

Overproduction of the Flv3B flavodiiron, enhances the photobiological hydrogen production by the nitrogen-fixing cyanobacterium Nostoc PCC 7120

Baptiste Roumezi, Luisana Avilan, Véronique Risoul, Myriam Brugna, Sophie Rabouille, Amel Latifi

▶ To cite this version:

Baptiste Roumezi, Luisana Avilan, Véronique Risoul, Myriam Brugna, Sophie Rabouille, et al.. Overproduction of the Flv3B flavodiiron, enhances the photobiological hydrogen production by the nitrogen-fixing cyanobacterium Nostoc PCC 7120. Microbial Cell Factories, 2020, 19 (1), 10.1186/s12934-020-01320-5. hal-02539734

HAL Id: hal-02539734 https://hal.science/hal-02539734

Submitted on 10 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Overproduction of the Flv3B flavodiiron, enhances the photobiological hydrogen production by the nitrogen-fixing cyanobacterium Nostoc PCC 7120 Baptiste Roumezi^a, Luisana Avilan^b, Véronique Risoul^a, Myriam Brugna^b, Sophie Rabouille^{c,d}, Amel Latifi^{a,*} ^a: Aix Marseille Univ, CNRS, LCB, Laboratoire de Chimie Bactérienne, Marseille, France. ^b: Aix Marseille Univ, CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France. ^c: Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, F-06230 Villefranche-sur-mer, France ^d: Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, F-66650 Banyuls-sur-mer, France *: latifi@imm.cnrs.fr Keywords: Cyanobacteria, Flavodiiron, Heterocyte, Hydrogen, Hydrogenase **Running title**: Flv3B and H₂ production

30 Abstract

31 Background:

The ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen (H₂) is a promising alternative for renewable, clean-energy production. However, the most recent, related studies point out that much improvement is needed for sustainable cyanobacterial-based H₂ production to become economically viable. In this study, we investigated the impact of induced O₂-consumption on H₂ photoproduction yields in the heterocyte-forming, N₂-fixing cyanobacterium *Nostoc* PCC7120.

Results:

The *flv3B* gene, encoding a flavodiiron protein naturally expressed in *Nostoc* heterocytes, was overexpressed. Under aerobic and phototrophic growth conditions, the recombinant strain displayed a significantly higher H₂ production than the wild type. Nitrogenase activity assays indicated that *flv3B* overexpression did not enhance the nitrogen fixation rates. Interestingly, the transcription of the *hox* genes, encoding the NiFe Hox hydrogenase, was significantly elevated, as shown by the quantitative RT-PCR analyses.

Conclusion:

We conclude that the overproduced Flv3B protein might have enhanced O₂-consumption, thus
creating conditions inducing *hox* genes and facilitating H₂ production. The present study clearly
demonstrates the potential to use metabolic engineered cyanobacteria for photosynthesis driven
H₂ production.

51 Background

Development of renewable fuel as a clean alternative to fossil fuels is nowadays strongly needed. Besides solar energy, which represents the most abundant renewable energy, hydrogen (H₂) is regarded as an attractive option for its high energy content and null ecological impact: its combustion only releases water as a byproduct. In this regard, growing autotrophic, photosynthetic organisms (cyanobacteria and algae) to yield H₂ with minimized energy supply is a very promising alternative to fossil fuels.

In cyanobacteria, H_2 is produced by two different enzymes: hydrogenase and nitrogenase. In diazotrophic strains, H₂ is formed as a by-product of N₂ fixation activity performed by the nitrogenase. However, the nitrogenase is often associated to an uptake hydrogenase, encoded by the hup genes that catalyze the oxidation of H₂ into protons; the amount of H₂ produced during nitrogen fixation is thus rather limited [1]. The second type of enzymes producing H₂ are hydrogenases (H₂ases). Bidirectional NiFe H₂ases (called Hox), which catalyze both H₂ oxidation and proton reduction, are largely distributed across the cyanobacterial phylum [2, 3]. They form a heteropentamer with a H₂ase part (HoxYH) and a diaphorase part (HoxEFU). The physiological function of Hox hydrogenases in cyanobacteria is not well understood but they may serve as electron valve during photosynthesis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 [4]. The expression of hox genes is induced in dark and/or anaerobic conditions [5] and is under the control of the regulators LexA and two members of the AbrB family (antibiotic resistance protein B) [6-8]. The sensitivity of cyanobacterial bidirectional H₂ases to oxygen (O₂) and the fact that their activity occurs in the dark or under anaerobic conditions are the major obstacles to obtaining efficient solar driven production of H₂ in cyanobacteria. Several strategies have so far been adopted to overcome the limits of the natural H₂-evolving mechanisms in cyanobacteria (for a review see [9]).

During photosynthesis, O_2 can be reduced to water through an enzymatic process involving flavodiiron proteins (Flvs) [10]. In cyanobacteria, Flvs catalyze the reduction of O_2 into water using NADPH as an electron donor [11] and play a critical role during growth under fluctuating light regimes [12]. The filamentous heterocyte-forming cyanobacterium *Anabaena/Nostoc* PCC7120 (hereafter *Nostoc*) produces four Flvs proteins in the vegetative cells (Flv1A, Flv2, Flv3A, and Flv4) and two Flvs (Flv1B and Flv3B) specific to the heterocyte [13]. The Flv3B protein mediates light-induced O₂-uptake in the heterocyte, which benefits nitrogenase activity by providing a protection mechanism against oxidation [14]. In addition, the *Aflv3B* mutant displayed a broad effect on gene expression, which indicates that a regulation process links gene transcription to O₂ level in the heterocyte [14].

We recently reported that decreasing the O_2 level inside the heterocyte by producing the cyanoglobin GlbN allowed it to host an active FeFe H₂ase from *Clostridium acetobutylicum*. The recombinant strain displayed a significant H₂-production yield under phototrophic conditions [15]. These data suggest that engineering approaches increasing the anaerobiosis inside the heterocyte can be highly profitable for the activity of O₂-sensitive enzymes. To go further, we investigate here the impact of an overproduction of the flavodiiron Flv3B protein on the production of H₂ in Nostoc. We demonstrate that the recombinant strain produces on average10-fold more H₂ than the parental strain and that the expression of the hox genes is induced in this genetic background.

Results

96 Construction and characterization of a *Nostoc* recombinant strain overexpressing the
 97 *flv3B* gene

In a transcriptomic study using an RNAseq approach, the transcription of flv3B (all0178) gene was induced 12 hours after nitrogen starvation [16]. In order to specifically overexpress the flv3B gene in the heterocytes without competing with the natural promoter of this gene, we decided to place it under the control of a heterocyte-specific promoter whose transcription is induced at the same time than *flv3B*. For this, we analyzed the transcription of *flv3B* throughout the differentiation process by quantitative RT-PCR. We also concomitantly monitored the transcription of the *patB* gene, known to be expressed after the initiation of heterocytes development [17]. *flv3B* and *patB* genes showed very similar transcription profile (Figure 1). Both genes were induced 18 hours after nitrogen stepdown and their transcription increased through the development program (compare Figure 1A and 1B). The patB promoter was therefore chosen to drive *flv3B* overexpression in *Nostoc*, and the resultant recombinant strain was named WT/patB-flv3B. As a first step in the characterization of this strain, we checked the overexpression of *flv3B* in response to nitrogen starvation. We first carried out quantitative RT-PCR analyses and expressed the amount of *flv3B* transcripts in the recombinant strain relatively to their amount in the wild type. Results reveal a more than 10-fold increase in flv3B gene expression in the recombinant strain, also starting much sooner after nitrate depletion, indicating that *flv3B* gene was strongly overexpressed (Figure 1C). Because Flv3B from *Nostoc* and FlvB from Chlamydomonas reinhardtii amino acid sequences present 51% identity (Figure S1), we hypothesized that antibodies produced against FlvB from C. reinhardtii [18] could cross-react with Flv3B and hence could be used to analyze the amount of Flv3B protein in Nostoc. Since Flv1B from Nostoc displays 30% identity with FlvB from C. reinhardtii, the anti-FlvB antibodies could also cross-react with this protein. However, as only the *flv3B* gene was overexpressed, we assumed that FlvB antibodies could help assessing Flv3B overproduction. In the western blot analyses, the amount of RbcL protein served to check that equal amounts of proteins were loaded in each condition [19]. Data on Figure 1D show that a protein of the

expected size of Flv3B (64 kDa) was detected only in BG11 $_0$ medium (without nitrate), which is in agreement with flv3B gene being specific to the heterocyte [13]. Moreover, this protein accumulated at a higher level in the WT/patB-flv3B strain. Altogether, these results indicate that the flv3B gene was overexpressed in the recombinant strain. The WT/patB-flv3B strain showed similar growth efficiency than the wild type under both nitrogen replete and deplete conditions (Figure 2A, Table 1), and both strains differentiated heterocytes equally well (Figure 2B). The frequency of heterocytes along the filament was similar between the two strains, with 12 vegetative cells on average in between two heterocytes (Figure 2C). Given that the overexpression of flv3B did not impair the growth ability of the strain, we proceeded with an analysis of its impact on H₂-production.

flv3B overexpression in the heterocyte powers H₂-production

The sensitivity of H₂ases and nitrogenase to O₂ is an important limitation to H₂-photoproduction. By promoting O₂ consumption in the heterocyte, the Flv3B protein is ought to protect enzymes evolving H₂. To test this hypothesis, the wild type and the WT/patB-flv3B strains were first grown exponentially under aerobic conditions in nitrate replete medium. H₂production yield was then measured and compared after cells were transferred to nitrate-depleted medium. The recombinant strain produced 10 to 30-fold more H₂ than the wild type under the same conditions (Figure 3A). H₂ production increased with the experienced light irradiance, with the highest yield obtained under 60 µE.m⁻². Flv3B overproduction is thus an efficient way to enhance H₂ photoproduction in Nostoc.

143 The presence of the uptake H₂ase is required for a maximal H₂ production

Since the uptake H_2 as consumes the H_2 produced by the nitrogenase in the heterocyte and since its deletion enhanced H_2 production [20], we investigated whether a deletion of *hupL* gene, encoding the large subunit of the uptake H_2 as would show a cumulative effect with Flv3B overproduction. For this purpose, a deletion of *hupL* was constructed and the resultant strain transformed with the *patB-flv3B* containing plasmid. The deletion of *hupL* gene in an otherwise wild type background increased the H₂ production level, which is in agreement with data published previously [20] (Figure 3B). However, the absence of a further enhanced H₂ production following the overproduction of Flv3B in the $\Delta hupL$ strain was unexpected. Intriguingly, the $\Delta hupL/patB-flv3B$ strain produced 3.5-fold less H₂ than the *WT/patB-flv3B* strain (Figure 3B).

Flv3B overproduction does not stimulate nitrogenase activity

The deletion of the flv3B gene was shown to result in a decrease in both the amount of nitrogenase subunits and nitrogenase activity [14]. Therefore, the increased H₂ production in the flv3B overproducing strain could be a consequence of an increase in the activity of the nitrogenase. To test this hypothesis, we monitored nitrogenase activity in exponentially growing cultures after their transfer to a medium devoid of combined nitrogen. Results demonstrated that the overproduction of Flv3B protein did not enhance nitrogenase activity (Table 1). Therefore, the effect of Flv3B on H₂ production is unlikely to result from nitrogenase activity.

163 Flv3B overproduction induces the expression of the bidirectional H₂ase encoding genes

Since the only other enzyme able to produce H_2 in cyanobacteria is the bidirectional Hox H_2 ase, we analyzed whether an induced expression of *hox* genes then results from the overproduction of Flv3B. The *hoxH* and *hoxY* genes encoding the H_2 ase subunits as well as the *hoxE*, *F*, *U* genes encoding the diaphorase subunits belong to two separate operons [21]. To evaluate the expression of these operons, the transcription of two genes from each operon (*hoxH*, *Y* and *hoxE*, *F*) was comparatively monitored in the wild type and the recombinant strains. Quantitative RT-PCR analysis was used to evaluate the transcription of these four genes after transfer of the strains into nitrogen deplete conditions to induce flv3B expression. The transcription of the four *hox* genes was weak in the wild type strain (Figure 4 A,B; Figure 5 A,B), which is in agreement with the fact that the *hox* genes are not expressed under aerobic conditions [21]. However, in the WT/*patB-flv3B* strain, 18 hours after nitrogen step down, the *hoxE,F, H and Y* transcripts level were on average 10-fold higher than in the wild type (Figure 4 C,D and Figure 5 C,D). The expression of the two *hox* operons encoding the H₂ase and diaphorase proteins is therefore induced in the strain overexpressing the *flv3B* gene under the heterocyte specific promoter *patB*. Consequently, the effect of *flv3B* overexpression on H₂ production may be mediated by the induction of *hox* genes.

Discussion

In this work we show that overexpression of flv3B gene from a promoter specific to the heterocyte enhanced the production of H₂ in aerobic cultures of *Nostoc*. So far, the only conditions in which H₂-evolution had been recorded in aerobically grown *Nostoc* were the use of mutants lacking the HupL subunit of the uptake H₂ase or the last step of the maturation system of this H₂ase [20] [22]. H₂ evolution mediated by Flv3B overproduction presents the advantage of sustaining the protective effect of the uptake H₂ase on the nitrogenase.

By studying the phenotype of a $\Delta flv3B$ mutant of *Nostoc*, Ermakova et. al [14] showed that Flv3B protected nitrogenase through light-induced O₂ consumption inside the heterocytes. The effect of Flv3B overproduction evidenced in our work could therefore result from a stimulated nitrogenase activity. But the recombinant strain displayed similar nitrogenase activity as the wild type (Table 1), proof that another mechanism operates to enhance H₂ production.

In *C. reinhardtii*, the existence of intracellular microoxic niches in the chloroplast preserve
FeFe-hydrogenase activity and support continuous H₂ production during growth in aerobic
cultures [23]. The same authors suggested that Flvs proteins were involved in this process [23].

A similar mechanism may be proposed to explain the effect of the Flv3B protein overproduction on H₂ evolution, in which the decrease in O₂ concentration in the heterocyte would reinforce the anaerobiosis in this cell type, thus promoting H₂ase synthesis and/or activity. We studied the transcription of hox genes encoding the bidirectional H₂ase as their induction is known to be concomitant to high H₂ase activity [21]. Data in Figures 4 and 5 indicate that flv3Boverproduction led to a substantial induction of hoxE, F, H, Y genes expression that can explain the H_2 production measured in this strain. The LexA transcriptional factor was proposed to regulate hox genes transcription in Nostoc [21]. In the unicellular cyanobacterium Synechocystis PCC6803, LexA was suggested to act as a transducer of the intracellular redox state, rather than of the SOS response as in E. coli [24]. Based on this information, we suggest that an increased O₂-uptake driven by Flv3B overproduction can modify the redox state in the heterocytes, resulting in the observed induction of hox genes transcription.

Surprisingly, and contrary to what happens in the wild type background, the lack of the uptake H₂ase in the WT/*patB-flv3B* strain led to a decrease in H₂ production (Figure 3B). As the H₂ases are bidirectional enzymes, a possible interpretation of this result is that the Hup enzyme is responsible of the H_2 production observed in this recombinant strain. However, this is rather unlikely since it was demonstrated that the Hup H₂ase is not able to produce H₂ at any significant rate, and is considered to react only in the uptake direction [1, 25]. Through the oxidation of H₂, the Hup H₂ase provides electrons to the photosynthesis and respiratory processes [1] (Figure 6). Since the Hox H₂ase was suggested to use ferredoxin as reducing partner rather than NAD(P)H as previously admitted (reviewed in [9]), this enzyme may benefit from the electrons generated by the Hup H₂ase through regeneration of the reduced ferredoxin pool (Figure 6). This could explain the negative impact of the hupL deletion on the H₂production yield in the WT/patB-flv3B strain (Figure 6). Our data show that metabolic

engineering approaches are particularly relevant in the use of photosynthetic bacteria for biofuelproduction.

221 Conclusion

In the present study, the flv3B gene was specifically overexpressed in the heterocyte of *Nostoc* under the control of the *patB* promoter. The overproduction of the Flv3B flavodiiron enhanced the H₂ production yield by a factor of ten on average, which is not to be attributed to the nitrogenase since no increase in the nitrogenase activity was observed. The transcription of the *hox* genes was induced in the recombinant strain expressing the *flv3B* gene, suggesting that the additional H₂ produced relates to the activity of the bidirectional H₂ase. Facilitating the consumption of O₂ inside the heterocyte thus appears as a relevant step towards the design of an optimized *Nostoc* strain for H₂ production. This paves the way to further improvement to achieve sustainable production of H₂ by air-grown cyanobacteria.

231 Methods

232 Growth conditions and heterocytes induction

Cyanobacterial strains were grown in BG11 medium (nitrate replete) at 30 °C under continuous illumination (30 μ E m⁻²s⁻¹). Cultures of recombinant strains were supplemented with neomycin (50 μ g mL⁻¹). Heterocyte formation was induced by transferring the exponentially growing cultures (OD 750 = 0.8) to BG11₀ (BG11 devoid of sodium nitrate) by filtration (0.2 μ m pore size filters, Sigma) and resuspension of cells into the nitrate-free medium. The growth was maintained for 4 days. The presence of heterocytes was confirmed by light microscopy and their distribution within filaments was rated visually by counting the number of vegetative cells between two heterocytes. At least 400 total vegetative cells were counted for each strain.

In the H₂ production experiments, the strains were grown under continuous illumination of 20 $\mu E \text{ m}^{-2}\text{s}^{-1}$ or 60 $\mu E \text{ m}^{-2}\text{s}^{-1}$.

Construction of plasmids and strains

To construct the Flv3B overproducing strain, the promoter region of patB (all2512, 500 bp upstream the start codon) was amplified by PCR from Nostoc sp. PCC 7120 genomic DNA using the *ppatB* forward and *ppatB* reverse primers (Table 3). The *ppatB* reverse primer contained a multiple cloning site (ApaI, ClaI, BamHI, SalI, ScaI, EcoRI). The amplified 12 248 promoter was cloned into BglII and EcoRI restriction sites of the pRL25T plasmid [26], yielding the pRL25T-*patB* plasmid. The open reading frame of *flv3B* gene was amplified using the *flv3B* forward and reverse primers (Table3), and cloned into the ApaI and ScaI restriction 17 250 sites of the pRLpatB. The recombinant plasmid (pRL25T-patB-flv3B) was analyzed by sequencing (Millegen). Conjugation of *Nostoc* was performed as described in reference [27]. Briefly, E. coli strains (bearing the replicative pRL25T-patB-flv3B and the RP-4 conjugative plasmid) grown to exponential growth phase, were mixed to an exponentially grown Nostoc culture. The mixture was plated on BG11 plates and Neomycin was added 24 hours later for plasmid selection. Plasmid extraction was used to analyze the obtained recombinant clones.

Deletion of the *hupL* gene, yielding the $\Delta hetL$ strain, was obtained by homologous recombination replacing the hupL3' gene (all0687C) with the gene encoding the spectinomycin/streptomycin resistance (Sp/Sm cassette hereafter). For this purpose, the upstream and downstream 1500 bp flanking the hupL3' gene were amplified form Nostoc genomic DNA using the all0678 forward/ all0678 reverse and the Strp-all0678 forward/ Strp-all0678 forward, respectively; The Sp/Sm cassette was amplified using the Strp forward/Strp reverse primers (Table 3), using the pBAD42 plasmid (Addgen) as template. Gibson's assembly technique (New-England Biolabs) was applied to insert the three resulting fragments into the suicide pRL271 vector linearized by SpeI. The resulting recombinant plasmid was conjugated into *Nostoc* as described above. The initial conjugants were selected by screening for resistance to 5 µg/mL of Sm, and the resulting cells were then grown on BG11 plates containing 5%

5

10

sucrose to select double recombinants. Genomic DNA of the recombinant cells were analyzedby PCR.

RNA Preparation and Reverse Transcription

RNAs were prepared using the Qiagen RNA extraction kit (Qiagen) following the manufacturer instructions. An extra TURBO DNase (Invitrogen) digestion step was undergone to eliminate the contaminating DNA. The RNA quality was assessed by tape station system (Agilent). RNAs were quantified spectrophotometrically at 260 nm (NanoDrop 1000; Thermo Fisher Scientific). For cDNA synthesis, 1 µg total RNA and 0.5 µg random primers (Promega) were used with the GoScript[™] Reverse transcriptase (Promega) according to the manufacturer instructions.

278 Quantitative Real-Time-PCR for Transcriptional Analyses

Quantitative real-time PCR (qPCR) analyses were performed on a CFX96 Real-Time System (Bio-Rad). The reaction volume was 15 µL and the final concentration of each primer was 0.5 μM. The qPCR cycling parameters were 95°C for 2 min, followed by 45 cycles of 95°C for 5 s, 55°C for 60 s. A final melting curve from 65°C to 95°C was added to determine the specificity of the amplification. To determine the amplification kinetics of each product, the fluorescence derived from the incorporation of BRYT Green[®] Dye into the double-stranded PCR products was measured at the end of each cycle using the GoTaq[®] qPCR Master Mix 2X Kit (Promega). The results were analysed using Bio-Rad CFX Maestro software, version 1.1 (Bio-Rad, France). The *rnpB* gene was used as a reference for normalization. A technical duplicate was performed for each point. The amplification efficiencies of each primer pairs were 80 to 100%. All of the primer pairs used for qPCR are reported in Table 3.

290 Western blot analysis

Proteins (75 µg) extracted from cyanobacterial strains were fractionated by performing SDS-PAGE 12%, and transferred to nitrocellulose membranes before being revealed with specific polyclonal antibodies. Immune complexes were detected with anti-rabbit peroxidaseconjugated secondary antibodies (Promega) and enhanced chemoluminescence reagents (Pierce). Anti-FlvB antibodies, developed against the FlvB protein of *C. reinhardtii* [18], were used at a 1: 1000 dilution. Anti-Rbcl antibodies (Agrisera) were used a 1: 5000 dilution.

H₂ production assays

Nostoc wild type strain and its derivatives were grown as described above for heterocyte induction. Chlorophyll a concentration was quantified according to the following method: 1 mL of culture was centrifuged (5 min, 6700 g, 4°C), the pellet was resuspended in 1 mL of cold methanol and incubated at 4°C for 30 minutes under shaking. Cells were then harvested (5 min, 6700 g, 4°C) and absorbance of the supernatant was measured at 665 nm and 720 nm. The chlorophyll *a* concentration was calculated according to the formula: [Chl a] = 12,9447 (A₆₆₅-A₇₂₀) and expressed in µg of Chla/mL of culture [28]. A 40-mL volume of cell culture was then harvested (5 min, 6700 g, 4°C) and cells were resuspended in sterile nitrate-depleted medium yielding a concentration of 10 μ g Chla mL⁻¹. 12 mL of this cell suspension were transferred to Hungate tubes (leaving a 4.4-mL head space volume). The vials were sparged with Argon (Ar), and the samples were maintained under illumination (20 or 60 μ mol photons m⁻² s⁻¹) for 96 hours. 100 µL of headspace gas was removed every 12 hours using a gastight syringe and injected into a gas chromatography system (Agilent 7820) equipped with a thermal conductivity detector and a HP-plot Molesieve capillary column (30 m, 0.53 mm, 25 µm), using argon as the carrier gas, at a flow rate of 4.2 mL/min, an oven temperature of 30 °C and a detector temperature of 150 °C. H₂ was quantified according to a standard calibration curve. H₂ production rate was expressed as mol of H₂ produced per mg of Chlorophyll.

315 Nitrogenase activity

An on-line acetylene reduction assay [29] was used to measure nitrogenase activity. Briefly, 316 cyanobacterial strains were grown in batch cultures under light/dark cycles of 12 hours/12 hours. Nitrogenase activity was monitored for 20 hours. Before the onset of nitrogenase activity, Nostoc cultures were transferred to a GF/F filter (Whatman, 47 mm) and placed in a custommade, light and temperature-controlled gas flow-through incubator connected to the gas chromatograph. Acetylene represented 10% of the gas mixture and the total gas flow rate was 1 l h⁻¹. Ethylene production was measured every 10 min by gas chromatography using an Agilent 7890 equipped with an auto-injector and a photoionization detector. **References** 1. Houchins JP, Burris RH: Light and dark reactions of the uptake hydrogenase in anabaena 7120. Plant Physiol 1981, 68:712-716. 2. Puggioni V, Tempel S, Latifi A: Distribution of Hydrogenases in Cyanobacteria: A Phylum-Wide Genomic Survey. Front Genet 2016, 7:223. Tamagnini P, Leitao E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P: 3.

- 3. Tamagnini P, Lettao E, Onvera P, Perfera D, Pinto F, Harris DJ, Heldorn T, Endolad P.
 33. Cyanobacterial hydrogenases: diversity, regulation and applications. *FEMS Microbiol Rev* 33. 2007, **31**:692-720.
 23. Courpact E Guidenov G. Politier G. Vignais PM: Sustained photoevolution of molecular
- 3344.Cournac L, Guedeney G, Peltier G, Vignais PM: Sustained photoevolution of molecular335hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-336dehydrogenase complex. J Bacteriol 2004, 186:1737-1746.
- 33375.Kiss E, Kos PB, Vass I: Transcriptional regulation of the bidirectional hydrogenase in the338cyanobacterium Synechocystis 6803. J Biotechnol 2009, 142:31-37.
- 40 339
 41 340
 42 341
 44 342
 44 342
 44 342
 45 341
 46 342
 47 342
 48 342
 49 342
 49 342
 40 Dutheil J, Saenkham P, Sakr S, Leplat C, Ortega-Ramos M, Bottin H, Cournac L, Cassier-Chauvat C, Chauvat F: **The AbrB2 autorepressor, expressed from an atypical promoter,** represses the hydrogenase operon to regulate hydrogen production in *Synechocystis* strain PCC6803. J Bacteriol 2012, **194**:5423-5433.
- 453437.Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J: LexA46344regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 680347345as a transcription activator. Mol Microbiol 2005, 58:810-823.
- ⁴⁸ 346
 ⁴⁸ 346
 ⁴⁸ 346
 ⁴⁹ 346
 ⁴⁹ 346
 ⁴⁰ Oliveira P, Lindblad P: LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacterium *Synechocystis* sp. PCC 6803. *FEMS* ⁵¹ 348
 ⁴⁰ Microbiol Lett 2005, 251:59-66.
- 523499.Schanna N, Lindblad P: Cyanobacterial hydrogenases and hydrogen metabolism revisited:53350recent progress and future prospects. Int J Mol Sci 2015, 16:10537-10561.
- Allahverdiyeva Y, Suorsa M, Tikkanen M, Aro EM: **Photoprotection of photosystems in fluctuating light intensities.** *J Exp Bot* 2015, **66:**2427-2436.
- 5735311.Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A: Genes58354encoding A-type flavoproteins are essential for photoreduction of O₂ in cyanobacteria. Curr59355Biol 2003, 13:230-235.

14

62 63

356 1 357 2 358	12.	Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P, Ajlani G, Battchikova N, Cournac L, Aro EM: Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. <i>Proc Natl Acad Sci U S A</i> 2013, 110: 4111-4116.
³ 359 4 360	13.	Ermakova M, Battchikova N, Allahverdiyeva Y, Aro EM: Novel heterocyst-specific flavodiiron proteins in Anabaena sp. PCC 7120. FEBS Lett 2013, 587:82-87.
5 360 6 361	14.	Ermakova M, Battchikova N, Richaud P, Leino H, Kosourov S, Isojarvi J, Peltier G, Flores E,
7 362		Cournac L, Allahverdiyeva Y, Aro EM: Heterocyst-specific flavodiiron protein Flv3B enables
8 363		oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc
⁹ 364		Natl Acad Sci U S A 2014, 111: 11205-11210.
¹⁰ 365	15.	Avilan L, Roumezi B, Risoul V, Bernard CS, Kpebe A, Belhadjhassine M, Rousset M, Brugna M,
$\frac{11}{12}$ 366		Latifi A: Phototrophic hydrogen production from a clostridial [FeFe] hydrogenase expressed
13 367		in the heterocyts of the cyanobacterium Nostoc PCC 7120. Appl Microbiol Biotechnol 2018,
14 368	4.6	102: 5775-5783.
¹⁵ 369 ¹⁶ 370	16.	Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM: Dynamics of transcriptional start
¹⁷ 271		site selection during nitrogen stress-induced cell differentiation in <i>Anabaena</i> sp. PCC7120.
18 371	17.	Proc Natl Acad Sci U S A 2011, 108: 20130-20135. Jones KM, Buikema WJ, Haselkorn R: Heterocyte-specific expression of <i>patB</i>, a gene
₁₉ 372 20 373	17.	required for nitrogen fixation in Anabaena sp. strain PCC 7120. J Bacteriol 2003, 185:2306-
²⁰ 373 ²¹ 374		2314.
²² 375	18.	Chaux F, Burlacot A, Mekhalfi M, Auroy P, Blangy S, Richaud P, Peltier G: Flavodiiron Proteins
23 276		Promote Fast and Transient O₂ Photoreduction in Chlamydomonas. <i>Plant Physiol</i> 2017,
24 370 25 377		174: 1825-1836.
26 378	19.	Nierzwicki-Bauer SA, Curtis SE, Haselkorn R: Cotranscription of genes encoding the small and
27 379		large subunits of ribulose-1,5-bisphosphate carboxylase in the cyanobacterium Anabaena
²⁸ 380 ²⁹ 381		7120. Proc Natl Acad Sci U S A 1984, 81: 5961-5965.
30 301	20.	Masukawa H, Mochimaru M, Sakurai H: Disruption of the uptake hydrogenase gene, but not
₃₁ 382		of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen
32 383		production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol
33 384 34 385	21	Biotechnol 2002, 58: 618-624.
³⁴ 385 ³⁵ 386	21.	Sjoholm J, Oliveira P, Lindblad P: Transcription and regulation of the bidirectional
³⁶ 207		hydrogenase in the cyanobacterium <i>Nostoc</i> sp. strain PCC 7120. Appl Environ Microbiol 2007, 73:5435-5446.
37 387 38 388	22.	Nyberg M, Heidorn T, Lindblad P: Hydrogen production by the engineered cyanobacterial
38 389 39 389	22.	strain <i>Nostoc</i> PCC 7120 DeltahupW examined in a flat panel photobioreactor system. J
40 390		Biotechnol 2015, 215: 35-43.
⁴¹ 391	23.	Liran O, Semyatich R, Milrad Y, Eilenberg H, Weiner I, Yacoby I: Microoxic Niches within the
$\frac{42}{43}$ 392		Thylakoid Stroma of Air-Grown Chlamydomonas reinhardtii Protect [FeFe]-Hydrogenase
$\frac{43}{44}$ 393		and Support Hydrogen Production under Fully Aerobic Environment. Plant Physiol 2016,
45 394		172: 264-271.
46 395	24.	Patterson-Fortin LM, Colvin KR, Owttrim GW: A LexA-related protein regulates redox-
⁴⁷ 396 ⁴⁸ 207		sensitive expression of the cyanobacterial RNA helicase, crhR. Nucleic Acids Res 2006,
49 200	25	34: 3446-3454.
50 398	25.	Houchins JP, Burris RH: Comparative characterization of two distinct hydrogenases from Anabaena sp. strain 7120. J Bacteriol 1981, 146: 215-221.
₅₁ 399 52 400	26.	Yang Y, Huang XZ, Wang L, Risoul V, Zhang CC, Chen WL: Phenotypic variation caused by
53 400	20.	variation in the relative copy number of pDU1-based plasmids expressing the GAF domain
⁵⁴ 402		of Pkn41 or Pkn42 in Anabaena sp. PCC 7120. Res Microbiol 2013, 164:127-135.
55 102	27.	Cai YP, Wolk CP: Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to
56 403 57 404		select for double recombinants and to entrap insertion sequences. J Bacteriol 1990,
58 405		172: 3138-3145.
59 406	28.	Ritchie RJ: Consistent sets of spectrophotometric chlorophyll equations for acetone,
⁶⁰ 407 61		methanol and ethanol solvents. Photosynth Res 2006, 89:27-41.
62		15
63		15
64 65		
65		

408

413

414

29.

52 53 54

49 50

51

- 55 ⁵⁶ 422
- 57 58
- 59 423 60
- 61
- 62 63
- 65
- 64
- pRL25T-patB-flv3B

pRL25T

Strain name

Wild type

 $\Delta hupL$

flv3B

 $\Delta hupL / patB-$

Plasmid name

strain Collection WT/patB-flv3B Nostoc containing the pRL25T-patB-flv3B This study plasmid/ (Neo^R)

 $patB-flv3B/(Sp/Sm^{R} and Neo^{R})$

pRL25C cosmid (Neo^R)

Description/ Antibiotic resistance

Replication vector derived from the

control of the *patB* promoter (Neo^R)

pRL25T harboring the *flv3B* gene under the

16

 $(Sp/Sm^R)/$

at T=4 hours of the light phase. Chla: chlorophyll a; sd: standard deviation

Table 2: List of the bacterial strains and the plasmids used in this study.

Description/ Antibiotic resistance

Nostoc/Anabaena PCC 7120 wild type

Nostoc deletion mutant of the *hupL* gene

 $\Delta hupL$ mutant containing the pRL25T-

- section. For each strain, the nitrogenase activity values presented in this table were registered 418

₃₂ 419

35 **420**

Measure Exponential growth rate per 0.155 0.155 day (BG110) 8.9 Chla content (mg Chla /mL) 4.49 17.3 11.2 Nitrogenase activity $(nmol N_2 / mg Chla / h)$ sd on nitrogenase activity 0.001 0.00025

Two independent cultures of each strain were grown as explained in the Material and Methods

Origin

This study

This study

Origin

[26], [30]

This study

Pasteur Cyanobacterial

Table 1 Wild type WT/patB-flv3B Strain

the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii. Environ Microbiol 2013, 15:3292-3304. 411 30. Wolk CP, Cai Y, Cardemil L, Flores E, Hohn B, Murry M, Schmetterer G, Schrautemeier B, 412 Wilson R: Isolation and complementation of mutants of Anabaena sp. strain PCC 7120

unable to grow aerobically on dinitrogen. J Bacteriol 1988, 170:1239-1244.

Dron A, Rabouille S, Claquin P, Talec A, Raimbault V, Sciandra A: Photoperiod length paces

Table 3: sequence of the primers used in this study

425

 $5 \atop 6 \atop 7 \atop 8 \atop 9 \atop 10 \atop 11 \atop 12 \atop 13 \atop 14 \atop 15 \atop 16 \atop 17 \atop 18 \atop 19 \atop 221 \atop 223 \atop 24 \atop 25 \atop 26 \atop 27 \atop 28 \atop 29 \atop 312 \atop 33 \atop 35 \atop 36 \atop 37$

Name	Sequence (5'-3')	Experiment
rnpB forward	TCGTGAGGATAGTGCCACAG	Quantitative RT-PCF
rnpB reverse	verse GGAAGTTTCTTCCCCAGTCC ana	
<i>flv3B</i> RT forward	TTTGGTGGAAGATGTGCTGC	
<i>flv3B</i> RT reverse	GCCAATGTAAGTTAGGCGCA	
<i>patB</i> forward	AGGGGCGATGTAAAGTGGAA	
<i>patB</i> reverse	TTGACTGCTCGACTGTAGCA	
<i>hoxE</i> forward	GCGTCACCAGTATCAGCAAG	
<i>hoxE</i> reverse	TGGGGCGCTAGGGAAAATAA	
<i>hoxF</i> forward	ACCCGGCTGAATCTGGTTTA	
hoxF reverse	AAGCCTGTGTTGCGGATTTT	
<i>hoxH</i> forward	CTGGACAGGTAAACGATGCG	
hoxH reverse	ACAAATCCGCGCTGTAATCC	
hoxY forward		
hoxY reverse	TTTCCTTTGGTGACTGTGCG GGTTGATATCGGCTGCTTGG	
<i>ppatB</i> forward	TATAAGATCTGTCTTTAAATATACATGGTTTGGG	Cloning of <i>patB</i> promoter
ppatB reverse	TATAGAATTCGAGCTCGTCGACCCGGGATCCATCG ATGGGCCCCATATAACTTTCTTCCCACCC	
flv3B forward	TAT CCCGGG ATG GTA TCG ATG TCT ACG ACC	
flv3B reverse	TAT AGTACT TTA GTA ATA GTT GCC TAC TTT GCG	
Strp forward	AATTCCCCTGCTCGCGCAGG	Construction of the <i>hupL</i>
Strp reverse	AGCTTAGTAAAGCCCTCGCT	deleted mutant
all0678 forward	TTCGATATCTAGATCTCGAGTCAATTAATGACTTTT GACTAATTA	
all0678 reverse	AGTAGACGGAGTATACTAGTGCAACTTTCGGAGC G	
Strp-all0678 forward	CCTGCGCGAGCAGGGGAATTCATATAACTGCTGT GGCA	
Strp-all0678 reverse	AGCGAGGGCTTTACTAAGCTGTTTAAACGCAGAG GGG	

426

428 Figure 1: Flv3B overproduction analysis

A, B, C: Quantitative RT-PCR analysis of *flv3B* (A, C) and *patB* (B, D) gene transcription. RNA were collected from the wild type (A, B) or the WT/*patB-flv3B* (C) strain at four different times (7, 18, 24 and 48 hours) after the onset of nitrogen depletion. Each sample was measured in triplicate and the standard deviation is indicated by error bars. Values were normalized to the *rnpB* transcript, relatively to the value obtained for the wild type strain, which was set to 1.

D: Immunoblot analysis of the amount of Flv3B protein (upper panel) in the wild type and WT/*patB-flv3B* strains, carried out using antibodies produced against FlvB from *Chlamydomonas reinhardtii* [18]. Immunoanalysis of RbcL protein amount was carried out as a loading control (lower panel). The condition (+ Nitrate) stands for cultures performed in nitrate-containing medium, and the condition (- Nitrate) indicates cultures grown in nitrate-free medium.

Figure 2: Characterization of *Nostoc* strain overexpressing the *flv3B* gene

A: Growth curve of *Nostoc* strains grown in either nitrate-containing medium or nitrate free medium. For each curve, three independent cultures were performed. The growth was assessed during twelve days by measuring the optical density at 750 nm. The standard deviation is indicated by error bars.

B: Light microscope images of *Nostoc* strains grown in nitrate-containing medium or nitratefree medium. For the last conditions, images were acquired 24 hours after nitrogen starvation.
Heterocytes are indicated by black arrows.

C: Heterocyte pattern formation in the wild type and the WT/*patB-flv3B* strain. Strains were grown in 449 BG11 (nitrate-containing medium) to an OD₇₅₀ of 0.4 and induced to form heterocytes by transfer to

BG-110 medium (nitrate-free medium). Vegetative cells and heterocytes were scored microscopically 24 hours after nitrogen starvation. The data shown are representative of three independent experiments

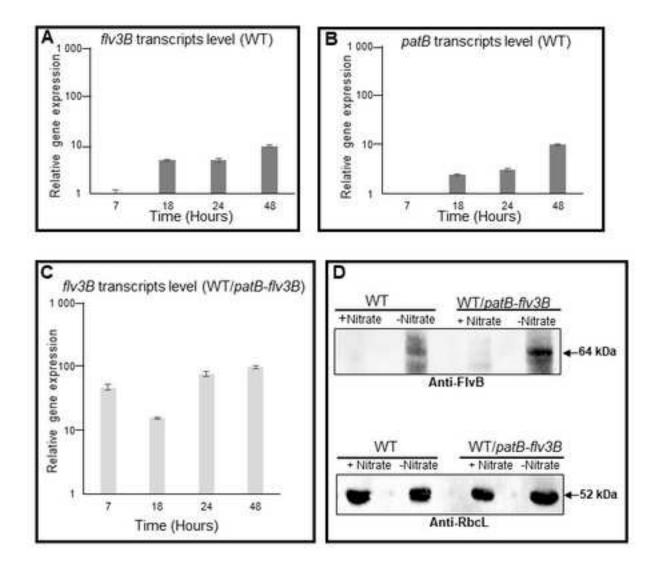
Figure 3: H₂ production kinetics

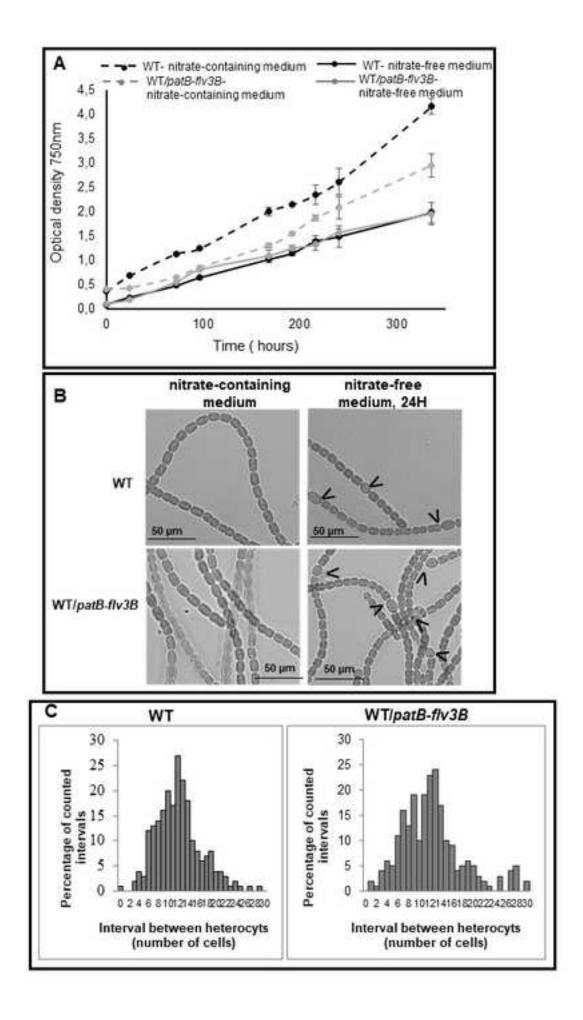
A: wild type or WT/patB-fvl3B were grown in nitrate-containing medium until OD 750nmm = 0.8. Heterocyte formation was induced by transferring the strains to a nitrate-free medium during 24 hours. The strains were then incubated under light intensities of either $20\mu E/m^2$ or $60\mu E/m^2$, and H₂ production was assessed by chromatography as explained in the methods section during four days. The values represent Means \pm SEM (n=8).

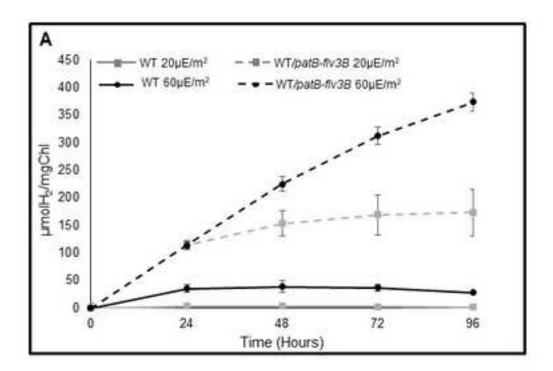
B: wild type, WT/patB-fvl3B, *AhupL or AhupL/patB-fvl3B* strains were grown under light intensities of 60µE/m². Hetrocyte formation and H₂-production were respectively induced and performed as described above. The values represent Means \pm SEM (n=8).

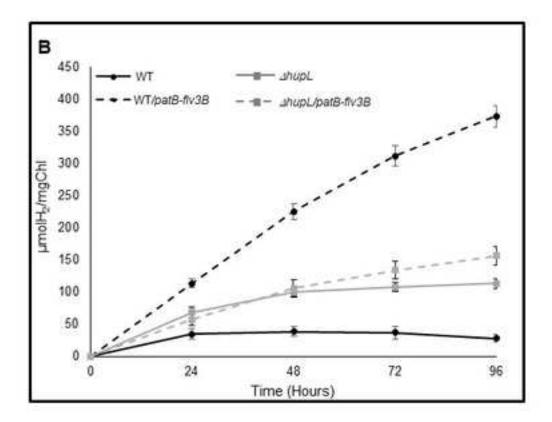
Figure 4: *hoxY*, *H* genes transcription analysis

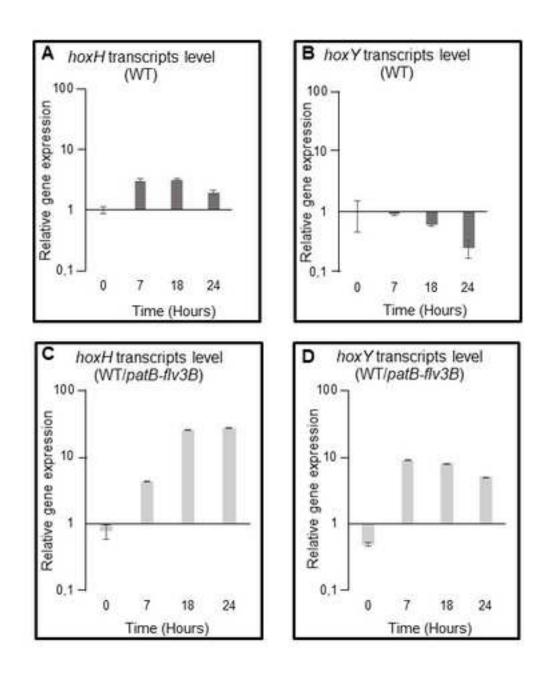
Quantitative RT-PCR analysis of *hoxY* and *hoxH* gene transcription. RNA were collected form wild type (A, B) or WT/patB-fvl3B (C, D) at different times after the onset of the nitrogen depletion step. Each sample was measured in triplicate and the standard deviation is indicated by error bars. Values were normalized to the *rnpB* transcript.

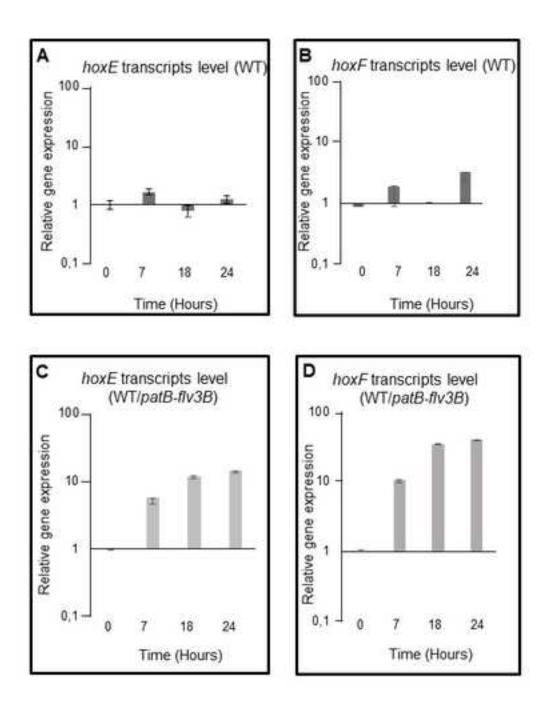

Figure 5: *hoxE*, F genes transcription analysis

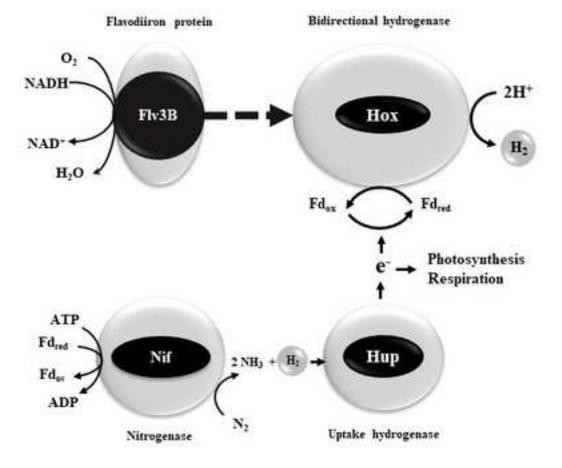

Quantitative RT-PCR analysis of *hoxE* and *hoxF* gene transcription. RNA were collected form wild type (A, B) or WT/patB-fvl3B (C, D) at different times after the onset of the nitrogen depletion step. Each sample was measured in triplicate and the standard deviation is indicated by error bars. Values were normalized to the *rnpB* transcript.


Figure 6: Hypothetical model of H₂ production in *Nostoc* strain overproducing Flv3B


473	Nitrogen fixation occurring in the heterocyte produces H ₂ which is recycled by the Hup H ₂ ase.
474	Overexpression of the $flv3B$ gene increases the uptake of O ₂ reinforcing the microoxie inside
475	the heterocyte. The induction of hox genes transcription leads to H ₂ production.
476	Fd _{red} : reduced ferredoxin; Fd _{ox} : oxidized ferredoxin. Dashed lines stand for indirect effect.
477	Supplementary Figure 1:
478	Alignment of the amino acid sequence of the Flv3B protein of Nostoc (all0178) and FlvB of
479	Chlamydomonas reinhardtii (Cre16.g691800.t1.1).
480	Declarations:
481	Ethics approval and consent to participate:
482	Not applicable
483	Consent for publication
484	Not applicable
485	Availability of data and material
486 487	All the data supporting the conclusions of this article are included within the article and its additional file.
488	Competing interests
489	The authors declare that they do not have any conflict of interest.
490	Funding:
491	This research was supported by the "Agence Nationale pour la Recherche Scientifique" (ANR-
492	18-CE05-0029).
493	Authors' contributions:
494 495	AL conceived, designed the study. RB, LA, VR and SR performed the research. AL and MB supervised the research. AL, LA and SR analyzed the data. AL wrote the manuscript.


	496	
1		
2	407	A almowled amonta
3 4	497	Acknowledgments:
5		
6	498	The authors thank Yann Denis from the "Plateforme Transcriptomique, FR3479 IMM" for the
7		
8 9	499	quantitative RT-PCR analysis and Dr Gilles Peltier for providing the anti-FlvB antibodies.
10		
11	500	
	500	
13 14		
15	501	
16		
17	502	
18 19	502	
20		
21	503	
22 23		
	504	
25	504	
26		
27 28	505	
29		
30	506	
31 32	500	
22		
34	507	
35		
36 37	508	
38		
39		
40 41	509	
42		
43	510	
44		
45 46	511	
47	TTC	
48		
49 50	512	
51		
52 53	513	
53 54	515	
54		
56	514	
57		
58 59		
60		
61		
62 63		21
63 64		
с г		





FV13B		11
FlvB	MQLLNRQAGRQTARNAAASKRAARAPAPASRSAAVHVRAVAAFVAPTITTTGDDMFYRMS	60
Fv13B F1vB	TENVQHRLTVETVEIAPNITAIRCLDWDRDRFDIEFGLQNGTTYNSYLIRGE-QTVL DVVMWSESKRIQIQVLPVAEDTITIRSLDWDRDRFDIEFGLENGTTYNAYLIYGADKTAL	
Fv138 FlvB	VDTSHORFRQLYLETLRGLINPRAIDYIIVSHTEPDHSGLVEDVLQLAPRATVLASKI VDASHERFHNLFLEALQRELQAAGRSLDYVFVSHTEPDHSGLIPAVLDLYPEATVCGSRV	
Fv13B F1vB	ALQFLEGLVHDPFSKRIVKSGDRIDIGKGHEIEFVSAPNLHWPDTIFSYDRKTEVIYTCD CISFLQNLTHRPFKSQAVKGGDKVDLGGGHVVEFVMAPNLHWPDTMFSFDHATGVMFTCD	
Fv13B F1vB	AFGMHFCDNRTFDEDLEAIEADFRFYYDCLMGPNARSLLNAMKRMGDLGKINIIANGHGP AFGMHYCSEQPFDADVKVLMPHYRFYYDCLMKPNAKSVTTALRKVHDLP-YTMIANGHGP	22.2.2
Fv13B F1vB	LLYHHLDVLTECYQSWSQRQAKSETTVGLFYVADYGYSNLLVQAIGEGIQKTGVAVEMID ILRYNVSELVGDYGRWSAALTKGATSVAVLYASDYGFSDRLSQTLAKGITKAGVATEMLD	
Fv13B F1vB	LSTAEIQEIQELAGRAAGLIIGMPPTTSVAAQAGISSLLSVVKDKQAVGLFECFGGDDEP LLSADPQEIVAAVGRSSGIVIMSPPRDNADARTSLAAVSSAIKAKTKVVIAESYGGRDEP	
Fv13B FlvB	VDTIRRKFIDLGVKEAFPAIRIKDVPGASAYQLCTEAGTDLGQLLTRERNIKQI-KSLDV VDVLAAQLQDVGAELLAPPLRLKDLPAQATYQLFEEEGTDLAQALTAKESIARKHAAMSG	479
Fv13B F1vB	NMEKALGRISNGLYIVITKKGDVSSAMLASWVSQASLQPLGFTIAVAKDRAIDSLMQVGD EVAKALARLSSGLYVVTAQHNNARSAMIASWVSQASFEPLGLTIAVAKDRAIESLMQVGD	
Fv13B F1vB	RFVLNVLEEGNYQELKKQFLKRLHPGADRFAGVRTQT-AKNGSPILTDALAYMECEIQSS SFVLNCLGEDNYAPVMKHFLQRFAPGADRFEGVDWSPAPTINCFVLSDAIAYMECRVASR	
Fv13B FlvB	LECSDHYILYCTVEDGRVSRPDGLTAVRHRRVGNYY 579 LETPDHWVTYCEVINGSVINTGARTAVHRRKVANYY 635	