by including a set of most promising candidate polynomials
and possibly removing others. This is called basis adaptivity (not to be confused with Gaussian
adaptation (Tipireddy and Ghanem, 2014), see also Section 2.8).

A simple instance of basis adaptivity is degree adaptivity (Blatman and Sudret, 2010), which
is based on total-degree bases. The procedure starts with a basis of low total degree and
iteratively increases the total degree of the basis. Finally, a model selection criterion is used
to select the best basis and associated sparse solution. Similarly, q-norm and interaction order
or a combination of all three can also be used to design a basis adaptation scheme (Blatman
and Sudret, 2010, 2011). This basis adaptivity is solution-agnostic in the sense that it does not
use any information from the solutions computed in previous runs for the augmentation of the
basis. Another solution-agnostic method is the dimension- and order-incrementing algorithm of
Alemazkoor and Meidani (2017). Two methods that adapt the basis based on the active terms
of the previous sparse solution are the DAG-structure basis selection (Jakeman et al., 2015) and
BASE-PC (Hampton and Doostan, 2018). These approaches keep the size of the basis small
by strictly controlling which functions are added to the basis, often starting with a constant
surrogate model and adding dimensions only when necessary.

2.5 Experimental design

Generally, experimental design techniques aim to select points in order to achieve certain goals
related to exploration of the space (space-filling design), or to achieve certain properties of
the regression matrix such as (in expectation) orthonormal columns, small determinant, small
condition number etc. For regression-based PCE, there are several main classes of experimental
design techniques:

• Sampling based on the input distribution. The samples are drawn from the input distri-
bution. Techniques like Latin Hypercube sampling (LHS) can be used to improve the
space-filling properties.

• Sampling from a different distribution. A different distribution and associated basis is
constructed that have better properties than the input distribution and its basis.

• Choosing points according to an optimality criterion from a candidate set. Certain prop-
erties of the regression matrix are optimized by choosing the design points from a suitable
candidate set.

6

Note that none of these sampling methods consider the evaluations y of the computational model.
For model-aware sampling techniques (active and supervised learning), see Section 2.5.4.

The following sections contain an overview of available sampling methods for sparse PCE. Se-
lected experimental design techniques are described in more detail in Appendix A. Note that due
to the large amount of literature on experimental design for sparse PCE, our review cannot be
exhaustive. There are many more approaches available, including the deterministic Weil points
(Zhou et al., 2014), sparse grids (Perkó et al., 2014), randomized or subsampled quadrature
points (Berveiller et al., 2006; Tang and Iaccarino, 2014; Guo et al., 2017), etc.

2.5.1 Sampling based on the input distribution

The most basic sampling method is Monte-Carlo sampling (MC), where the points are sampled
i.i.d. from the input distribution (Doostan and Owhadi, 2011; Hampton and Doostan, 2015b).
Latin Hypercube sampling (LHS) (McKay et al., 1979) aims at distributing the design points
in a more space-filling way than MC sampling, using a stratification of the input quantile space
in each dimension. LHS is known to filter main effects, i.e., it reduces the variance of linear
regression estimators when the quantity of interest is dominated by terms of interaction order
one (Shields and Zhang, 2016). LHS with sample decorrelation can further reduce the vari-
ance (Owen, 1994). LHS can also be used together with a criterion such as maximin distance
(maximize the minimal distance between the design points in quantile space) (Pronzato and
Müller, 2012), where several LHS designs are generated and the one that optimizes the criterion
is returned.

A generalization of LHS, combining it with stratified sampling, is Latinized partially stratified
sampling (Shields and Zhang, 2016), which filters both main effects and low-order interaction
terms and has been shown to consistently outperform LHS in high-dimensional cases.

Other space-filling/low-discrepancy methods are Sobol’ sequences (Sobol’, 1967) and Halton
sequences (Halton, 1960), which are deterministic but appear quasi-random and space-filling in
low dimensions.

2.5.2 Sampling from a different distribution

Several methods consider the coherence parameter of a basis, defined by

µ(A, {ψα}) = sup
x∈D

max
α∈A
|ψα(x)|2, (5)

which can be used to bound the number of samples needed for accurate recovery by `1-minimization
(Candès and Plan, 2011; Hampton and Doostan, 2015b). For Hermite and Legendre polynomial
bases, the coherence parameter of a total-degree basis grows exponentially with the total degree
p (Rauhut and Ward, 2012; Yan et al., 2012; Hampton and Doostan, 2015b).

To construct a coherence-optimal design, a new probability distribution and its associated
orthonormal basis is constructed that achieves minimal coherence (Hampton and Doostan,

7

2015b,a). The new basis can be derived from the original PCE basis by multiplying each
member with a weight function. Coherence-optimal samples can be drawn by MCMC (Hamp-
ton and Doostan, 2015b) or by rejection sampling (see Appendix A.2.3). A related sampling
scheme is obtained by constructing a new probability distribution and associated orthonormal
basis which has improved, but not optimal coherence; however the distribution is constructed
to belong to some classical family and is therefore straightforward to sample. This is called
asymptotic sampling (Hampton and Doostan, 2015b,a) and results in a Chebyshev distribution
for uniform input, and in a uniform distribution (within a ball of degree-dependent radius) for
Gaussian input. Numerical experiments confirm the expected performance gain of coherence-
optimal sampling over both MC and asymptotic sampling, and of asymptotic sampling over MC
in the case of low dimension d and high total degree p. For high-dimensional problems with low
degree, MC often performs better than asymptotic sampling (Hampton and Doostan, 2015b).

The so-called Christoffel sparse approximation (CSA) (Jakeman et al., 2017; Narayan et al.,
2017) is a related approach which constructs a new orthonomal basis that minimizes the quantity

µ̃(A, {ψα}) = sup
x∈D

(
1
|A|

∑

α∈A
|ψα(x)|2

) 1
2

. (6)

As for coherence-optimal sampling, the new basis can be derived from the original basis by mul-
tiplying each member with a weight function, which results in a weighted regression problem.
The corresponding probability distribution is chosen to be the so-called weighted pluripoten-
tial equilibrium measure, which for bounded distributions is the Chebyshev distribution. For
one-dimensional Gaussian input, this measure is a symmetric Beta distribution with degree-
dependent bounds.

Note that all three sampling methods described in this section introduce weights and therefore
modify the objective function into a weighted regression problem WΨc ≈ Wy. Since the
objective function belongs to the scope of the solver, these methods cannot be considered as
pure sampling methods in the sense of being completely independent of the solver.

2.5.3 Choosing points according to an optimality criterion from a candidate set

The following methods choose points from a candidate set in order to optimize properties of the
regression matrix. Candidate points can be sampled e.g. using MC, LHS (Fajraoui et al., 2017),
coherence-optimal sampling (Diaz et al., 2018; Alemazkoor and Meidani, 2018a) or Christoffel
sampling (Shin and Xiu, 2016b). Note that some of these methods introduce weights, resulting
in a weighted regression problem. The candidate set can have a large influence on the resulting
design.

• D-optimal sampling aims at maximizing the determinant D(Ψ) = det(1
NΨTΨ) 1

P of the
information matrix (Kiefer and Wolfowitz, 1959). Note that D(Ψ) = 0 if N < P . Maxi-
mizing the D-value is connected to minimizing the variance of the coefficients of the PCE
estimate (Zein et al., 2013). Algorithms for D-optimal designs include greedy augmenta-
tion (Dykstra, 1971), exchange techniques (Fedorov, 2013; Cook and Nachtsheim, 1980;

8

Nguyen and Miller, 1992; Zein et al., 2013), maxvol (Mikhalev and Oseledets, 2018), gra-
dient descent (Zankin et al., 2018), and rank-revealing QR decomposition (RRQR)/subset
selection (Diaz et al., 2018; Gu and Eisenstat, 1996). The advantage of the last method is
that it can also be applied for wide matrices Ψ ∈ RN×P where N < P .

• S-optimal sampling (also called “quasi-optimal” by Shin and Xiu (2016a)) selects samples
from a large pool of candidate points so that the PCE coefficients computed using the
selected set are as close as possible to the coefficients computed from the whole set of
candidate points (Shin and Xiu, 2016a). The S-value is defined by2

S(Ψ) =
(√

det ΨTΨ
∏P
i=1 ‖Ψi‖2

) 1
P

(7)

where Ψi denotes the i-th column of the regression matrix. Its maximization has the effect
of maximizing the column orthogonality of the regression matrix and at the same time
maximizing the determinant of the information matrix (Shin and Xiu, 2016a). Note that
S(Ψ) = 0 if N < P . An S-optimal experimental design can be computed using a greedy
exchange algorithm (Shin and Xiu, 2016a,b; Fajraoui et al., 2017).

• Near-optimal sampling simultaneously minimizes the two matrix properties mutual coher-
ence and average cross-correlation (Alemazkoor and Meidani, 2018a), which both quantify
the correlation between normalized columns of the regression matrix (see Appendix A.3.3
for the definition of these properties). A near-optimal design can be built by a greedy
algorithm (Alemazkoor and Meidani, 2018a). Note that for near-optimal sampling, it is
not necessary that N ≥ P .

2.5.4 Sequential enrichment of the experimental design

Instead of sampling the whole experimental design at once, it has been proposed to use sequential
enrichment. Starting with a small experimental design, additional points are chosen based on
the last computed sparse PCE solution or based on an augmented basis. In the context of
machine learning, sequential sampling is also known as active learning (Settles, 2012). Sequential
enrichment has been proposed in the context of S-optimal sampling (Fajraoui et al., 2017), D-
optimal sampling (Diaz et al., 2018), and coherence-optimal sampling (Hampton and Doostan,
2018). Zhou et al. (2019) suggest an enrichment strategy based on approximations to the
expected quadratic loss function, i.e., the mean squared error. Ji et al. (2008) and Seeger and
Nickisch (2008) propose to choose points that minimize the differential entropy of the posterior
distribution of the coefficients (using a Bayesian regression setting). In all cases, numerical
examples show that the sequential strategy generally leads to solutions with smaller validation
error compared to non-sequential strategies. Due to the complexity of the topic and the already
large extent of our benchmark, this strategy, albeit promising, is not explored further in this
paper.

2Under the assumption that the columns of the matrix Ψcand, containing the evaluations of all candidate
points, are mutually orthogonal.

9

2.6 Solution of the minimization problem

There are many formulations of the regression problem that lead to a sparse solution, such as `0-
minimization, `1-minimization (Basis Pursuit Denoising (BPDN), LASSO), `1−`2 minimization,
Bayesian methods, etc. (see also Appendix B). Based on these formulations, a vast number of
sparse solvers has been proposed in the compressed sensing literature, see e.g. Carron (2013)
and the surveys of Qaisar et al. (2013); Zhang et al. (2015); Arjoune et al. (2017). We focus here
on solvers that have been proposed in the context of sparse PCE. Of course, it is straightforward
to use any other sparse solver to compute a sparse PCE.

The following solvers have been proposed in the sparse PCE literature:

• Convex optimization solvers. `1-minimization in its various formulations is a (constrained)
convex optimization problem. Least angle regression (LARS) (Efron et al., 2004; Blatman
and Sudret, 2011; Marelli and Sudret, 2019) is an iterative method that adds regressors
one-by-one according to their correlation with the current residual, and updates the co-
efficients following a least-angle strategy. With the LARS-LASSO modification, which
allows for backwards elimination of regressors, LARS is able to generate the whole LASSO
path (Efron et al., 2004). Unmodified LARS can also be classified as a greedy method.
SPGL1 (van den Berg and Friedlander, 2008; Van den Berg and Friedlander, 2015) solves
the BPDN formulation by solving a succession of LASSO instances using the spectral pro-
jected gradient method (SPG). Other solvers belonging to this class are e.g. the solvers
implemented in l1magic (Candès and Romberg, 2005) and SparseLab (Donoho et al., 2007).

• Greedy methods are variants of stepwise regression where the regressors are added to the
model one-by-one according to some selection criterion, aiming at finding a heuristic solu-
tion to the intractable `0-minimization formulation. Orthogonal matching pursuit (OMP)
(Tropp and Gilbert, 2007; Doostan and Owhadi, 2011; Marelli and Sudret, 2019) is a
classical forward selection algorithm in which orthonormalized regressors are added to the
model one-by-one according to their correlation with the residual, and the coefficients are
computed by least-squares. Baptista et al. (2019) suggest extensions to OMP such as par-
allelization, randomization and a modified regressor selection procedure. Subspace pursuit
(SP) (Dai and Milenkovic, 2009; Diaz et al., 2018; Diaz, 2018) is an iterative algorithm that
repeatedly uses least squares on a subset of regressors. LARS (Efron et al., 2004; Blatman
and Sudret, 2011) without the LASSO-modification (allowing for removal of regressors)
can also be classified as a greedy method. Another greedy method is ranking-based sparse
PCE (Tarakanov and Elsheikh, 2019) which employs batch updating, coordinate-wise gra-
dient descent of the elastic net formulation, and a correlation- and stability-based ranking
procedure for the regressors. Many more greedy stepwise regression techniques have been
proposed, utilizing various selection criteria, solvers, and stopping criteria. An overview
of methods following this scheme is given in Appendix B.6.

• Bayesian compressive sensing (BCS) (a.k.a. sparse Bayesian learning) is a class of methods
that use a Bayesian setting to find a sparse solution. They impose a sparsity-inducing prior

10

on the coefficients, whose parameters are again considered to be random variables with a
hyperprior (Tipping, 2001; Ji et al., 2008; Sargsyan et al., 2014). The solution is typically
the maximum-a-posteriori estimate of the coefficients and can be computed e.g. by differ-
entiation (Tipping, 2001), by the expectation-maximization algorithm (Figueiredo, 2003;
Wipf and Rao, 2004), by expectation-propagation (Seeger and Nickisch, 2008) or by a fast
approximate algorithm (Faul and Tipping, 2002; Tipping and Faul, 2003). An extension
called FastLaplace with an additional layer of hyperparameters has been proven to attain
even sparser solutions (Babacan et al., 2010; Babacan, 2011). A greedy algorithm using
the Bayesian setting to select the regressors is the greedy Bayesian KIC-based algorithm
(Shao et al., 2017).

• Iteratively reweighted methods. Iteratively reweighted `1-minimization uses the coefficients
computed in a previous iteration to construct a weighted `1-minimization problem (Candès
et al., 2008; Yang and Karniadakis, 2013). Cheng and Lu (2018b) suggest an iterative
reweighted method with D-MORPH regression (Li and Rabitz, 2010) as its computational
core, which is a technique that follows a certain path, defined by a quadratic objective
function, on the manifold of solutions to the underdetermined system.

Each of the solvers mentioned above features one or more hyperparameters whose values must
be calibrated. This is usually done by cross-validation. Popular choices are leave-one-out cross-
validation (accelerated for least-squares solutions) (Blatman and Sudret, 2010, 2011), leave-one-
out cross-validation with a modification factor for small sample sizes (Chapelle et al., 2002;
Blatman and Sudret, 2011), and k-fold cross-validation (Doostan and Owhadi, 2011; Jakeman
et al., 2015; Huan et al., 2018).

Selected sparse regression solvers are described in more detail in Appendix B.

2.7 Model selection criterion

To decide whether to continue iterating in the framework or stop the process, we need to assess
how well the current sparse solution performs. Our main quantity of interest is the generalization
error, which quantifies the mean-square accuracy of the surrogate. It is given by

Egen = EX

[(
M(X)−MPCE(X)

)2
]

(8)

whereM is the computational model, X is the random input vector, andMPCE is the sparse
PC surrogate.

The generalization error can be approximated by the validation error, which is the Monte
Carlo estimate of Eq. (8) on a validation set {(x(i)

val, y
(i)
val) : x(i)

val ∼i.i.d. fX , y
(i)
val = M(x(i)

val), i =
1, . . . , Nval}. To make the validation error independent of the scaling of the model, it is conve-
nient to use the relative mean squared error defined by

RelMSE =
∑Nval
i=1 (y(i)

val −MPCE(x(i)
val))2

∑Nval
i=1 (y(i)

val − ȳ)2
(9)

11

where ȳ = 1
Nval

∑Nval
i=1 y

(i)
val .

The best surrogate modelMPCE (defined by A and c) is the one that has the smallest general-
ization error. In practical applications, the generalization error can typically not be computed
and a large validation set is not available due to computational constraints. Instead, we define
a model selection criterion that acts as a proxy for the generalization error. A typical stopping
criterion in the PCE framework of Figure 1 is the observation that the model selection criterion
does not improve anymore. The following model selection criteria have been proposed in the
sparse PCE literature:

• K-fold cross-validation (Hastie et al., 2001; Jakeman et al., 2015; Hampton and Doostan,
2018), which approximates the validation error by building a surrogate several times on
different subsets of the data, and evaluating the error on the remaining data points.

• Leave-one-out cross-validation (LOO) (Hastie et al., 2001; Blatman and Sudret, 2010,
2011), which is N -fold cross-validation (where N is the size of the experimental design).
For PCE approximations computed by OLS, there exists an efficient formula to evaluate
the LOO error (Blatman and Sudret, 2011, Appendix D).

• Modified LOO (Blatman and Sudret, 2011), which uses a correction factor for the LOO
which was derived for the empirical error for OLS with small sample sizes (Chapelle et al.,
2002). The correction factor depends on the experimental design and on the active basis
functions.

• Kashyap information criterion (KIC) (Shao et al., 2017; Zhou et al., 2019), an approxi-
mation to the Bayesian model evidence, which is the likelihood of observations given the
model.

• Sparsity (Alemazkoor and Meidani, 2017), using the idea that a larger basis should lead
to a sparser solution when the necessary basis functions enter the model, unless the ratio
of basis functions to model evaluations becomes too large.

A model selection criterion is also often used to determine the hyperparameter of the sparse
solver (see Section 2.6).

If cross-validation is used to select the solver hyperparameter, this estimate of the validation error
is often too optimistic due to model selection bias. Instead of reusing this estimate for model
selection, it is better to perform an outer loop of k-fold or LOO cross-validation, a procedure
called double cross-validation or cross-model validation (Baumann and Baumann, 2014; Liu
et al., 2020b).

2.8 Further enhancements of sparse PCE

There are many enhancements to the simple scheme for sparse PCE presented in Figure 1. The
following methods have been suggested to improve the accuracy of the solution and reduce the
number of model evaluations needed:

12

• Alemazkoor and Meidani (2018b) construct a preconditioning matrix for a given regression
matrix which reduces the mutual coherence while avoiding deterioration of the signal-to-
noise ratio.

• Huan et al. (2018) suggest a technique called stop-sampling, which guides the decision
whether more samples should be obtained (sequential ED enrichment) by observing the
decrease of the CV error.

• In case a-priori information about the magnitude of the coefficients is available, this in-
formation can be used to construct a weighted regression problem which allows a more
accurate solution with fewer points (Peng et al., 2014) (similar to iteratively reweighted
`1-minimization).

• Resampled PCE (Liu et al., 2020a) is a technique for improving the PCE solution by
aggregating the results of several solver runs on different subsets of the data. Only the
terms that are chosen most often by the solvers are retained in the final solution.

• Several methods exist to reduce the dimension of the input space before computing the
sparse PCE. Unsupervised methods are principal component analysis (PCA) and kernel
PCA (Lataniotis et al., 2019). “Basis adaptation” methods (referring to a basis of the
input random space) determine a suitable rotation of the input space, often assumed to
be independent standard Gaussian, into new coordinates which permit a sparser repre-
sentation in fewer coordinates (Tipireddy and Ghanem, 2014; Yang et al., 2018; Tsilifis
et al., 2019, and others). A related technique is nonlinear PCE-driven partial least squares
(PLS) (Papaioannou et al., 2019), which reduces the input dimension by identifying di-
rections in the input space that are able to explain the output well in terms of a sum of
one-dimensional PCEs.

3 Numerical results

3.1 Benchmark design

While the amount of methods for computing sparse PCE is large, to the authors’ best knowledge
there is no comprehensive benchmark study on this topic. Most publications only compare the
newly developed method to one or two baseline methods. An overview of publications containing
comparisons of sparse PCE methods is presented in Appendix D.

Since the amount of possible combinations of sampling schemes, sparse regression solvers, basis
adaptation schemes, model evaluation criteria etc. is huge (see Section 2.3 and thereafter), we
restrict our benchmark to some of the most promising and best known methods.

• We consider the sampling schemes MC, LHS, coherence-optimal, and D-optimal sampling.
LHS is used together with a maximin criterion to improve the space-filling property (using

13

Matlab’s lhsdesign). D-optimal designs are constructed from a coherence-optimal can-
didate set3 using the subset selection/RRQR algorithm, which allows for the construction
of D-optimal experimental designs with size N smaller than the number of regressors P
(Diaz et al., 2018). There is no such algorithm for S-optimal sampling, which is why we
do not consider the latter in this benchmark. We do not consider Sobol’ sequences, since
they have been shown to be outperformed by LHS in sparse PCE applications (Fajraoui
et al., 2017). Near-optimal sampling can realistically only be used for rather small bases
(P ∈ O(100)), since its algorithm scales as O(P 3). We use it with a coherence-optimal
candidate set for two models with small basis.

• We consider the sparse regression solvers LARS, OMP, subspace pursuit (SP), FastLaplace
(which we call here BCS), and SPGL1. Each of these solvers involves at least one hyperpa-
rameter, whose range is chosen according to reasonable guesses. For LARS and OMP, the
hyperparameter is the number K of selected regressors and its range is [1,min{P,N − 1}].
For SP, K must fulfill 2K ≤ min{P,N}. For BCS and SPGL1, the hyperparameter σ
is chosen from the range σ2 ∈ NV̂ar [y] [10−16, 10−1] which resembles a suitable range of
possible relative MSE values. The hyperparameter values of LARS and OMP are deter-
mined by modified leave-one-out cross-validation, while the hyperparameters of SP, BCS,
and SPGL1 are determined by k-fold cross-validation (Section 2.6).

• We only consider the non-adaptive setting, in which both the basis and the size of the
experimental design are fixed before the sparse PCE is computed. The adaptive setting
will be investigated in future research.

• For each model, we define a reasonable range of experimental design sizes. Each experiment
is repeated 50 times to account for statistical uncertainty. The experimental designs are
generated anew for each repetition and each ED size. All solvers are tested on the same
ED realizations.

• The candidate sets have size M = 10P as suggested by Diaz et al. (2018). For compu-
tational reasons, the coherence-optimal candidate sets are not sampled completely anew
for each replication, but rather drawn uniformly at random without replacement from a
larger set of size 2M = 20P as suggested by Diaz et al. (2018). The LHS candidate set is
generated independently in each repetition, and used once for each of the ED sizes.

• Since we are interested in sparse PCE for the purpose of surrogate modelling, our main
3We have also conducted all benchmark experiments with D-optimal designs constructed from LHS candidate

sets, but we do not display these results, because we found that in most cases, D-opt(LHS) sampling performs
(significantly) worse than most other sampling schemes, and often worse than its candidate set LHS. This matches
with the results of Fajraoui et al. (2017) who observed this in a sequential enrichment setting and with the LARS
solver.

14

quantity of interest is the relative mean squared error45 (RelMSE) as defined in Eq. 9. We
investigate the relative MSE for several models, sparse solvers, and experimental design
techniques. Typically, the practical interest lies in small experimental designs.

• Since the experimental design is random, the resulting validation error is a random vari-
able. We visualize the data with boxplots. When comparing the performance of different
methods, we consider the median performance and the spread of the resulting valida-
tion error. However, often there can be considerable overlap of validation errors between
methods.

3.2 Software

For the implementation of the benchmark, we use the general-purpose uncertainty quantification
software UQLab (Marelli and Sudret, 2014). UQLab supports the integration of other software
packages6. We utilize the following code:

• UQLab for MC sampling and LHS (Marelli and Sudret, 2014)

• DOPT_PCE for D-optimal sampling (subset selection/RRQR) and subspace pursuit (Diaz
et al., 2018; Diaz, 2018)

• An in-house developed rejection-based implementation of coherence-optimal sampling

• An in-house implementation of near-optimal sampling according to the description by
Alemazkoor and Meidani (2018a)

• UQLab for the solvers LARS and OMP (Marelli and Sudret, 2014)

• spgl1-1.9 for SPGL1 (van den Berg and Friedlander, 2008; Van den Berg and Friedlander,
2015)

• FastLaplace for the hierarchical implementation “FastLaplace” of Bayesian compressive
sensing (Babacan et al., 2010; Babacan, 2011)

4Note that some authors such as Doostan and Owhadi (2011); Hampton and Doostan (2015b); Diaz et al.
(2018); Alemazkoor and Meidani (2018a) choose to normalize instead by

∑
x∈Xval

M(x)2 or use the unnormalized
mean squared error (Shin and Xiu, 2016b). To assess the recovery of sparse vectors just as in compressed sensing,
some consider the error in the coefficient vector instead of the error in the model approximation (Alemazkoor and
Meidani, 2018a).

5Since a typical application of PCE is the computation of moments and Sobol’ indices, the error in these
quantities is another possible performance measure. However, globally accurate prediction as considered in this
paper is more challenging that the prediction of moments and Sobol’ indices, which are accurate if the largest-
in-magnitude coefficients are estimated accurately. If a globally accurate surrogate model can be constructed,
typically also the moments and Sobol’ indices are accurate.

6A description of how to use custom sparse solvers and sampling schemes in the UQLab framework can be
found in the supplementary material.

15

Table 1: Borehole function: Input random variables and their distributions
Variable Distribution Description
rw N (0.10, 0.0161812) borehole radius
L U([1120, 1680]) borehole length
Kw U([9855, 12045]) borehole hydraulic conductivity
Tu U([63070, 115600]) transmissivity of upper aquifer
Tl U([63.1, 116]) transmissivity of lower aquifer
Hu U([990, 1110]) potentiometric head of upper aquifer
Hl U([700, 820]) potentiometric head of lower aquifer
r Lognormal([7.71, 1.0056]) radius of influence

3.3 Benchmark: Considered models

We consider the following four models in our benchmark: the Ishigami function, the borehole
model, a heat diffusion model in two dimensions (stochastic partial differential equation), and a
high-dimensional analytical function.

The Ishigami model is the well-known three-dimensional, highly nonlinear, smooth analytical
function

f(X1, X2, X3) = sin(X1) + a sin2(X2) + bX4
3 sin(X1) (10)

taking uniform input X ∼ U([−π, π]3). A typical choice is a = 7, b = 0.1. For this function, any
sparse solver should be able to find a sparse solution.

The borehole function simulates the water flow through a borehole between two aquifers (Harper
and Gupta, 1983). It is an 8-dimensional nonlinear function which, despite having an analytical
form, is not trivial to approximate. It is defined by

B(rw, L,Kw, Tu, Tl, Hu, Hl, r) = 2πTu(Hu −Hl)
ln (r/rw)

(
1 + 2LTu

ln(r/rw)r2
wKw

+ Tu
Tl

) . (11)

Its input random variables and their distributions are provided in Table 1.

The two-dimensional heat diffusion model (Konakli and Sudret, 2016) is defined by the partial
differential equation

−∇ · (κ(x)∇T (x)) = Q1A(x) in Ω = [−0.5, 0.5]2 (12)

with boundary conditions T = 0 on the top boundary and ∇T · n = 0 on the left, lower and
right boundary of the square domain Ω, where n denotes the outer unit normal (see Konakli and
Sudret (2016) for an illustration of the setup). Here, the source is in A = [0.2, 0.3]2 with strength
Q = 500. The output quantity of interest is the average temperature in B = [−0.3,−0.2]2.
The diffusion coefficient κ(x) is modelled by a lognormal random field with mean µκ = 1 and
standard deviation σκ = 0.3. The autocorrelation function of the underlying Gaussian random
field is an isotropic squared-exponential with length scale l = 0.2. The random field κ(x) is
discretized using the EOLE method (Li and Der Kiureghian, 1993) with d = 53 terms, which
comprises 99% of its variance. The solution to an individual heat diffusion problem is computed

16

using an in-house finite elements code (Konakli and Sudret, 2016). The input comprises d = 53
independent standard normal random variables.

Finally, the so-called high-dimensional function is an analytical model of the form

f(X) =3− 5
d

d∑

i=1
iXi + 1

d

d∑

i=1
iX3

i + ln
(

1
3d

d∑

i=1
i(X2

i +X4
i)
)

(13)

+X1X
2
2 +X2X4 −X3X5 +X51 +X50X

2
54

taking uniform input Xi ∼ U([1, 2]), i 6= 20, and X20 ∼ U([1, 3]). We use d = 100. This function
was designed for sensitivity analysis: the first-order sensitivity indices of the input variables are
generally nonlinearly increasing with their index, with certain variables having especially high
sensitivity. The model also contains four interaction terms. It is an example from UQLab7.

For each of the models, we use a fixed basis for the benchmark. In general, the best total degree
p and the hyperbolic truncation q are a priori unknown. We heuristically choose q = 1 for
low-dimensional models (d ≤ 10) and q = 0.5 for high-dimensional models (d ≥ 10). The degree
p is chosen so that the number of basis functions P is approximately 10

3 Nmax, where Nmax is the
largest number of experimental design points for the specific benchmark. This choice is based
on the reasoning that for an experimental design of size N , sparse solvers like LARS often select
an active basis of size ≈ N

3 , and that the candidate basis might be 10 times larger than the final
active basis to be sufficiently rich. We focus on rather small experimental designs, since our goal
is not to investigate the convergence of the methods as N →∞ (which has been demonstrated
elsewhere already), but to decide which methods are most efficient for small N . This results in

• p = 14, q = 1 for the Ishigami function (resulting in a basis with P = 680 regressors;
Nmax = 200),

• p = 5, q = 1 for the borehole function (P = 1287; Nmax = 300),

• p = 4, q = 0.5 for the two-dimensional diffusion model (P = 1591; Nmax = 500), and

• p = 4, q = 0.5 for the high-dimensional function (P = 5351; Nmax = 1400).

To be able to test near-optimal sampling, we also use the following smaller bases for the low-
dimensional models Ishigami and borehole:

• p = 12, q = 1 for the Ishigami function (resulting in a basis with P = 455 regressors;
Nmax = 200),

• p = 4, q = 1 for the borehole function (P = 495; Nmax = 300).
7https://www.uqlab.com/sensitivity-high-dimension

17

3.4 Results: Comparison of solvers

First, we use a fixed sampling scheme (LHS) to compare the performance of the five solvers
LARS, OMP, Subspace pursuit (SP), FastLaplace (BCS), and SPGL1 on the four benchmark
models described above.

In Figs. 2a, 3a, 4a, and 5a, we display boxplots of relative MSE against experimental design size
for all five solvers. In the plots, the lines as well as the dot inside the white circle denote the
median of the relative MSE. We make the following observations:

• For the smallest experimental designs, all solvers perform similarly. For larger experimental
designs, there can be considerable differences between the solvers’ generalization errors of
up to several orders of magnitude.

• BCS and OMP are often among the best solvers. BCS performs especially well for smaller
experimental design sizes. For larger ED sizes, it is often outperformed by other solvers. In
case of the Ishigami model, it seems to plateau earlier than the other solvers. It also tends
to find sparser solutions than the other solvers (not shown in plots). For some models, it
has a larger spread than the other solvers.

• SP does not perform well for small ED sizes, but for large ED sizes it often outperforms
the other solvers. Together with BCS, it tends to find sparser solutions than the other
solvers.

• LARS and SPGL1 perform often quite similar, and are often among the worse solvers
within this set. SPGL1 tends to return rather dense solutions (not shown in plots).

• In case of the diffusion model, all solvers perform very similar.

3.5 Results: Comparison of sampling schemes together with solvers

We pair the four solvers LARS, OMP, SP, and BCS8 with the sampling schemes MC, LHS,
coherence-optimal sampling, and D-optimal sampling based on a coherence-optimal candidate
set. We use the abbreviations coh-opt and D-opt(coh-opt) for the latter.

The results are displayed in Figs. 2-4, (b)-(e). For lack of space, we only display results for two
of the four solvers. The remaining results can be found in Appendix C.

The plots on the left show the relative MSE against experimental design size for all considered
sampling schemes and two selected solvers. The lines connect the medians of the relative MSE.
Linestyles and colors denote the different sampling schemes. The plots on the right side show
boxplots for all combinations of solvers and sampling schemes for two selected experimental
design sizes, one small and one large.

We make the following observations.
8Since SPGL1 did not perform well in the previous section, and is quite slow, we do not include it further in

this benchmark.

18

• There can be considerable differences in the performance of different sampling schemes for
smaller ED sizes; the larger the experimental design, the smaller the difference (conver-
gence with the number of ED points). The differences are larger for the low-dimensional
models.

• MC and LHS perform comparably, and for the high-dimensional models almost identically.
For the low-dimensional models, LHS sampling has in most cases the same or a smaller
median error and variability than MC. This is consistent with the literature (Shields and
Zhang, 2016).

• For the low-dimensional models, coherence-optimal sampling performs similarly or bet-
ter than MC and LHS in most of the cases, and is often the best sampling scheme (re-
garding both median performance and variability). This is consistent with theoretical
considerations and other numerical experiments (Hampton and Doostan, 2015b). For
high-dimensional models, it performs similarly (high-dim function) or considerably worse
(diffusion model) than MC and LHS.

• D-opt(coh-opt) performs sometimes better, sometimes worse than its candidate sampling
method coh-opt.

• BCS and OMP are the solvers that achieve the smallest generalization error.

• Some solvers are more sensitive to the choice of sampling schemes than others (SP, LARS
vs. OMP, BCS). Some solvers show higher variability in generalization error than others,
when looking at the 50 replications for a given scenario. The ranking of sampling schemes
is mostly quite similar across solvers.

Note that coh-opt and D-opt are sampling methods that aim to improve properties of the
regression matrix. They are adapted to the candidate basis. If the candidate basis is large
and contains many regressors that are not needed in the final sparse expansion, this adaptation
might even deteriorate the solution. This might explain the comparably bad performance of
D-optimal sampling in some of the cases described above.

Generally, it seems that coh-opt sampling and matrix-optimal methods – in the cases where
they perform well – offer an advantage mainly for intermediate ED sizes. For small ED sizes, all
sampling methods show a similar performance, while for large ED sizes, all sampling methods
are usually able to attain an accurate result.

Note that the results in Figs. 2, 3, and 5 exhibit plateauing for larger sample sizes. This indicates
that the maximal accuracy achievable with this set of basis functions has been reached. However,
a larger basis would not necessarily lead to more accurate results, since the ratio of experimental
design points to basis functions would be smaller, and the properties of the regression matrix
might deteriorate.

19

(a) All solvers with LHS design

(b) OMP (c) Small ED (70 points)

(d) SP (e) Large ED (150 points)

Figure 2: Results for the Ishigami model (d = 3, p = 14, q = 1). Top: Boxplots of relative
MSE against experimental design size for 5 sparse solvers and LHS design. Bottom: Excerpt of
results for 4 sparse solvers and 4 experimental design schemes. Solvers are coded by colors and
sampling schemes by the colors’ brightness. In (c) and (e), we show the relative MSE of each of
the solvers combined with each sampling scheme in the order MC–LHS–coh-opt–D-opt(coh-opt).
The remaining results can be found in the appendix (Fig. 11).

20

(a) All solvers with LHS design

(b) BCS (c) Small ED (100 points)

(d) OMP (e) Large ED (250 points)

Figure 3: Results for the borehole model (d = 8, p = 4, q = 1). Top: Boxplots of relative
MSE against experimental design size for 5 sparse solvers and LHS design. Bottom: Excerpt of
results for 4 sparse solvers and 4 experimental design schemes. Solvers are coded by colors and
sampling schemes by the colors’ brightness. In (c) and (e), we show the relative MSE of each of
the solvers combined with each sampling scheme in the order MC–LHS–coh-opt–D-opt(coh-opt).
The remaining results can be found in the appendix (Fig. 12).

21

(a) All solvers with LHS design

(b) LARS (c) Small ED (100 points)

(d) BCS (e) Large ED (400 points)

Figure 4: Results for the two-dimensional diffusion model (d = 53, p = 4, q = 0.5). Top:
Boxplots of relative MSE against experimental design size for 5 sparse solvers and LHS design.
Bottom: Excerpt of results for 4 sparse solvers and 4 experimental design schemes. Solvers are
coded by colors and sampling schemes by the colors’ brightness. In (c) and (e), we show the
relative MSE of each of the solvers combined with each sampling scheme in the order MC–LHS–
coh-opt–D-opt(coh-opt). The remaining results can be found in the appendix (Fig. 13).

22

(a) All solvers with LHS design

(b) OMP (c) Small ED (400 points)

(d) BCS (e) Large ED (1200 points)

Figure 5: Results for the high-dimensional function (d = 100, p = 4, q = 0.5). Top: Boxplots
of relative MSE against experimental design size for 5 sparse solvers and LHS design. Bottom:
Excerpt of results for 4 sparse solvers and 4 experimental design schemes. Solvers are coded by
colors and sampling schemes by the colors’ brightness. In (c) and (e), we show the relative MSE
of each of the solvers combined with each sampling scheme in the order MC–LHS–coh-opt–D-
opt(coh-opt). The remaining results can be found in the appendix (Fig. 14).

23

3.6 Results: Comparison of sampling schemes together with solvers, using a
smaller candidate basis

We repeat the experiments from the previous section for the Ishigami and the borehole model,
using a smaller candidate basis for which near-optimal sampling is feasible. The tested solvers
are LARS, OMP, SP, and BCS. We use the sampling schemes MC, LHS, coh-opt, D-opt(coh-opt)
and near-opt(coh-opt). The results are shown in Figs. 6 and 7.

We observe the following:

• Since the basis is smaller, the relative MSE reaches a plateau already for smaller experi-
mental design sizes.

• Most qualitative observations regarding solver and sampling performance are the same as
in the previous section, where a larger basis was used.

• Near-optimal sampling often achieves the same or a slightly smaller error than coherence-
optimal sampling, which is consistent with the results reported by Alemazkoor and Meidani
(2018a). In many cases, near-optimal sampling achieves the smallest median error. For the
Ishigami mode, near-opt(coh-opt) additionally exhibits small variability. For the borehole
model, near-optimal sampling has a rather large spread, i.e., several outliers.

(a) OMP (b) LARS

(c) SP (d) BCS

Figure 6: Results for the Ishigami model with a smaller basis (d = 3, p = 12, q = 1). Results for
4 sparse solvers and 5 experimental design schemes. 50 replications.

24

(a) OMP (b) LARS

(c) SP (d) BCS

Figure 7: Results for the borehole model with a smaller basis (d = 8, p = 4, q = 1). Results for
4 sparse solvers and 5 experimental design schemes. 50 replications.

25

4 Conclusion and discussion

In this paper, we investigated sparse PCE methods with the goal of computing accurate surrogate
models based on few model evaluations.

We presented a literature survey and a framework describing the general computation procedure
for sparse PCE. We have seen that the existing literature on sparse PCE can be fit into this
framework and that methods developed for different components of the framework can naturally
be combined.

In order to give recommendations to practitioners who want to use sparse PCE surrogates for
their applications, we performed a numerical benchmark based on four example functions which
are intended to resemble real-world engineering problems, presenting different challenges. We
tested several popular sparse solvers and sampling schemes on a fixed set of basis functions, using
a range of experimental design sizes and 50 replications, and made the following observations:

• The choice of sampling scheme and sparse regression solver can make a difference of up
to several orders of magnitude for the relative MSE. Mostly, the ranking of solvers and
sampling schemes seems to be independent from each other, i.e., an experimental design
that works best for one solver will also perform well with other solvers etc. Sampling
schemes make a larger difference for low-dimensional models.

• For low-dimensional models, OMP and BCS perform well for small ED sizes and OMP as
well as SP well for large EDs. Coherence-optimal sampling performs well across all ED
sizes; for small ED sizes, LHS is among the best sampling schemes. When the basis is
small enough to make it feasible, near-optimal sampling performs best.

• For high-dimensional models, BCS together with LHS seems to be a good choice, although
its variability can be high.

We summarize the conclusions in Table 2.

All results were obtained using a fixed basis based on a heuristic choice (see Section 3.3). Gen-
erally, when the optimal degree of the basis is unknown, degree adaptivity (based on cross-
validation error) can be a useful strategy. This was not investigated in the present work. Adap-
tivity critically depends on the availability of an accurate error estimator. Some of the best

Table 2: Recommendations for optimal sampling schemes and solvers based on the non-adaptive
numerical benchmark.

ED size Small Large
input dim
small
(d ≤ 10)

BCS, OMP;
LHS or coh-opt

OMP, SP;
coh-opt (or any if the design is
large enough)

large
(d ∈ [10, 100])

BCS, OMP;
LHS

BCS, OMP;
LHS

26

solvers in this study (i.e., OMP and BCS) tend to underestimate the generalization error (not
shown in plots), which might be a drawback in the setting of adaptive degree selection, and
might change the effect and the ranking of solvers and sampling methods.

These benchmark results demonstrate that in costly, real-world applications it is worth choosing
the sparse PCE methods carefully, since it can make a substantial difference in the quality of
the resulting surrogate. Further work is needed to understand the connection between model
properties, basis choice, experimental design size, and sparse PCE techniques like solvers and
sampling schemes.

Future research will investigate basis adaptivity as well as the usefulness of sequential enrichment
of experimental design and methods suitable for higher-dimensional problems.

Acknowledgments

We thank Dr. Emiliano Torre for helpful discussions.

References

Abraham, S., M. Raisee, G. Ghorbaniasl, F. Contino, and F. Lacor (2017). A robust and efficient
stepwise regression method for building sparse polynomial chaos expansions. J. Comput.
Phys. 332, 461 – 474.

Alemazkoor, N. and H. Meidani (2017). Divide and conquer: An incremental sparsity promoting
compressive sampling approach for polynomial chaos expansions. Comput. Methods Appl.
Mech. Engrg. 318, 937–956.

Alemazkoor, N. and H. Meidani (2018a). A near-optimal sampling strategy for sparse recovery
of polynomial chaos expansions. J. Comput. Phys. 371, 137–151.

Alemazkoor, N. and H. Meidani (2018b). A preconditioning approach for improved estimation
of sparse polynomial chaos expansions. Comput. Methods Appl. Mech. Engrg. 342, 474–489.

Arjoune, Y., N. Kaabouch, H. El Ghazi, and A. Tamtaoui (2017). Compressive sensing: Perfor-
mance comparison of sparse recovery algorithms. In 2017 IEEE CCWC, pp. 1–7. IEEE.

Babacan, D. (2011). MATLAB code for the TIP 2010 paper "Bayesian Compressive Sensing
using Laplace Priors". http://www.dbabacan.info/software.html. [Online; accessed 28-
August-2019].

Babacan, S., R. Molina, and A. Katsaggelos (2010). Bayesian compressive sensing using Laplace
priors. IEEE Trans. Image Process. 19 (1), 53–63.

Baptista, R., V. Stolbunov, and P. B. Nair (2019). Some greedy algorithms for sparse polynomial
chaos expansions. J. Comput. Phys. 387, 303–325.

27

Baumann, D. and K. Baumann (2014). Reliable estimation of prediction errors for QSAR models
under model uncertainty using double cross-validation. J. Cheminf. 6 (1), 47.

Berchier, M. (2015). Orthogonal matching pursuit for sparse polynomial chaos expansions. ETH
Zürich. Semester project.

Berveiller, M. (2005). Stochastic finite elements : intrusive and non intrusive methods for
reliability analysis. Ph. D. thesis, Université Blaise Pascal, Clermont-Ferrand.

Berveiller, M., B. Sudret, and M. Lemaire (2006). Stochastic finite elements: a non intrusive
approach by regression. Eur. J. Comput. Mech. 15 (1–3), 81–92.

Birgin, E. G., J. M. Martínez, and M. Raydan (2000). Nonmonotone spectral projected gradient
methods on convex sets. SIAM J. Optim. 10 (4), 1196–1211.

Blatman, G. and B. Sudret (2008). Sparse polynomial chaos expansions and adaptive stochastic
finite elements using a regression approach. Comptes Rendus Mécanique 336 (6), 518–523.

Blatman, G. and B. Sudret (2010). An adaptive algorithm to build up sparse polynomial chaos
expansions for stochastic finite element analysis. Prob. Eng. Mech. 25, 183–197.

Blatman, G. and B. Sudret (2011). Adaptive sparse polynomial chaos expansion based on Least
Angle Regression. J. Comput. Phys 230, 2345–2367.

Bruckstein, A. M., D. L. Donoho, and M. Elad (2009). From sparse solutions of systems of
equations to sparse modeling of signals and images. SIAM review 51 (1), 34–81.

Candès, E. and J. Romberg (2005). `1-MAGIC. https://statweb.stanford.edu/~candes/
software/l1magic/. [Online; accessed 22-January-2020].

Candès, E., J. Romberg, and T. Tao (2006). Robust uncertainty principles: Exact signal recon-
struction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52 (2),
489–509.

Candès, E. J. and Y. Plan (2011). A probabilistic and RIPless theory of compressed sensing.
IEEE Trans. Inform. Theory 57 (11), 7235–7254.

Candès, E. J. and M. B. Wakin (2008). An introduction to compressive sampling: A sens-
ing/sampling paradigm that goes against the common knowledge in data acquisition. IEEE
Signal Process. Mag. 25 (2), 21–30.

Candès, E. J., M. B. Wakin, and S. P. Boyd (2008). Enhancing sparsity by reweighted `1

minimization. J. Fourier Anal. Appl. 14 (5-6), 877–905.

Carron, I. (2013). Compressive Sensing: The Big Picture. https://sites.google.com/site/
igorcarron2/cs. [Online; accessed 22-January-2020].

Chapelle, O., V. Vapnik, and Y. Bengio (2002). Model selection for small sample regression.
Machine Learning 48 (1), 9–23.

28

Cheng, K. and Z. Lu (2018a). Adaptive sparse polynomial chaos expansions for global sensitivity
analysis based on support vector regression. Comput. Struct. 194, 86–96.

Cheng, K. and Z. Lu (2018b). Sparse polynomial chaos expansion based on D-MORPH regres-
sion. Appl. Math. Comput. 323, 17–30.

Cook, R. D. and C. J. Nachtsheim (1980). A comparison of algorithms for constructing exact
D-optimal designs. Technometrics 22 (3), 315–324.

Dai, W. and O. Milenkovic (2009). Subspace pursuit for compressive sensing signal reconstruc-
tion. IEEE Trans. Inform. Theory 55 (5), 2230–2249.

Diaz, P. (2018). DOPT_PCE. https://github.com/CU-UQ/DOPT_PCE. [Online; accessed 22-
January-2020].

Diaz, P., A. Doostan, and J. Hampton (2018). Sparse polynomial chaos expansions via com-
pressed sensing and D-optimal design. Comput. Methods Appl. Mech. Engrg. 336, 640–666.

Donoho, D., I. Drori, V. Stodden, Y. Tsaig, and M. Shahram (2007). SparseLab - Seeking Sparse
Solutions to Linear Systems of Equations. http://sparselab.stanford.edu/. [Online; ac-
cessed 22-January-2020].

Donoho, D. L. (2006). Compressed sensing. IEEE Trans. Inform. Theory 52 (4), 1289–1306.

Doostan, A. and H. Owhadi (2011). A non-adapted sparse approximation of PDEs with stochas-
tic inputs. J. Comput. Phys. 230 (8), 3015–3034.

Dutta, S. and A. H. Gandomi (2020). Design of experiments for uncertainty quantification
based on polynomial chaos expansion metamodels. In Handbook of Probabilistic Models, pp.
369–381. Elsevier.

Dykstra, O. (1971). The augmentation of experimental data to maximize [X ′X]. Technomet-
rics 13 (3), 682–688.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least angle regression. Ann.
Stat. 32, 407–499.

Ernst, O., A. Mugler, H.-J. Starkloff, and E. Ullmann (2012). On the convergence of generalized
polynomial chaos expansions. ESAIM: Math. Model. Numer. Anal. 46 (02), 317–339.

Fajraoui, N., S. Marelli, and B. Sudret (2017). Sequential design of experiment for sparse
polynomial chaos expansions. SIAM/ASA J. Unc. Quant. 5 (1), 1061–1085.

Faul, A. C. and M. E. Tipping (2002). Analysis of sparse Bayesian learning. In Advances in
neural information processing systems, pp. 383–389.

Fedorov, V. V. (2013). Theory of optimal experiments. Elsevier.

Figueiredo, M. A. (2003). Adaptive sparseness for supervised learning. IEEE Trans. Pattern
Anal. Mach. Intell. 25 (9), 1150–1159.

29

Figueiredo, M. A. and R. D. Nowak (2001). Wavelet-based image estimation: an empirical Bayes
approach using Jeffrey’s noninformative prior. IEEE Trans. Image Process. 10 (9), 1322–1331.

Ghanem, R. G. and P. Spanos (1991). Stochastic finite elements – A spectral approach. Springer
Verlag, New York. (Reedited by Dover Publications, Mineola, 2003).

Gu, M. and S. C. Eisenstat (1996). Efficient algorithms for computing a strong rank-revealing
QR factorization. SIAM J. Sci. Comput. 17 (4), 848–869.

Guo, L., A. Narayan, T. Zhou, and Y. Chen (2017). Stochastic collocation methods via `1

minimization using randomized quadratures. SIAM J. Sci. Comput. 39 (1), A333–A359.

Hadigol, M. and A. Doostan (2018). Least squares polynomial chaos expansion: A review of
sampling strategies. Comput. Methods Appl. Mech. Engrg. 332, 382–407.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numer. Math. 2 (1), 84–90.

Hampton, J. and A. Doostan (2015a). Coherence motivated sampling and convergence analysis
of least squares polynomial chaos regression. Comput. Methods Appl. Mech. Engrg. 290, 73–97.

Hampton, J. and A. Doostan (2015b). Compressive sampling of polynomial chaos expansions:
Convergence analysis and sampling strategies. J. Comput. Phys. 280, 363–386.

Hampton, J. and A. Doostan (2017). COH-OPT. https://github.com/CU-UQ/COH-OPT. [On-
line; accessed 22-January-2020].

Hampton, J. and A. Doostan (2018). Basis adaptive sample efficient polynomial chaos (BASE-
PC). J. Comput. Phys. 371, 20–49.

Harper, W. V. and S. K. Gupta (1983). Sensitivity/uncertainty analysis of a borehole scenario
comparing Latin hypercube sampling and deterministic sensitivity approaches. Technical
Report No. BMI/ONWI-516, Battelle Memorial Inst. - Office of Nuclear Waste Isolation,
Columbus, OH (USA).

Hastie, T., R. Tibshirani, and J. Friedman (2001). The elements of statistical learning: Data
mining, inference and prediction. Springer, New York.

Hong, Y. P. and C.-T. Pan (1992). Rank-revealing QR factorizations and the singular value
decomposition. Math. Comput. 58 (197), 213–232.

Hosder, S., R. Walters, and M. Balch (2007). Efficient sampling for non-intrusive
polynomial chaos applications with multiple uncertain input variables. In 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
pp. 1939.

Hu, C. and B. D. Youn (2011). Adaptive-sparse polynomial chaos expansion for reliability
analysis and design of complex engineering systems. Struct. Multidisc. Optim. 43, 419–442.

30

Hu, R. and M. Ludkovski (2017). Sequential design for ranking response surfaces. SIAM/ASA
J. Unc. Quant. 5 (1), 212–239.

Huan, X., C. Safta, K. Sargsyan, Z. P. Vane, G. Lacaze, J. C. Oefelein, and H. N. Najm
(2018). Compressive sensing with cross-validation and stop-sampling for sparse polynomial
chaos expansions. SIAM/ASA J. Unc. Quant. 6 (2), 907–936.

Isukapalli, S. S. (1999). Uncertainty Analysis of Transport-Transformation Models. Ph. D.
thesis, The State University of New Jersey.

Jakeman, J. D., M. S. Eldred, and K. Sargsyan (2015). Enhancing `1-minimization estimates of
polynomial chaos expansions using basis selection. J. Comput. Phys. 289, 18–34.

Jakeman, J. D., A. Narayan, and T. Zhou (2017). A generalized sampling and precondition-
ing scheme for sparse approximation of polynomial chaos expansions. SIAM J. Sci. Com-
put. 39 (3), A1114–A1144.

Ji, S., Y. Xue, and L. Carin (2008). Bayesian compressive sensing. IEEE Trans. Signal Pro-
cess. 56 (6), 2346–2356.

Kiefer, J. and J. Wolfowitz (1959). Optimum designs in regression problems. Ann. Math.
Stat. 30 (2), 271–294.

Konakli, K. and B. Sudret (2016). Global sensitivity analysis using low-rank tensor approxima-
tions. Reliab. Eng. Sys. Safety 156, 64–83.

Lataniotis, C., S. Marelli, and B. Sudret (2019). Extending classical surrogate modelling to
high dimensions through supervised dimensionality reduction: A data-driven approach. Int.
J. Uncertain. Quantif.. accepted.

Li, C. C. and A. Der Kiureghian (1993). Optimal discretization of random fields. J. Eng.
Mech. 119 (6), 1136–1154.

Li, G. and H. Rabitz (2010). D-MORPH regression: application to modeling with unknown
parameters more than observation data. J. Math. Chem. 48 (4), 1010–1035.

Liu, Z., D. Lesselier, B. Sudret, and J. Wiart (2020a). Surrogate modeling based on resampled
polynomial chaos expansions. Reliab. Eng. Sys. Safety. accepted.

Liu, Z., D. Lesselier, B. Sudret, and J. Wiart (2020b). Surrogate modeling of indoor down-link
human exposure based on sparse polynomial chaos expansion. Int. J. Uncertainty Quantifi-
cation. accepted.

Marelli, S. and B. Sudret (2014). UQLab: A framework for uncertainty quantification in Matlab.
In Vulnerability, Uncertainty, and Risk (Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis
and Management (ICVRAM2014), Liverpool, United Kingdom), pp. 2554–2563.

31

Marelli, S. and B. Sudret (2019). UQLab user manual – Polynomial chaos expansions. Technical
report, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich. Report# UQLab-
V1.3-104.

Mathelin, L. and K. Gallivan (2012). A compressed sensing approach for partial differential
equations with random input data. Commun. Comput. Phys. 12 (4), 919–954.

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code. Techno-
metrics 2, 239–245.

Mikhalev, A. and I. V. Oseledets (2018). Rectangular maximum-volume submatrices and their
applications. Linear Algebra Appl. 538, 187–211.

Montgomery, D. C. (2004). Design and analysis of experiments. John Wiley and Sons, New
York.

Narayan, A., J. Jakeman, and T. Zhou (2017). A Christoffel function weighted least squares
algorithm for collocation approximations. Math. Comput. 86 (306), 1913–1947.

Needell, D. and J. A. Tropp (2009). CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Appl. Comput. Harmon. A. 26 (3), 301–321.

Nguyen, N.-K. and A. J. Miller (1992). A review of some exchange algorithms for constructing
discrete D-optimal designs. Comput. Stat. Data An. 14 (4), 489–498.

Owen, A. B. (1994). Controlling correlations in Latin hypercube samples. J. Am. Stat. As-
soc. 89 (428), 1517–1522.

Papaioannou, I., M. Ehre, and D. Straub (2019). PLS-based adaptation for efficient PCE
representation in high dimensions. J. Comput. Phys. 387, 186–204.

Pati, Y. C., R. Rezaiifar, and P. S. Krishnaprasad (1993). Orthogonal matching pursuit: Re-
cursive function approximation with applications to wavelet decomposition. In Proc. of 27th
Asilomar Conf. on signals, systems and computers, pp. 40–44. IEEE.

Peng, J., J. Hampton, and A. Doostan (2014). A weighted `1-minimization approach for sparse
polynomial chaos expansions. J. Comput. Phys. 267, 92–111.

Perkó, Z., L. Gilli, D. Lathouwers, and J. L. Kloosterman (2014). Grid and basis adaptive
polynomial chaos techniques for sensitivity and uncertainty analysis. J. Comput. Phys. 260,
54–84.

Pronzato, L. and W. G. Müller (2012). Design of computer experiments: space filling and
beyond. Stat. Comput. 22 (3), 681–701.

Qaisar, S., R. M. Bilal, W. Iqbal, M. Naureen, and S. Lee (2013). Compressive sensing: From
theory to applications, a survey. J. Commun. Netw. 15 (5), 443–456.

32

Rauhut, H. and R. Ward (2012). Sparse Legendre expansions via `1-minimization. J. Approx.
Theory 164 (5), 517–533.

Sargsyan, K., C. Safta, H. Najm, B. Debusschere, D. Ricciuto, and P. Thornton (2014). Dimen-
sionality reduction for complex models via Bayesian compressive sensing. Int. J. Uncertain.
Quantificat. 4 (1), 63–93.

Seeger, M. W. and H. Nickisch (2008). Compressed sensing and Bayesian experimental design.
In Proc. of the 25th Int. Conf. on Machine Learning, pp. 912–919. ACM.

Seshadri, P., A. Narayan, and S. Mahadevan (2017). Effectively subsampled quadratures for
least squares polynomial approximations. SIAM/ASA J. Unc. Quant. 5 (1), 1003–1023.

Settles, B. (2012). Active learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning 6 (1), 1–114.

Shao, Q., A. Younes, M. Fahs, and T. Mara (2017). Bayesian sparse polynomial chaos expansion
for global sensitivity analysis. Comput. Meth. Appl. Mech. Eng. 318, 474–496.

Shen, D., H. Wu, B. Xia, and D. Gan (2020). Polynomial chaos expansion for parametric
problems in engineering systems: A review. IEEE Syst. J..

Shields, M. D. and J. Zhang (2016). The generalization of Latin hypercube sampling. Reliab.
Eng. Syst. Saf. 148, 96–108.

Shin, Y. and D. Xiu (2016a). Nonadaptive quasi-optimal points selection for least squares linear
regression. SIAM J. Sci. Comput. 38 (1), A385–A411.

Shin, Y. and D. Xiu (2016b). On a near optimal sampling strategy for least squares polynomial
regression. J. Comput. Phys. 326, 931–946.

Sobol’, I. M. (1967). Distribution of points in a cube and approximate evaluation of integrals.
U.S.S.R Comput. Maths. Math. Phys. 7, 86–112.

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng.
Sys. Safety 93, 964–979.

Tang, G. and G. Iaccarino (2014). Subsampled Gauss quadrature nodes for estimating polyno-
mial chaos expansions. SIAM/ASA J. Unc. Quant. 2 (1), 423–443.

Tarakanov, A. and A. H. Elsheikh (2019). Regression-based sparse polynomial chaos for uncer-
tainty quantification of subsurface flow models. J. Comput. Phys. 399, 108909.

Tipireddy, R. and R. Ghanem (2014). Basis adaptation in homogeneous chaos spaces. J. Comput.
Phys. 259, 304–317.

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. J. Mach.
Learn. Res. 1 (Jun), 211–244.

33

Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation for sparse Bayesian
models. In Proc. 9th Int. Workshop on Artificial Intelligence and Statistics.

Tropp, J. A. and A. C. Gilbert (2007). Signal recovery from randommeasurements via orthogonal
matching pursuit. IEEE Trans. Inform. Theory 53 (12), 4655–4666.

Tsilifis, P., X. Huan, C. Safta, K. Sargsyan, G. Lacaze, J. C. Oefelein, H. N. Najm, and R. G.
Ghanem (2019). Compressive sensing adaptation for polynomial chaos expansions. J. Comput.
Phys. 380, 29–47.

van den Berg, E. and M. P. Friedlander (2008). Probing the Pareto frontier for basis pursuit
solutions. SIAM J. Sci. Comput. 31 (2), 890–912.

Van den Berg, E. and M. P. Friedlander (2015). SPGL1 - A Matlab solver for sparse optimization.
https://friedlander.io/spgl1/. [Online; accessed 22-January-2020].

Wipf, D. P., J. Palmer, and B. D. Rao (2004). Perspectives on sparse Bayesian learning. In
Advances in neural information processing systems, pp. 249–256.

Wipf, D. P. and B. D. Rao (2004). Sparse Bayesian learning for basis selection. IEEE Trans.
Signal Process. 52 (8), 2153–2164.

Xiu, D. and J. S. Hesthaven (2005). High-order collocation methods for differential equations
with random inputs. SIAM J. Sci. Comput. 27 (3), 1118–1139.

Xiu, D. and G. E. Karniadakis (2002). The Wiener-Askey polynomial chaos for stochastic
differential equations. SIAM J. Sci. Comput. 24 (2), 619–644.

Yan, L., L. Guo, and D. Xiu (2012). Stochastic collocation algorithms using `1-minimization.
Int. J. Uncertain. Quantif. 2 (3).

Yang, X. and G. E. Karniadakis (2013). Reweighted `1 minimization method for stochastic
elliptic differential equations. J. Comput. Phys. 248, 87–108.

Yang, X., W. Li, and A. Tartakovsky (2018). Sliced-inverse-regression–aided rotated compressive
sensing method for uncertainty quantification. SIAM/ASA J. Unc. Quant. 6 (4), 1532–1554.

Yin, P., Y. Lou, Q. He, and J. Xin (2015). Minimization of `1−2 for compressed sensing. SIAM
J. Sci. Comput. 37 (1), A536–A563.

Zankin, V. P., G. V. Ryzhakov, and I. V. Oseledets (2018). Gradient descent-based D-optimal
design for the least-squares polynomial approximation. arXiv preprint arXiv:1806.06631 .

Zein, S., B. Colson, and F. Glineur (2013). An efficient sampling method for regression-based
polynomial chaos expansion. Commun. Comput. Phys. 13 (4), 1173–1188.

Zhang, Z., Y. Xu, J. Yang, X. Li, and D. Zhang (2015). A survey of sparse representation:
algorithms and applications. IEEE access 3, 490–530.

34

Zhao, H., Z. Gao, F. Xu, Y. Zhang, and J. Huang (2019). An efficient adaptive forward–
backward selection method for sparse polynomial chaos expansion. Comput. Methods Appl.
Mech. Engrg. 355, 456–491.

Zhao, W. and L. Bu (2019). Global sensitivity analysis with a hierarchical sparse metamodeling
method. Mech. Syst. Signal Pr. 115, 769–781.

Zhou, T., A. Narayan, and Z. Xu (2014). Multivariate discrete least-squares approximations
with a new type of collocation grid. SIAM J. Sci. Comput. 36 (5), A2401–A2422.

Zhou, Y., Z. Lu, and K. Cheng (2019). Sparse polynomial chaos expansions for global sensitivity
analysis with partial least squares and distance correlation. Struct. Multidiscip. O. 59 (1), 229–
247.

Zhou, Y., Z. Lu, K. Cheng, and C. Ling (2019). An efficient and robust adaptive sampling
method for polynomial chaos expansion in sparse Bayesian learning framework. Comput.
Methods Appl. Mech. Engrg. 352, 654–674.

Zhou, Y., Z. Lu, K. Cheng, and Y. Shi (2019). An expanded sparse Bayesian learning method
for polynomial chaos expansion. Mech. Syst. Signal Pr. 128, 153–171.

35

A Details on experimental design sampling techniques

It depends on certain properties of the regression matrix Ψ whether or not sparse regression
techniques are able to find the true sparse solution of a linear system of equations (assuming
that it exists). In the context of polynomial chaos, the entries of the regression matrix are the
basis polynomials evaluated at the design points. The basis polynomials are determined by the
distribution of the input random variables and the choice of the index set A, while the design
points {x(j)}Nj=1 can be chosen freely from the input space to optimize properties of the resulting
regression matrix.

In the following, we present sampling schemes that have been proposed in the literature for
the computation of sparse PCE. Some of the schemes come with theoretical results about their
performance for sparse PCE, others have heuristic justification or have guarantees for least-
squares regression. They can be broadly grouped into three categories:

• Sampling according to the input distribution

– Monte Carlo (Doostan and Owhadi, 2011; Hampton and Doostan, 2015b)

– LHS

– Sobol

• Sampling from a modified distribution

– Asymptotic (Hampton and Doostan, 2015b)

– Coherence-optimal (Hampton and Doostan, 2015b)

– Christoffel sparse approximation (Jakeman et al., 2017)

• Optimizing matrix properties

– D-optimal (Diaz et al., 2018)

– S-optimal (Shin and Xiu, 2016a; Fajraoui et al., 2017)

– near-optimal (Alemazkoor and Meidani, 2018a)

Some of the sampling schemes are non-trivial or costly to evaluate. However, the bottleneck in
surrogate modelling for practical applications is typically the repeated evaluation of the model,
which justifies the use of a complex sampling scheme if it allows better approximation with fewer
samples.

A.1 Sampling according to the input distribution

This class of sampling methods consists of all methods that are oblivious to the regression basis
and whose main objective is to distribute design points evenly in the quantile space. Heuristically,
the more uniformly the points are distributed in the quantile space, the more information about
the model is captured in the model evaluations, since no region of the input domain is forgotten.

36

LHS is one technique to achieve a space-filling design. For each component of the input random
vectorX, the corresponding quantile space is divided intoN intervals. In each interval, one point
is sampled uniformly at random. Then, the points for each dimension are combined randomly
into vectors, and finally transformed into the input space using an isoprobabilistic transform.
LHS can be shown to reduce the variance of linear regression estimates when the main effects are
dominant, i.e., when the most important terms have interaction order one (Shields and Zhang,
2016). LHS can be combined with heuristic criteria such as the maximin distance strategy,
where among several random LHS designs the one with the largest minimal pairwise distance
between points is chosen, to further improve on the space-filling property.

Stratified sampling is a related sampling technique in which the input space is divided into
disjoint regions, called strata, from which points are sampled and weighted according to the
probability mass of their stratum. Stratified sampling reduces the variance of statistical esti-
mators (McKay et al., 1979). There exists a range of methods between stratified sampling and
LHS, called partially stratified sampling, which are able to reduce the variance of statistical es-
timators when interaction terms are dominant (Shields and Zhang, 2016). The authors proposes
an additional method called Latinized partially stratified sampling (LPSS) which combines LHS
and stratified sampling with the aim to minimize the variance of the resulting estimator. It is
especially beneficial when there is prior knowledge about which variable groups interact and has
been used for several problems with input dimension d = 100.

Sampling from the input distribution is a special case of the coherence-based theory detailed in
Section A.2.1 below, and bounds on the coherence and the associated number of points needed
for recovery can be derived (Doostan and Owhadi, 2011; Rauhut and Ward, 2012; Yan et al.,
2012; Hampton and Doostan, 2015b).

A.2 Sampling from a different distribution

The ability of sparse regression to recover the true sparse solution (if it exists, otherwise the
best sparse approximation) largely depends on the regression matrix. In the case of PCE, the
entries of this matrix are the evaluations of the basis polynomials at the experimental design
points. The points can be chosen in a way that improves the recovery properties of the matrix.

Several approaches exist in which the `1-minimization problem is modified into a weighted
problem and samples are drawn not from the input distribution, but from a suitable modified
distribution. The idea of these approaches is as follows. Define a weight function w(x) : Ω→ R

in a suitable way as will be explained later. For an ED {x(i)}, define the diagonal matrix
W = diag(w(x(1)), . . . , w(x(N))). Then the following modified system is solved:

min
c
‖c‖1 s.t. ‖WΨc−Wy‖2 ≤ ε. (14)

Depending on w(x), this modification can improve or deteriorate the solution c. Of course, the
weight function is chosen to improve the solution. The matrix WΨ can also be interpreted as
the evaluation of a modified basis {ψ̃α(x) = w(x)ψα(x) : α ∈ A}. To ensure orthonormality of

37

the columns of WΨ, the design points are drawn from a suitably modified input distribution
fX̃ .

A.2.1 Coherence, isotropy, and weighted orthonormal systems

In this section, we define concepts that are the basis for guarantees on accuracy and stability
for different sampling distributions. We mainly follow the exposition by Hampton and Doostan
(2015b).

In the setting of PCE, the coherence of an orthonormal system {ψα}α∈A is defined by

µ(A, {ψα}) = sup
x∈D

max
α∈A
|ψα(x)|2. (15)

For distributions for which this quantity would be ∞, such as a Gaussian distribution, see the
remark below.

A second important concept is isotropy (Candès and Plan, 2011): a random matrix, whose rows
are chosen randomly following some distribution a ∼ Fa, is isotropic if it holds that E

[
aTa

]
= 1.

In the case of PCE, Fa is induced by propagating the input distribution FX through the basis
functions. By construction, the regression matrix of standard PCE is isotropic if the ED is
sampled from the input distribution. Under the assumption that the regression matrix Ψ is
isotropic, the number of samples needed for perfect recovery of sparse solutions in the noiseless
case is proportional to µ(A, {ψα})s log(P) with high probability (Candès and Plan, 2011), where
s is the sparsity of the solution vector and P = |A| is the number of basis functions. A similar
result holds in the noisy case.

Thus, an orthonormal system {ψα}α∈A with low coherence µ(A, {ψα}) requires fewer samples
for perfect recovery. The goal of coherence-optimal sampling is to find a weighted system
{ψ̃α(x) = w(x)ψα(x) : α ∈ A} that achieves µ(A, {ψ̃α}) < µ(A, {ψα}) and is orthonormal wrt.
some distribution f̃X .

The ideas of isotropy and coherence were applied to PCE by Hampton and Doostan (2015b),
who construct an isotropic regression matrix with improved coherence as follows. Let B : D → R

be the tight upper bound for the polynomial basis,

B(x) = max
α∈A
|ψα(x)|. (16)

Let G : D → R be a loose upper bound with G(x) ≥ B(x) ∀x ∈ D. (G is useful because using
a simple expression for the upper bound can in some cases result in f̃X being a well-known
distribution that can be sampled from easily.) Define a new probability distribution f̃X(x) by

f̃X(x) = c2G(x)2fX(x), (17)

where c =
(∫

Ω fX(x)G2(x)dx
)− 1

2 is the normalizing constant. Then, with the weight function

w(x) = 1
cG(x) , (18)

the set of functions {ψ̃α(x) = w(x)ψα(x) : α ∈ A} is an orthonormal system with respect to
the distribution f̃X . This follows directly from the orthonormality of {ψα}α∈A with respect to
fX . Furthermore, if G = B, the coherence µ(A, {ψ̃α}) is minimal.

38

Remark Some polynomial bases (e.g. Hermite polynomials) do not have a finite upper bound.
It is still possible to obtain similar results by considering a smaller domain S ⊂ D on which the
upper bound is finite and the isotropy is still approximately fulfilled. The modified probability
distribution is then f̃X(x) = c2G(x)2fX(x)1S(x).

A.2.2 Sampling using a loose upper bound ("Asymptotic sampling")

In case of Legendre and Hermite polynomials, and using a certain loose upper bound G(ξ) ≥
maxα∈A |ψα(ξ)|, analytical expressions for distributions with improved coherence can be ob-
tained (Hampton and Doostan, 2015b).

In case of Legendre polynomials on [−1, 1]d, a loose upper bound on the polynomials is given
by G(x) ∝ ∏d

i=1(1 − x2
i)−

1
4 , which leads to the Chebyshev distribution f̃X(x) = ∏d

i=1
1

π
√

1−x2
i

and to the weight function w(x) = ∏d
i=1(1− x2

i)
1
4 .

In case of Hermite polynomials for standard Gaussian variables, a loose upper bound on the
polynomials is given by G(x) ∝ exp(1

4 ‖x‖
2
2) and the subset S is chosen to be the d-dimensional

ball with radius
√

2
√

2p+ 1. This leads to a uniform distribution f̃X on S and to the weight
function w(x) = exp(−1

4 ‖x‖
2
2).

Additionally, asymptotic distributions for Laguerre polynomials (corresponding to the Gamma
distribution) and for Jacobi polynomials (Beta distribution) have been implemented in the
software package COH-OPT (Hampton and Doostan, 2017).

For Legendre polynomials, asymptotic sampling has a smaller coherence than standard sampling
in the case d < p (asymptotically). In the case d > p, which is more common in applications,
standard sampling has (asymptotically) a smaller coherence. According to theory, the sam-
pling scheme with smaller coherence should exhibit better recovery rates. This is confirmed
numerically (Hampton and Doostan, 2015b, section 5.1). For Hermite polynomials, the same
observation is made.

A.2.3 Coherence-optimal sampling

The choice G = B leads to the minimum possible coherence µ(A, {ψ̃α}) (Hampton and Doostan,
2015b, Theorem 4.5). B is simple to evaluate for a single point x ∈ D, but its functional
form is in general not known. Therefore, Hampton and Doostan (2015b) suggest to sample
f̃X ∝ B2fX using Markov chain Monte Carlo sampling with proposal distribution equal to the
input distribution in the case d ≥ p and equal to the asymptotic distribution in the case d < p.
The resulting (unnormalized) weights are w(x) = 1

B(x) . As expected from theory, numerical
examples indicate that coherence-optimal sampling achieves better recovery and a smaller error
in various norms than both standard and asymptotic sampling (Hampton and Doostan, 2015b).
Coherence-optimal sampling can be shown to have good properties also when used as a sampling
scheme for least-squares regression (Hampton and Doostan, 2015a).

39

Matlab code for MCMC-based coherence-optimal sampling is available (Hampton and Doostan,
2015a,b). However, MCMC-based coherence-optimal sampling can be very slow for high-dimensional
input. An alternative is rejection-based coherence-optimal sampling. Here, samples xcand are
generated from a proposal distribution fprop, which has the property that there is a γ ∈ R such
that γfprop(x) ≥ f̃X(x) for all x ∈ D. Uniform random numbers u ∼i.i.d. U([0, 1]) are generated.
A proposed point xcand is accepted if u ≤ f̃(xcand)

γfprop(xcand) . This is the implementation used in this
benchmark.

Note that for Gaussian input, coherence-optimal and asymptotic sampling have a significantly
larger spread than input sampling, as can be seen from Fig. 9. Their support is the ball of
radius r =

√
2
√

2p+ 2 (Hampton and Doostan, 2017). This can potentially cause problems in
engineering applications, for which simulations may be less accurate when the input parameters
are far from typical operating conditions.

A.2.4 Christoffel sparse approximation

A similar weighted sampling scheme is the Christoffel sparse approximation (Narayan et al.,
2017; Jakeman et al., 2017). The authors propose to use the weight function

w(x) =
(

1
|A|

∑

α∈A
|ψα(x)|2

)− 1
2

(19)

which leads to a modified basis that has pointwise minimal average squared basis magnitude
(compare with Eq. (18) with G = B). This quantity (Eq. (6)) is a measure similar to coherence
(Eq. (15)) and is used by Hampton and Doostan (2015a) for convergence results for least-squares
regression. The probability distribution is chosen to be the so-called weighted pluripotential
equilibrium measure (possibly degree-dependent), which asymptotically coincides with f̃(x) =
c2w(x)2f(x) when the total degree of the truncated basis p→∞. However, the modified basis is
not orthonormal with respect to this measure, which leads to weaker theoretical recovery results.
Theoretical results are available only for the univariate case. In numerical examples, the method
performs well for low-dimensional high-degree cases, often very similar to asymptotic sampling.
In high dimensions, it performs worse than input sampling (MC). It has not been compared to
coherence-optimal sampling.

A.3 Choosing points according to an optimality criterion from a candidate
set

The following methods aim to improve the properties of the regression matrix by choosing the
“best” design points from a large candidate set. The methods differ in the criterion defining
what are the “best” points. Most presented algorithms are greedy or heuristic and are actually
only able to find a suboptimal design (local optimum). The choice of the candidate set obviously
influences the quality of the resulting design. In the literature, candidate sets were sampled from
MC (Diaz et al., 2018), LHS (Fajraoui et al., 2017), coherence-optimal sampling (Diaz et al.,

40

2018; Alemazkoor and Meidani, 2018a), or Christoffel sparse approximation (Shin and Xiu,
2016b). In case of coherence-optimal sampling or Christoffel sparse approximation, the resulting
optimized sample inherits the weights. It also often preserves the spread of the candidate set,
as can be seen in Fig. 9.

A.3.1 D-optimal sampling

D-optimal design of experiments (Kiefer andWolfowitz, 1959; Dykstra, 1971) aims at maximizing
the determinant of the so-called information matrix 1

N
ΨTΨ ∈ RP×P . The D-value is defined

as
D(Ψ) = det(ΨTΨ). (20)

Sometimes the determinant of the inverse information matrix is minimized (Nguyen and Miller,
1992), or the P -th root is taken for normalization purposes (Diaz et al., 2018). The maximization
of this determinant is connected to the minimization of the variance of the PCE coefficient
estimate (Nguyen and Miller, 1992; Zein et al., 2013). Note that D(Ψ) = 0 if N < P .

There exists a large selection of methods for constructing D-optimal experimental designs. For
an overview of methods for constructing designs following alphabetic optimality criteria (such
as A-, D-, E-optimality), see Hadigol and Doostan (2018, Section 4.5).

Here, we only discuss D-optimal sampling based on rank-revealing QR decomposition (RRQR)
(Diaz et al., 2018), since this is the technique used in our benchmark. We decided to use RRQR-
based D-optimal sampling in the benchmark, because it can be used even in the case N < P

when other D-optimal methods fail due to singularity of the information matrix. Note that
RRQR is not guaranteed to find a design with maximal D-value, only a local optimum (Diaz
et al., 2018, Section 3.4).

Let Ψcand ∈ R
M×P be the regression matrix evaluated at a set of M candidate points. The

goal is to select N ≤ M points from this candidate set with the property that the D-value
of the resulting regression matrix Ψ ∈ R

N×P is as large as possible. Since in the case of
sparse PCE often N < P , which leads to D(Ψ) = 0, another strategy is necessary. The RRQR
decomposition, also known as pivoted QR, aims at permuting the columns of the original matrix
in a way that the R-matrix of the associated QR decomposition is as well-behaved9 as possible.
This is useful for inexpensively determining the numerical rank of a matrix (Hong and Pan,
1992; Gu and Eisenstat, 1996). RRQR has a strong connection to SVD and to the selection of
submatrices of maximal determinant (Hong and Pan, 1992). Gu and Eisenstat (1996) propose a
pivoted QR decomposition where pivots are chosen to maximize the determinant of the resulting
quadratic submatrix of R. The exchange of rows is based on a formula relating the determinant
of the quadratic submatrix of R before and after the row exchange by a simple factor (Gu
and Eisenstat, 1996, Lemma 3.1). This algorithm can be used together with SVD to perform
subset selection to construct an initial experimental design from a large set of candidate samples

9R =

(
Ak Bk

0 Ck

)
where Ak is well-conditioned and ‖Ck‖2 is small

41

(Seshadri et al., 2017; Diaz et al., 2018). Here, first an SVD of the matrix ΨT
cand is computed.

Then RRQR is applied to the transpose of the matrix consisting of the first N right singular
vectors. The resulting permutation matrix is used to determine the points to be chosen from
the candidate set.

A.3.2 Quasi-optimal sampling based on the S-value

Here, the idea is to select samples from a pool of candidate points so that the PCE coefficients
obtained using the selected set are as close as possible to the coefficients that would be obtained
if the whole set of candidate points was used (Shin and Xiu, 2016a). Under the assumption that
the columns of the matrix Ψcand are mutually orthogonal, the S-value is defined by

S(Ψ) =
(√

det ΨTΨ
∏P
i=1 ‖Ψi‖2

) 1
P

, (21)

where Ψi denotes the i-th column of the regression matrix Ψ. Its maximization has the (heuris-
tic) effect of maximizing the column orthogonality of the regression matrix and at the same
time maximizing the determinant of the information matrix (Shin and Xiu, 2016a). It holds
that S(Ψ) ∈ [0, 1] due to Hadamard’s inequality. If N < P , S(Ψ) = 0. If N ≥ P , S(Ψ) = 1
if and only if the columns of Ψ are mutually orthogonal. There exists an update formula for
the S-value when the regression matrix is augmented by one row, thus avoiding the repeated
calculation of determinants.

Shin and Xiu (2016a) suggest a greedy algorithm which in every iteration augments the current
matrix by an additional row which maximizes the S-value of the resulting matrix among all
candidate rows. When the current number of rows in the matrix Ψ is smaller than the number
of columns, the procedure can be adapted to avoid S(Ψ) = 0. We do not include it in our bench-
mark, because it is not well suited for situations where there are more basis polynomials than
design points, which is the case in sparse PCE without experimental design enrichment. How-
ever, in a sequential enrichment context (Fajraoui et al., 2017) and for least-squares regression
(Shin and Xiu, 2016b) this algorithm performs well.

A.3.3 Near-optimal sampling

The coherence parameter (15) gives a bound on the recovery rate, but it is not the only criterion
that has been studied with respect to recovery accuracy. Two other matrix properties related to
recovery accuracy are mutual coherence and average cross-correlation. Both of them consider
the correlation between normalized columns of the regression matrix, i.e., their scalar product.
They are scalar measures of how “orthonormal” the columns of a rectangular matrix Ψ ∈ RN×P
with N < P are. The heuristic idea is that columns should point in as different directions
as possible, so that the multiplication with sparse coefficient vectors, which results in a linear
combination of a subset of the columns, is “as unique as possible”. This facilitates the recovery
of the true sparse solution (assuming that it exists).

42

The mutual coherence is defined by

µ(Ψ) = max
i 6=j

|ΨT
i Ψj |

‖Ψi‖2 ‖Ψj‖2
, (22)

where Ψi denotes the i-th column of the regression matrix Ψ ∈ R
N×P . The mutual coher-

ence is the worst-case cross-correlation between any two columns of the matrix. It is zero for
orthonormal matrices and positive for N < P .

The average cross-correlation is defined by

γ(Ψ) = 1
N(N − 1)

∥∥∥1N − Ψ̃T Ψ̃
∥∥∥

2

F
= 1
N(N − 1)

∑

i 6=j

|ΨT
i Ψj |

‖Ψi‖2 ‖Ψj‖2
(23)

where Ψ̃ is the column-normalized version of Ψ, and Ψi denotes the i-th column of the regression
matrix. The norm is the Frobenius-norm, taking the sum of squares of all matrix entries, and
the factor N(N − 1) is the number of column pairs.

Alemazkoor and Meidani (2018a) suggest to simultaneously optimize mutual coherence and
average cross-correlation by using the greedy procedure described in Algorithm 1: In each
iteration, the current regression matrix is augmented by one row. This row corresponds to that
point xj from the large pool of candidate points which minimizes the (normalized) distance of
(µ′j , γ′j) ∈ R2 to the ‘utopia point’ (min(µ′),min(γ ′)) among all candidate points.

Algorithm 1 Near-optimal sampling (Alemazkoor and Meidani, 2018a)
1: Sample a large number M of candidate points from the coherence-optimal distribution and

compute candidate rows arranged in a matrix Ψcand

2: Initialize Ψopt(1) to be a random row from Ψcand

3: for i = 2 . . . N do
4: for j = 1 . . .M do
5: Ψtemp = row-concatenate(Ψopt(i-1),Ψ

(j)
cand)

6: µ′j = µ(Ψtemp) and γ′j = γ(Ψtemp)
7: end for
8: µ′ = (µ′1, . . . , µ′M) and γ ′ = (γ′1, . . . , γ′M)

9: j∗ = arg minj
(

µ′j−min(µ′)
max(µ′)−min(µ′)

)2
+
(

γ′j−min(γ′)
max(γ′)−min(γ′)

)2

10: Ψopt(i) = row-concatenate(Ψopt(i-1),Ψ
(j∗)
cand)

11: end for

The algorithm is called near-optimal because it is a greedy algorithm, finding only a local op-
timum, and because optimized mutual coherence and average cross-correlation are only hinting
at, but not guaranteeing, good recovery accuracy (Alemazkoor and Meidani, 2018a). Its compu-
tational complexity is O(N2MP 2), where N is the size of the final experimental design,M is the
number of candidate samples (chosen to be, e.g., proportional to P (Diaz et al., 2018)) and P is
the number of regressors. The computation of mutual coherence and average cross-correlation
alone has complexity O(P 2N). This makes the algorithm prohibitively expensive in case of large
bases (P in the order of thousands), which is why we do not use it for some of the benchmark
examples.

43

A.4 Illustration of sampling schemes

In Figures 8 and 9, we show illustrations of experimental designs in d = 2 dimensions with
N = 100 and p = 12 for selected sampling techniques. The candidate set has a size ofM = 1000.
Fig. 8 presents experimental designs for uniform input in the interval [−1, 1], while Fig. 9 presents
experimental designs for standard Gaussian input.

Note that in the standard Gaussian case, the asymptotic distribution, the coherence-optimal
distribution, and the matrix-optimal distributions based on a coherence-optimal candidate set
all have a very large spread that grows with the total degree of the basis. For degree p =
12, some points are seven standard deviations away from the mean. Engineering models are
typically calibrated only for a certain region of the input domain corresponding to non-negligible
probability, and they may be less accurate (or even fail) outside of this region.

44

-1 1

-1

1

(a) MC
-1 1

-1

1

(b) D-opt(MC)
-1 1

-1

1

(c) asymptotic

-1 1

-1

1

(d) LHS
-1 1

-1

1

(e) D-opt(LHS)
-1 1

-1

1

(f) near-opt(LHS)

-1 1

-1

1

(g) coh-opt
-1 1

-1

1

(h) D-opt(coh-opt)
-1 1

-1

1

(i) near-opt(coh-opt)

Figure 8: Visualization of experimental designs constructed for uniform input in [−1, 1]2 for
degree p = 12. Red filled points denote the chosen experimental design, while blue circles
denote the candidate set. Size of the ED: = 100, size of the candidate set: M = 1000.

45

-7 0 7

-7

0

7

(a) MC
-7 0 7

-7

0

7

(b) D-opt(MC)
-7 0 7

-7

0

7

(c) asymptotic

-7 0 7

-7

0

7

(d) LHS
-7 0 7

-7

0

7

(e) D-opt(LHS)
-7 0 7

-7

0

7

(f) near-opt(LHS)

-7 0 7

-7

0

7

(g) coh-opt
-7 0 7

-7

0

7

(h) D-opt(coh-opt)
-7 0 7

-7

0

7

(i) near-opt(coh-opt)

Figure 9: Visualization of the experimental design constructed for standard Gaussian input in
d = 2 dimensions for degree p = 12. The gray surface plot illustrates the Gaussian pdf. Red
filled points denote the chosen experimental design, while blue circles denote the candidate set.
Size of the ED: N = 100, size of the candidate set: M = 1000. The support of the asymptotic
and the coherence-optimal distribution is the ball of radius r =

√
2
√

2p+ 2 ≈ 7.2. Note that
engineering models may be less accurate in regions where the input distribution has negligible
mass.

46

B Details on sparse regression solvers

In this appendix, we describe the sparse solvers used in our benchmark in more detail: LARS,
OMP, Subspace pursuit, SPGL1 and FastLaplace (BCS). In addition, we present an overview
of greedy stepwise regression solvers for sparse PCE.

There exist various formulations for the sparse regression problem. The typical form minimizes
the `2-norm of the empirical error under an additional constraint that is designed to enforce
sparsity.

Sparsity is measured by the number of nonzero entries in a vector, formally denoted by ‖c‖0 =
∑
i 1{ci 6=0} (even though this expression is not a norm). This results in the sparse regression

problem
ĉ = arg min

c
‖Ψc− y‖22 + λ ‖c‖0 (24)

called `0-minimization. The only way to solve this problem exactly is a combinatorial search
through all possible nonzero patterns for c, which is infeasible for large problem sizes.

The convex relaxation of this problem is `1-minimization, where ‖c‖0 is replaced by ‖c‖1 =
∑
i |ci|. There are several equivalent formulations of the relaxed problem, namely

ĉ = arg min
c
‖Ψc− y‖22 + λ ‖c‖1 (25)

ĉ = arg min
c
‖c‖1 s.t. ‖Ψc− y‖2 ≤ σ (26)

ĉ = arg min
c
‖Ψc− y‖2 s.t. ‖c‖1 ≤ τ (27)

called Lagrangian formulation, basis pursuit de-noising (BPDN), and least absolute shrinkage
and selection operator (LASSO), respectively. It has been shown that under certain conditions,
the solutions to `0-minimization and `1-minimization coincide (Bruckstein et al., 2009). However
contrary to Eq. (24), formulations Eq. (25)-(26) are convex problems and allow a numerical so-
lution with considerably smaller cost. The three formulations (25), (26), and (27) are equivalent
in the sense that if ĉ is solution to one of the formulations, there exists a value of constraint
parameter σ, τ or λ so that ĉ is also solution to the other formulations. However, the relationship
between the parameters σ, τ, λ that makes the problems equivalent depends on Ψ and y and is
not known in advance (van den Berg and Friedlander, 2008).

There exist other sparsity-enforcing formulations, such as `p-norms (Bruckstein et al., 2009),
`1 − `2-minimization (Yin et al., 2015), or elastic net (Tarakanov and Elsheikh, 2019). One
example that we will describe is Bayesian compressive sensing, where a sparsity-enforcing prior
is used for the coefficients of the PCE, resulting in a formulation that is equivalent to a sparse
regression problem with a different kind of sparsity constraint, e.g., one related to the Student-t
distribution (Tipping, 2001).

In the following descriptions of the algorithms, A ⊂ N
d with various sub- or superscripts denotes

a set of multi-indices, which by definition of PCE can be identified with a set of basis polynomials.
With the notation in Section 2.1, y ∈ R

N denotes the vector of model responses, Ψ ∈ R
N×P

the regression matrix of basis polynomials evaluated at the N experimental design points, and

47

c ∈ RP the coefficients of a PCE. The residual is defined by r = y −Ψc, so that the norm of
the residual is the empirical error.

The polynomials used for building the PCE are sometimes also called basis functions, regressors
or predictors. A sparse PCE is a PCE for which only some of the basis functions have non-zero
coefficients: these basis functions are called active. We assume the regressors to be normalized,
so that the correlation between two regressors is equivalent to their inner product (and to the
cosine of the angle between them).

B.1 Orthogonal matching pursuit (OMP)

Orthogonal matching pursuit (OMP), also called forward stepwise regression, is a classical greedy
technique to find approximate solutions to the `0-minimization problem (24) (Pati et al., 1993;
Bruckstein et al., 2009). Despite being an heuristic method, under certain assumptions there are
theoretical guarantees for the solutions returned by OMP (Tropp and Gilbert, 2007; Bruckstein
et al., 2009). OMP is an iterative algorithm that starts out with an empty model and adds the
regressors one-by-one to the set of active regressors. In each iteration, OMP selects the regressor
that is most correlated with the current residual, adds it to the set of active regressors, and then
updates the coefficients of all active regressors to make sure the new residual is orthogonal to all
of them and has smallest possible norm. The updating of the coefficients can be done through
an update formula (Berchier, 2015) or by computing the least-squares solution to the system of
equations involving only the active regressors (Marelli and Sudret, 2019).

The algorithm is presented in Algorithm 2. The iterations are continued until min{N,P} basis
functions are in the active set (then either all polynomials are selected, or there are not enough
points in the experimental design to use least-squares anymore).

OMP does not per se return a sparse solution. If a desired level of sparsity K is known a priori,
the algorithm can be stopped after K iterations. Another possibility is to stop the algorithm as
soon as the residual norm is smaller than some error threshold (Bruckstein et al., 2009; Doostan
and Owhadi, 2011; Jakeman et al., 2015), where the best error threshold is determined through
cross-validation. A third possibility is to determine the best number of active basis functions
through a model selection criterion, e.g. the LOO error (Marelli and Sudret, 2019). Since
the coefficients are computed by OLS on the active basis, the LOO can be computed cheaply
(Chapelle et al., 2002; Blatman and Sudret, 2011). Typically, for an increasing sequence of basis
functions the LOO error first decreases (reduction of underfitting), then increases (overfitting).
This can be utilized to terminate the algorithm early once the LOO error starts rising (early-stop
criterion) (Marelli and Sudret, 2019).

The computational complexity of OMP isO(mNP) (Tropp and Gilbert, 2007; Dai and Milenkovic,
2009), where m ≤ min{N,P} is the number of iterations. The computation of the correlations
of the current residual with all regressors is O(NP) and has to be performed m times. The
computation of the least-squares solution in step i can be done in O(iN), e.g., by maintaining
a QR factorization of the information matrix (Tropp and Gilbert, 2007), or by using Schur’s
complement to update the information matrix inverse whenever a new regressor is added.

48

Algorithm 2 Orthogonal matching pursuit (OMP) (Pati et al., 1993; Tropp and Gilbert, 2007;
Marelli and Sudret, 2019)
1: Given a set of candidate basis functions Acand

2: Initialize all coefficients to zero: c0 = 0. Set A0 = ∅
3: Set the residual vector r := y

4: for i = 1, . . . ,m do . m ≤ min{N,P}
. OMP can be stopped early when the error did not decrease anymore for a while

5: Find α∗ ∈ Acand \ Ai−1 with maximal correlation with the residual by solving

α∗ = arg max
α∈Acand\Ai−1

|rTψα|

. The entries of vector ψα are evaluations of the basis function ψα at the ED
6: Ai = Ai−1 ∪ {α} . Current set of active predictors
7: Compute the coefficients ci by least-squares using only the active indices Ai

. This can be done in O(iN) when maintaining a QR factorization (Tropp and Gilbert,
2007)

8: Update the residual r = y −ΨAici
9: end for

From the authors’ experience, OMP often suffers from overfitting and can produce an unreliable
LOO error estimate, which can be detrimental in basis-adaptive settings.

OMP is available in many software packages, among them UQLab (Marelli and Sudret, 2014).

B.2 Least angle regression (LAR)

Least-angle regression (LAR) is a greedy technique that finds an approximate solution to the
`1-minimization problem (Efron et al., 2004). It is similar to OMP in that the algorithm starts
out with an empty model and adds regressors one-by-one based on their correlation with the
residual. However, unlike OMP, which updates the coefficients using least-squares (making
the residual orthogonal to all active regressors in each step), LARS updates the coefficients
in such a way that all active regressors have equal correlation with the residual. LARS can
be interpreted as producing a path of solutions to (27), corresponding to increasing τ . The
coefficients are increased in the equiangular direction until a non-active regressor has as much
correlation with the residual as all the active regressors. This regressor is then added to the
set of active regressors and the new equiangular direction is computed. The optimal stepsize
between the addition of subsequent regressors can be computed analytically (Efron et al., 2004).
This algorithm solves (27) approximately. A slightly modified version of LARS, called LARS-
LASSO, removes regressors whenever the sign of their coefficient changes and has been proven
to solve (27) (or its noiseless counterpart) exactly under certain conditions (Efron et al., 2004;
Bruckstein et al., 2009).

The LARS algorithm is presented in Algorithm 3. It returns a sequence A1 ⊂ A2 ⊂ . . . ⊂ Am
of sets containing indices of active basis functions, with m = min{N,P}. As for OMP, LARS

49

Algorithm 3 LAR – Least angle regression (Efron et al., 2004; Blatman and Sudret, 2011)
1: Given a set of candidate basis functions Acand

2: Initialize all coefficients to zero: c0 = 0. Set A0 = ∅
3: Set the residual vector r := y

4: for i = 1, . . . ,m do . m = min{N,P}
5: Find α ∈ Acand \ Ai−1 with maximal correlation with the residual

. For i > 1, αi is the element "responsible for" γi
6: Ai = Ai−1 ∪ {α} . Current set of active predictors
7: Compute ci . Equiangular direction for all α ∈ Ai

. c1 is equal to the first selected predictor
. (Efron et al., 2004, Eq. 2.6)

8: Compute γi . Optimal stepsize: using this, there is a new regressor that is as much
correlated with r as all regressors in Ai are

. (Efron et al., 2004, Eq. 2.13)
9: Compute the new coefficients ci = ci−1 + γici . Move the coefficients jointly into the

direction of the least-squares solution until one of the other predictors in Acand \ Ai has as
much correlation with the residual as the predictors in Ai (ensured by choice of γi and ci)

10: Update the residual r = y −Ψici

11: end for

can be stopped when a pre-defined sparsity K is reached or when the norm of the residual ‖r‖2
falls below a pre-defined error threshold.

A modified version of LARS, called Hybrid LARS, uses the equi-correlated approach to select the
predictors, but computes the coefficients of the metamodel by least-squares (Efron et al., 2004;
Blatman and Sudret, 2011). Once the LAR algorithm has finished and returned the sequence of
basis setsA1, . . . ,Am, the corresponding coefficients are recomputed by least squares, ci = cLSQi ,
which ensures minimal empirical error for every metamodel (Ai, ci). Hybrid LARS facilitates
another way to choose the best sparsity level: as for OMP, a model selection criterion (e.g. LOO)
for each metamodel can be evaluated, and the best one is chosen. This procedure is detailed
in Algorithm 4. Cheap OLS-based computation of LOO (Chapelle et al., 2002; Blatman and
Sudret, 2011) and the early-stop criterion (Marelli and Sudret, 2019) can be applied as well.

As for OMP, the computational complexity of LARS (in the case N < P) is O(mNP), where
m ≤ min{N,P} is the number of iterations. This is due to matrix-vector multiplication and
matrix inversion which have to be performed in every iteration. The latter can be computed in
O(mN), when using techniques such as Schur’s complement to update the information matrix
inverse whenever a new regressor is added.

LARS is available in many software packages, e.g., as MATLAB implementation in UQLab
(Marelli and Sudret, 2014).

50

Algorithm 4 Hybrid LAR with LOO-CV (Blatman and Sudret, 2011; Marelli and Sudret, 2019)
1: Initialization as in LAR (Algorithm 3)
2: for i = 1, . . . ,m do
3: Run one step of LAR and obtain (Ai, ci) . Algorithm 3
4: Recompute the coefficient vector using least-squares on the selected basis Ai only, ob-

taining cOLS
i (the coefficients corresponding to A \ Ai are set to zero) . Hybrid

LAR
5: Compute the LOO error εLOO(i) for cOLS

i . OLS-based LOO computation (Chapelle
et al., 2002; Blatman and Sudret, 2011)

6: end for . early stopping possible by monitoring the LOO error (Marelli and Sudret, 2019)
7: Return the metamodel (Ai∗ , ci∗) with i∗ = arg mini εLOO(i)

B.3 Subspace pursuit (SP)

Another formulation of the `0-minimization problem is

min
c∈RP

‖Ψc− u‖2 s.t. ‖c‖0 = K (28)

which is equivalent to (24) for a certain choice of λ.

Subspace pursuit (SP) seeks to identify a solution to (28) by iteratively and greedily enlarging
and shrinking the set of active basis functions (Dai and Milenkovic, 2009). As LARS and OMP,
regressors are added to the set of active basis functions according to their correlation with the
residual. However, the regressors are not added one-by-one, but batchwise. More precisely, SP
maintains at all times an active basis of size K, where K denotes the desired sparsity. In each
iteration, it adds K regressors at once and computes the coefficients of the active regressors
by OLS. Then, it removes the K regressors with the smallest-in-magnitude coefficients. This
is continued until convergence. Under certain assumptions, there are theoretical guarantees for
the solution that SP returns (Dai and Milenkovic, 2009). To make the augmentation of the basis
and the OLS regression feasible, it must hold that 2K ≤ min{N,P}.

The algorithm is described in Algorithm 5 for a fixed value of sparsity K. The residual of a
vector and a regression matrix is defined as

residual(y,Ψ) = y −ΨΨ†y (29)

where Ψ† denotes the pseudoinverse of Ψ and Ψ†y = c is the least-squares solution to Ψc ≈ y
(case of overdetermined system). The algorithm returns a set A containing K multi-indices.

For arbitrary sparse vectors, the computational complexity isO(N(P+K2)K) (Dai and Milenkovic,
2009). For very sparse vectors with K2 ∈ O(P), the complexity becomes thus O(NPK), com-
parable to the runtime of OMP. The number of iterations that the SP algorithm performs can
be shown to be O(K) in general and even O(logK) in certain cases (Dai and Milenkovic, 2009).

When the optimal sparsity level K is unknown, it can be determined e.g. by cross-validation:
Diaz et al. (2018) suggest to run Algorithm 5 for a range of NK = 10 different values for K and
choose the one with the smallest 4-fold cross-validation error.

51

Algorithm 5 Subspace pursuit (Dai and Milenkovic, 2009)
1: Given desired sparsity K ≤ min{N2 , P2 }
2: Given the experimental design and the candidate basis Acand, compute the associated re-

gression matrix Ψ and the right-hand-side y
3: A0 = {K indices corresponding to the largest magnitude entries in ΨTy}

. Scalar product of columns of Ψ with y
4: y0

res = residual(y,Ψ) . Residual of least-squares solution based on full basis
5: for l = 1, 2, . . . do
6: S l = Al−1 ∪ {K indices corresponding to the largest magnitude entries in ΨTyl−1

res }
. Augment by indices of full basis that correlate best with the residual

7: c = Ψ†Sly . Least-squares solution based on set S l of size 2K
8: Al = {K indices corresponding to the largest magnitude entries in c}
9: ylres = residual(y,ΨAl) . Residual of least-squares solution based on Al
10: if

∥∥∥ylres
∥∥∥

2
≥
∥∥∥yl−1

res

∥∥∥
2
then . if new K-sparse approx. is worse than the previous one

11: STOP iteration and return Al−1.
12: end if
13: end for
Remark: In line 10, the original publication (Dai and Milenkovic, 2009) uses “>” instead of
“≥”, but we also want to stop when the set has converged.

A related algorithm is CoSAMP (Needell and Tropp, 2009), which differs from SP mainly in the
number of regressors added in each iteration.

Subspace pursuit is available as MATLAB implementation in the software package DOPT_PCE
(Diaz et al., 2018; Diaz, 2018).

B.4 SPGL1

`1-minimization is a convex problem, since both the objective function and the constraint are
convex functions. Therefore, convex optimization methods can be used to find a solution. In
this section, we describe the algorithm SPGL1 (van den Berg and Friedlander, 2008).

For a given value of τ , formulation (27) (LASSO) can be solved by spectral projected gradient
descent (SPG) (Birgin et al., 2000; van den Berg and Friedlander, 2008)10. However, for real-
world problems, we often do not know a priori an appropriate value for τ . On the other hand,
a sensible range of values for σ in formulation (26) (BPDN) can typically be estimated based
on the noise level in the data and the expected model fit. In case of PCE metamodelling, σ can
be related to an estimate of the relative MSE through relMSE = σ2

NV̂ar[y] , whose values are for
engineering models typically between 10−10 and 100 = 1.

10SPG is a gradient-based optimization algorithm with several enhancements (Barzilai-Borwein spectral step
length and the Grippo-Lampariello-Lucidi scheme of nonmonotone line search) and projection onto the feasible
set Ωτ = {c ∈ RP : ‖c‖1 ≤ τ}

52

The main idea of the solver SPGL1 is to solve BPDN through a detour over LASSO. Let cτ be
the solution to LASSO for a given τ . Define a function φ : R+ → R+ by

φ(τ) := ‖Ψcτ − y‖2 . (30)

Then the solution to BPDN with σ := φ(τ) is cτ . In other words, φ is the functional relationship
between σ and τ that makes the two formulations BPDN and LASSO equivalent for given Ψ
and y. φ is the Pareto front of LASSO and BPDN and shows the trade-off between the minimal
achievable `1-norm of the coefficients and the minimal `2-norm of the corresponding residual.
The Pareto front is convex, nonincreasing and differentiable with an analytically computable
derivative (van den Berg and Friedlander, 2008).

To find a solution to BPDN with a given σ, LASSO is solved with SPG several times for a
sequence of τ until one is found with φ(τ) = σ. The sequence of τ is created by performing
Newton’s root finding algorithm on the function f(τ) = σ − φ(τ).

Each SPG iteration has a computational complexity of O(NP + P logP) (from matrix-vector
multiplication and `1-projection). Multiplying this with the number of SPG steps and the
number of Newton steps yields the computational complexity of SPGL1.

This algorithm is available as MATLAB package SPGL1 (van den Berg and Friedlander, 2008;
Van den Berg and Friedlander, 2015).

In our numerical benchmarks computing sparse PCE for compressible models, SPGL1 was among
the slowest solvers and often returned rather dense solutions.

B.5 Sparse Bayesian learning

Methods from the class of Bayesian compressive sensing (BCS), also known as sparse Bayesian
learning (SBL), embed the regression problem in a probabilistic framework (Tipping, 2001; Ji
et al., 2008; Babacan et al., 2010; Sargsyan et al., 2014). The goal is to compute, for a given
model response vector y and a regression matrix Ψ, the coefficient vector cMAP which maximizes
the posterior distribution p(c|y). Another quantity of interest could be the most probable value
y∗ at a new point x∗ maximizing p(y∗|y).

In Bayesian compressive sensing, it is assumed that the “measurements” y are generated by
adding zero-mean, finite-variance noise to the evaluations of the true model. This noise is often
assumed to be Gaussian white noise, which, for a given input x, results in a Gaussian distribution
for its output y with mean Ψc and covariance matrix σ2

1. Note that in the case of PCE, this
is generally not a valid assumption: when an important term is missing from the PCE model,
the discrepancy between measurements and PCE model evaluations can be highly correlated,
heteroscedastic, with non-zero mean, and non-Gaussian. However, even though the assumptions
might not be fulfilled, this framework can still be useful for finding sparse solutions.

The class of Bayesian compressive sensing algorithms comprises several methods that differ in
the assumptions on the distributions of the various hyperparameters and in the (usually iterative,
approximate) techniques for computing the posterior quantities.

53

In Figure 10a we present the general setup of sparse Bayesian learning. The measurements y
are assumed to follow a Gaussian distribution as described above. The noise variance σ2 is
assumed to be a random variable whose distribution has to be specified (e.g. fixed, uniform or
inverse-Gamma). The coefficients ci are assumed to be random variables as well, drawn from a
normal distribution with mean zero and variance γi, i.e., each weight has its own variance. γ is
a so-called hyperparameter, parametrizing the distribution of a parameter.

γ

c σ2

y

p(γi)

p(c|γ) = ∏
iN (ci|0, γi)

p(σ2)

p(y|c, σ2) = N (y|Ψc, σ21)

(a) General setup of BCS

γ

c σ2

y

p(c|γ) = ∏
iN (ci|0, γi)

p(y|c, σ2) = N (y|Ψc, σ21)

λ

p(γi|λ) = λ
2 exp

(
−λ

2γi

)

p(λ|ν) = Γ
(
λ|ν2 , ν2

)

ν

(b) Setup by Babacan et al. (2010)

Figure 10: Illustration of the general setup of Bayesian compressive sensing (left) and the hierar-
chical generalization of Babacan et al. (2010) (right). Left: The likelihood and the prior on the
coefficients are usually Gaussian, but the choice of p(σ2) and p(γ) differs between publications,
as well as the resulting solution algorithm. Right: Babacan et al. (2010) make a specific choice
for p(γ) and include an additional layer of hyperparameters. Shaded variables are held fixed.

So far, the described setup with fixed σ2 and γi would yield (weighted) ridge regression. The
sparsity comes into play through an assumption on the distribution of the hyperparameter γ.
For specific choices of p(γi), it can be shown that the resulting effective prior on the coefficients
p(c) =

∫
p(c|γ)p(γ)dγ is a sparsity-encouraging distribution, i.e., one that has a sharp peak at

zero, encouraging zero values, and at the same time a heavy tail, allowing for large coefficient
values as well. Examples are the Laplace distribution and the generalized Student-t distribution
(Wipf et al., 2004; Babacan et al., 2010; Figueiredo and Nowak, 2001).

Such sparsity-encouraging distributions are often intractable to use, because they do not allow for
analytical computation of the desired values (such as the most likely coefficients given the data,
or the prediction of the measurement value at a new point). However, feasible algorithms can
be developed based on a suitable approximation step. Various frameworks for sparse Bayesian
learning have been proposed whose setup follows the general structure of Figure 10a, but which
differ in the choice of priors for the hyperparameters and employ different solution algorithms for
the MAP estimate of these hyperparameters (Tipping, 2001; Faul and Tipping, 2002; Figueiredo,
2003; Tipping and Faul, 2003; Wipf and Rao, 2004; Ji et al., 2008; Seeger and Nickisch, 2008;
Babacan et al., 2010; Sargsyan et al., 2014). The MAP estimate of the hyperparameters is
inserted into the distribution for c. Because p(c|γ) and p(y|c, σ2) are normal distributions,
all subsequent computations can be carried out analytically (Tipping, 2001; Wipf et al., 2004;

54

Wipf and Rao, 2004). The sparsity of c is enforced because by the choice of p(γ) and the
other distributions, many of the components γMAP

i of γMAP will actually be zero, forcing the
corresponding ci to be zero as well.

BCS in the implementation of Babacan et al. (2010) was suggested for sparse PCE by Sargsyan
et al. (2014). This approach employs an additional layer of hyperparameters as displayed
in Fig. 10b. The prior on the coefficient variances is an exponential distribution p(γi|λ) =
Exp

(
γi
∣∣λ

2

)
with shared hyperparameter λ. The hyperparameter λ follows a Gamma distribu-

tion p(λ|ν) = Γ(λ|ν2 , ν2) with hyperparameter ν. ν → 0 implies p(λ) ∝ 1
|λ| (improper prior) and

ν →∞ implies the certain value λ = 1. In practice, Babacan et al. (2010) find that ν = 0 gives
the best results. The prior on β = σ−2 is a Gamma distribution p(β) = Γ(β|a, b) with hyperpa-
rameters a, b. In practice, the algorithm does not estimate β well, which is however crucial for
the algorithm; therefore, it is set to fixed value (e.g. β−1 = 0.01 ‖y‖22 in Babacan et al. (2010); in
our benchmark, we use cross-validation to determine the best value for this parameter, similar
to the strategy for SPGL1). The objective function is the logarithm of the joint distribution
L(γ, λ, β) = log p(y,γ, λ, β), which is an analytical expression. To maximize it, Babacan et al.
(2010) adapt the fast approximate algorithm of Tipping and Faul (2003); Faul and Tipping
(2002) to their generalized hierarchical setting. Here, the derivatives of the objective function
with respect to the hyperparameters λ, β and γi, i = 1, . . . , P are computed. This results in an
iterative scheme where these parameters are optimized one at a time while holding the other
ones fixed. The algorithm is explained in detail in Babacan et al. (2010, Algorithm 1) and has
been implemented in MATLAB under the name FastLaplace (Babacan, 2011).

B.6 Greedy stepwise regression solvers

Many of the sparse regression solvers that have been proposed to compute sparse PCE belong
to the class of greedy stepwise regression. Here, starting from an empty model, the regressors
are added one-by-one according to a selection criterion (forward selection). Some methods
also include a backward elimination step. Then the coefficients of the selected regressors are
computed. The procedure is iterated until a stopping criterion is reached. Alternatively, several
models are built and one is selected in the end using a model selection criterion. We summarize
some greedy stepwise regression techniques proposed for sparse PCE together with their choices
for selection criterion, coefficient computation and stopping criterion in Table 3, including the
well-known methods OMP and LARS.

New greedy methods in the fashion of Table 3 can easily be derived by pairing other methods
for the regressor selection, the coefficient computation method and the model selection crite-
rion. Note that except for LARS and OMP, these greedy methods are heuristic (no theoretical
guarantee of convergence) and often depend on a number of tuning parameters.

55

Ta
bl
e
3:

A
se
le
ct
io
n
of

gr
ee
dy

st
ep
w
ise

re
gr
es
sio

n
al
go
rit

hm
sp

ro
po

se
d
fo
rs

pa
rs
e
PC

E.
F
=

fo
rw

ar
d
se
le
ct
io
n,

FB
=

fo
rw

ar
d
se
le
ct
io
n
an

d
ba

ck
wa

rd
el
im

in
at
io
n.

R
ef
.

F
/B

R
eg
re
ss
or

se
le
ct
io
n

C
om

p
u
ta
ti
on

of
th
e
co
effi

ci
en
ts

M
o
d
el

se
le
ct
io
n
/

st
op

p
in
g
cr
it
er
io
n

C
om

m
en
t

O
M
P

(T
ro
pp

an
d
G
ilb

er
t,

20
07

)
F

co
rr
el
at
io
n
w
it
h
re
si
du

al
O
L
S

se
ve

ra
l

ch
oi

ce
s:

gi
ve
n

nu
m
be

r
of

re
gr
es
so
rs

(T
ro
pp

an
d

G
ilb

er
t,

20
07

);
(m

od
ifi
ed

)
L
O
O

(M
ar
el
li
an

d
Su

dr
et
,2

01
9)
;

no
rm

of
re
si
du

al
(B

ap
ti
st
a
et

al
.,
20

19
);

th
re
sh
ol
d

on
m
ov
in
g
av
er
ag

e
of

L
O
O

(B
ap

ti
st
a
et

al
.,
20

19
)

th
eo
re
ti
ca
l
gu

ar
an

te
es

ex
is
t
(T

ro
pp

an
d
G
ilb

er
t,

20
07

)

L
A
R
S

(E
fr
on

et
al
.,
20

04
),

(B
la
tm

an
an

d
Su

dr
et
,
20

11
)

F
co
rr
el
at
io
n
w
it
h
re
si
du

al
le
as
t-
an

gl
e
st
ra
te
gy

se
ve

ra
l

ch
oi

ce
s:

co
effi

ci
en
t
of

de
te
rm

in
at
io
n

(E
fr
on

et
al
.,

20
04

);
(m

od
ifi
ed

)
L
O
O

(B
la
tm

an
an

d
Su

dr
et
,
20

11
)

th
eo
re
ti
ca
l
gu

ar
an

te
es

ex
is
t
(E

fr
on

et
al
.,
20

04
;

B
ru
ck
st
ei
n
et

al
.,
20

09
)

B
la
tm

an
an

d
Su

dr
et

(2
00

8)
F
B

co
effi

ci
en
t
of

de
te
rm

in
at
io
n

O
L
S

co
effi

ci
en
t
of

de
te
rm

in
at
io
n

de
gr
ee
-a
da

pt
iv
e

B
la
tm

an
an

d
Su

dr
et

(2
01

0)
F
B

co
effi

ci
en
t
of

de
te
rm

in
at
io
n

O
L
S

L
O
O

de
gr
ee
-a
da

pt
iv
e;

w
it
h
E
D

en
ri
ch
m
en
t

H
u
an

d
Y
ou

n
(2
01

1)
F

te
st
in
g
bi
va
ri
at
e
in
te
ra
ct
io
n

st
ep
w
is
e
m
ov

in
g
le
as
t
sq
ua

re
s

co
effi

ci
en
t
of

de
te
rm

in
at
io
n

O
nl
y

fo
r
in
te
ra
ct
io
n

or
de

r
≤

2.
E
D
-a
da

pt
iv
e.

D
eg
re
e
of

in
te
ra
ct
io
n
te
rm

s
de

te
rm

in
ed

in
in
ne

r
lo
op

.

A
br
ah

am
et

al
.
(2
01

7)
F
B

F
:
on

e-
pr
ed

ic
to
r
re
gr
es
si
on

cr
it
er
io
n

B
:
co
nfi

de
nc

e
in
te
rv
al
s
of

co
effi

ci
en
ts

O
L
S

gi
ve
n
nu

m
be

r
of

re
gr
es
so
rs

or
it
er
at
io
ns

-

Sh
ao

et
al
.
(2
01

7)
F

pa
rt
ia
l
co
rr
el
at
io
n
co
effi

ci
en
t

va
ri
an

t
of

B
C
S
(fi
xe
d
pr
io
rs
)

K
IC

pr
io
r
de

pe
nd

s
on

in
te
ra
ct
io
n
or
de

r
an

d
de

gr
ee

of
th
e
re
gr
es
so
r;

de
gr
ee
-a
da

pt
iv
e

C
he

ng
an

d
L
u
(2
01

8a
)

F
B

va
ri
an

ce
co
nt
ri
bu

ti
on

of
co
effi

ci
en
t

su
pp

or
t
ve
ct
or

re
gr
es
si
on

co
effi

ci
en
t
of

de
te
rm

in
at
io
n

-

A
F
B
S

(Z
ha

o
et

al
.,
20

19
)

F
B

co
rr
el
at
io
n
w
it
h
re
si
du

al
O
L
S

th
re
sh
ol
d
fo
r
re
si
du

al
no

rm
M
ai
n

di
ff
er
en

ce
to

O
M
P
:
ba

ck
w
ar
d

se
le
ct
io
n.

E
m
pl
oy

s
se
ve
ra
l
el
im

in
at
io
n
ch
ec
ks
.

H
SP

L
SR

-P
C
E

(Z
ha

o
an

d
B
u,

20
19

)
F
B

F
:
P
L
S
(r
eg
re
ss
or
s
pa

rt
it
io
ne

d
in
to

bl
oc
ks
)

B
:
so
ft

th
re
sh
ol
di
ng

lin
ea
r
P
L
S

on
th
e

re
gr
es
si
on

m
at
ri
x

m
od

ifi
ed

(p
se
ud

o)
L
O
O

N
ot
e
th
at

th
e
in
pu

t
is

as
su
m
ed

to
be

G
au

ss
ia
n,

bu
t
th
e
(n
on

-l
in
ea
r)

re
gr
es
so
rs

do
no

t
fo
llo

w
a

G
au

ss
ia
n
di
st
ri
bu

ti
on

.

Z
ho

u
et

al
.
(2
01

9)
F

(p
ar
ti
al
)
di
st
an

ce
co
rr
el
at
io
n

pa
rt
ia
l
le
as
t
sq
ua

re
s
(P

L
S)

co
effi

ci
en
t
of

de
te
rm

in
at
io
n

ad
ap

ti
ve

in
de

gr
ee

an
d
in
te
ra
ct
io
n
or
de

r

Z
ho

u
et

al
.
(2
01

9)
F
B

co
rr
el
at
io
n
w
it
h
re
si
du

al
B
C
S

K
IC

ne
st
in
g
it
er
at
iv
e
B
C
S

pr
oc
ed

ur
e
w
it
h

fo
rw

ar
d-

ba
ck
w
ar
d-
se
le
ct
io
n
sc
he

m
e

56

C Additional results

For the sake of readability, due to the large number of possible sampler/solver combinations, we
did not present all of them in the main body of our paper in Section 3. For completeness, we
report them here in Figs. 11-14.

(a) LARS (b) BCS

Figure 11: Results for the Ishigami model (d = 3, p = 14, q = 1). Complementing the informa-
tion in Fig. 2.

(a) LARS (b) SP

Figure 12: Results for the borehole model (d = 8, p = 5, q = 1). Complementing the information
in Fig. 3.

57

(a) OMP (b) SP

Figure 13: Results for the two-dimensional diffusion model (d = 53, p = 4, q = 0.5). Comple-
menting the information in Fig. 4.

(a) LARS (b) SP

Figure 14: Results for the so-called high-dimensional function (d = 100, p = 4, q = 0.5). Com-
plementing the information in Fig. 5.

58

D Benchmark studies

An overview of articles and benchmark studies comparing sparse PCE methods, including their
main result, is given in Table 4.

59

Table 4: Overview of some articles and benchmark studies comparing sparse PCE methods.
The “best method” listed in the last column is the one delivering the smallest target error, as
reported in the respective publications. Target quantities can be moments, Sobol’ indices or
the generalization error of the PCE surrogate. Abbreviations: D-opt(coh-opt) stands for D-
optimal sampling based on a coherence-optimal candidate set, etc.; ‘�’ stands for ‘better than’;
for the acronyms of solvers and sampling schemes see Sections 2.5 and 2.6, or the respective
publications. If the cited paper proposed a new method, this method is marked by a star (*).

Ref. Type Methods compared Result

Hampton and Doostan
(2015b)

sampling MC, asymptotic*, and coh-opt* coh-opt best

Fajraoui et al. (2017) sampling LHS, Sobol, D-opt(LHS), S-opt(LHS)*;
sequential sampling*

sequential S-opt(LHS) best; D-
opt(LHS) worst

Hadigol and Doostan
(2018)

sampling
(OLS)

MC, LHS, coh-opt, A-opt(coh-opt)*, D-
opt(coh-opt)*, E-opt(coh-opt)*

D-opt(coh-opt) best for p > d;
MC, LHS best for p < d

Jakeman et al. (2017) sampling MC, asymptotic, CSA* for p > d: CSA better than
MC and asymptotic

Alemazkoor and Meidani
(2018a)

sampling MC, coh-opt, near-opt(coh-opt)* near-opt(coh-opt) � coh-opt �
MC

Diaz et al. (2018) sampling coh-opt, D-opt(coh-opt), sequential D-
opt(coh-opt)*

seq. D-opt(coh-opt) �
D-opt(coh-opt) � coh-opt

Dutta and Gandomi (2020) sampling MC, LHS, Sobol, Importance Sampling LHS best

Hu and Ludkovski (2017) solvers OMP, SPGL1, BCS(Babacan et al. (2010)) BCS � OMP � SPGL1

Huan et al. (2018) solvers l1_ls, SpaRSA, CGIST, FPC_AS, ADMM
with default parameters

all showed similar perfor-
mance; ADMM slightly
advantageous

Liu et al. (2020a) solvers OMP, LARS, resampled PCE* resampled PCE � LARS �
OMP

Baptista et al. (2019) solvers OMP, SPGL1, and two variants* of OMP
(modified regressor selection, randomiza-
tion)

best: OMP, and OMP with
modified regressor selection

Tarakanov and Elsheikh
(2019)

solvers OMP, LARS, Rank-PCE* best: Rank-PCE

Zhou et al. (2019) solvers LARS, BCS(Wipf and Rao (2004)),
BCS(Ji et al. (2008)), D-MORPH-
reweighted(Cheng and Lu (2018b)),
stepwise regression based on Bayesian
ideas*

best: stepwise regression
(based on 1 Sobol’ design)

60

E UQLab implementation

UQLab is designed to be augmented by external code. We describe briefly how to connect
external sampling schemes and solvers with the UQLab framework. This description refers to
UQLabModules V1.3.0.

To use a custom sampling scheme, create the experimental design and add it to the structure
array of PCE options MetaOpts as follows:

MetaOpts.ExpDesign.Sampling = ’user’; % optional
MetaOpts.ExpDesign.X = X;
MetaOpts.ExpDesign.Y = Y;

You also have to specify the input manually so that UQLab knows which set of polynomials to
use:

MetaOpts.Input = myInput;

If the sampling scheme has weights, use the undocumented feature

MetaOpts.ExpDesign.CY = diag(1./(myWeights.^2));
MetaOpts.ExpDesign.normalize = 0; % only necessary when using solver LARS

where myWeights is the vector of weights corresponding to the points in X. This results in the
weighted problemWΨc ≈Wy with the diagonal matrixW = diag(myWeights). The disabling
of the normalization is only necessary when using the solver LARS.

To use a custom solver “MyMethod” for sparse PCE in UQLab, define the function uq_PCE_mymethod.m
(all lowercase) and use the option metaopts.Method = ’MYMETHOD’ (all uppercase) for the PCE.
A template for the implementation of uq_PCE_mymethod.m is displayed in File 1. See also
uq_PCE_lars.m for an example implementation.

The function uq_PCE_mymethod takes the variables univ_p_val and current_model, where
the first contains the experimental design points mapped by isoprobabilistic transform to stan-
dard space (standard Gaussian, uniform in [−1, 1] etc.) and the second contains all informa-
tion about the PCE that is being constructed. The return variable results is a struct with
fields .coefficients (all coefficients, including the zeros), .normEmpErr (empirical error), .LOO
(leave-one-out error or a similar criterion for model selection) and .indices (all basis indices,
including the inactive ones, in the same order as the coefficients). Also, a field optErrorParams
is required that needs to have two fields .loo and .normEmpErr (same as before).

Since basis adaptivity is independent of the choice of solver, each solver can make use of degree
adaptivity, q-norm truncation, interaction restriction etc. as usual in UQLab. If the sampling
scheme has weights, the solver must take them into account as displayed in File 1.

61

function results = uq_PCE_mymethod(univ_p_val, current_model)

% Get the index of the current output (for models with vector-valued output)
current_output = current_model.Internal.Runtime.current_output;

% Generate the regression matrix
Psi = uq_PCE_create_Psi(current_model.PCE(current_output).Basis.Indices, univ_p_val);

% Get the experimental design model evaluations
Y = current_model.ExpDesign.Y(:,current_output);

% Take weights into account, if they exist
if isfield(current_model.ExpDesign, ’CY’)
CY = current_model.ExpDesign.CY;
CYinv = CY \ eye(size(CY));
L = chol(CYinv);
Psi = L*Psi;
Y = L*Y;
end

% Now implement your method here
% e.g. [coeffs, LOO] = mymethod(Psi, Y, some_other_params);
...

% Prepare results
results.coefficients = ...
results.indices = current_model.PCE.Basis.Indices; % ALL indices
results.LOO = ...
results.normEmpErr = ...

opt_results.loo = results.LOO;
opt_results.normEmpErr = results.normEmpErr;
results.optErrorParams = opt_results;

end

File 1: Template for the implementation of a custom sparse solver for use in UQLab

62

