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Abstract

The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of the n-cube
Qn induced by vertices with no consecutive 1’s. Ashrafi and his co-authors proved
the non-existence of perfect codes in Γn for n ≥ 4. As an open problem the authors
suggest to consider the existence of perfect codes in generalizations of Fibonacci
cubes. The most direct generalization is the family Γn(1

s) of subgraphs induced by
strings without 1s as a substring where s ≥ 2 is a given integer. In a precedent work
we proved the existence of a perfect code in Γn(1

s) for n = 2p − 1 and s ≥ 3.2p−2

for any integer p ≥ 2.
The Lucas cube Λn is obtained from Γn by removing vertices that start and end
with 1. Very often the same problems are studied on Fibonacci cubes and Lucas
cube. In this note we prove the non-existence of perfect codes in Λn for n ≥ 4 and
prove the existence of perfect codes in some generalized Lucas cube Λn(1

s).

Keywords: Error correcting codes, perfect code, Fibonacci cube.
AMS Subj. Class. : 94B5,0C69

1 Introduction and notations

An interconnection topology can be represented by a graph G = (V,E), where V de-
notes the processors and E the communication links. The hypercube Qn is a popular
interconnection network because of its structural properties.

The Fibonacci cube was introduced in [8] as a new interconnection network. This
graph is an isometric subgraph of the hypercube which is inspired in the Fibonacci
numbers. It has attractive recurrent structures such as its decomposition into two sub-
graphs which are also Fibonacci cubes by themselves. Structural properties of these
graphs were more extensively studied afterwards. See [11] for a survey.

Lucas cubes, introduced in [16], have attracted the attention as well due to the fact
that these cubes are closely related to the Fibonacci cubes. They have also been widely
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studied [6, 17, 3, 13, 4, 12].

We will next define some concepts needed in this paper. Let G be a connected
graph. The open neighbourhood of a vertex u is NG(u) the set of vertices adjacent to
u. The closed neighbourhood of u is NG[u] = NG(u) ∪ {u}. The distance between two
vertices noted dG(x, y) is the length of a shortest path between x and y. We have thus
NG[u] = {v ∈ V (G); dG(u, v) ≤ 1}. We will use the notations d(x, y) and N [u] when
the graph is unambiguous.
A dominating set D of G is a set of vertices such that every vertex of G belongs to the
closed neighbourhood of at least one vertex of D. In [2], Biggs initiated the study of
perfect codes in graphs a generalization of classical 1-error perfect correcting codes. A
code C in G is a set of vertices C such that for every pair of distinct vertices c, c′ of C
we have NG[c] ∩NG[c

′] = ∅ or equivalently such that dG(c, c
′) ≥ 3.

A perfect code of a graph G is both a dominating set and a code. It is thus a set of
vertices C such that every vertex of G belongs to the closed neighbourhood of exactly
one vertex of C. A perfect code is also known as an efficient dominating set. The
existence or non-existence of perfect codes have been considered for many graphs. See
the introduction of [1] for some references.

The vertex set of the n-cube Qn is the set Bn of binary strings of length n, two ver-
tices being adjacent if they differ in precisely one position. Classical 1-error correcting
codes and perfect codes are codes and perfect codes in the graph Qn. The weight of
a binary string is the number of 1’s. The concatenation of strings x and y is denoted
x||y or just xy when there is no ambiguity. A string f is a substring of a string s if
there exist strings x and y, may be empty, such that s = xfy.

A Fibonacci string of length n is a binary string b = b1 . . . bn with bi · bi+1 = 0 for
1 ≤ i < n. In other words a Fibonacci string is a binary string without 11 as substring.
The Fibonacci cube Γn (n ≥ 1) is the subgraph of Qn induced by the Fibonacci strings
of length n. Adjacent vertices in Γn differ in one bit. Because of the empty string,
Γ0 = K1.

A Fibonacci string of length n is a Lucas string if b1 · bn 6= 1. That is, a Lucas
string has no two consecutive 1’s including the first and the last elements of the string.
The Lucas cube Λn is the subgraph of Qn induced by the Lucas strings of length n. We
have Λ0 = Λ1 = K1.
Let Fn and Ln be the set of strings of Fibonacci strings and Lucas strings of length n.
By Γn,k and Λn,k we denote the vertices of of weight k in respectively Γn and Λn

Since
Ln = {0s; s ∈ Fn−1} ∪ {10s0; s ∈ Fn−3}

and

|Γn,k| =

(

n− k + 1

k

)
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Figure 1: Γ2 = Λ2, Λ3, Λ4 and Λ5

it is immediate to derive the following classical result.

Proposition 1.1 Let n ≥ 1. The number of vertices of weight k ≤ n in Λn is

|Λn,k| =

(

n− k

k

)

+

(

n− k − 1

k − 1

)

.

It will be convenient to consider the binary strings of length n as vectors of Fn

the vector space of dimension n over the field F = Z2 thus to associate to a string
x1x2 . . . xn the vector θ(x1x2 . . . xn) = (x1, x2, . . . , xn). The Hamming distance between
two vectors x,y ∈ F

n, d(x,y) is the number of coordinates in which they differ. By
the correspondence θ we can define the binary sum x+ y and the Hamming distance
d(x,y) of strings in Bn. Note that the Hamming distance is the usual graph distance
in Qn.

We will first recall some basic results about perfect codes in Qn. Since Qn is a
regular graph of degree n the existence of a perfect code of cardinality |C| implies
|C|(n + 1) = 2n thus a necessary condition of existence is that n + 1 is a power of 2
thus that n = 2p − 1 for some integer p.

For any integer p Hamming [7] constructed, a linear subspace of F2p−1 which is
a perfect code. It is easy to prove that all linear perfect codes are Hamming codes.
Notice that 1n belongs to the Hamming code of length n.
In 1961 Vasilev [20], and later many authors, see [5, 19] for a survey, constructed perfect
codes which are not linear codes.

In a recent work [1] Ashrafi and his co-authors proved the non-existence of per-
fect codes in Γn for n ≥ 4. As an open problem the authors suggest to consider the
existence of perfect codes in generalizations of Fibonacci cubes. The most complete
generalization proposed in [9] is, for a given string f , to consider Γn(f) the subgraph
of Qn induced by strings that do not contain f as substring. Since Fibonacci cubes
are Γn(11) the most immediate generalization [14, 18] is to consider Γn(1

s) for a given
integer s. In [15] we proved the existence of a perfect code in Γn(1

s) for n = 2p− 1 and
s ≥ 3.2p−2 for any integer p ≥ 2.

In the next section we will prove the main result of this note.
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Theorem 1.2 The Lucas cube Λn, n ≥ 0, admits a perfect code if and only if n ≤ 3 .

2 Perfect codes in Lucas cube

It can be easily checked by hand that {0n} is a perfect code of Λn for n ≤ 3 and that
Λ4 or Λ5 does not contain a perfect code (Figure 1).
Assume thus n ≥ 6.

Note first that from Proposition 1.1 we have

|Λn,2| =
n(n− 3)

2
and |Λn,3| =

n(n− 4)(n − 5)

6

.
Therefore Λn,2 and Λn,3 are none empty.
Let Λ1

n,k be the vertices of Λn,k that start with 1. Since Ln = {0s; s ∈ Fn−1}∪{10s0; s ∈

Fn−3} the number of vertices in Λ1
n,k is

|Λ1
n,k| = |Γn−3,k−1| =

(

n− 1− k

k − 1

)

.

Lemma 2.1 If n ≥ 6 and C is a perfect code of Λn then 0n ∈ C.

Proof.

Suppose on the contrary that 0n /∈ C. Since 0n must be dominated there exists a
vertex in Λn,1 ∩ C. This vertex is unique and because of the circular symmetry of Λn

we can assume 10n−1 ∈ C.
Since 0n /∈ C the other vertices of Λn,1 must be dominated by vertices in Λn,2. But

a vertex in Λn,2 has precisely two neighbors in Λn,1 thus n must be odd and

|Λn,2 ∩ C| =
n− 1

2
.

The unique vertex 10n−1 in Λn,1 ∩C has exactly n− 3 neighbors in Λn,2. Let D be the
vertices of Λn,2 not in C and not dominated by 10n−1. Vertices in D must be dominated
by vertices in Λn,3 ∩ C. Each vertex of Λn,3 ∩ C has exactly exacty three neighbors in
Λn,2. Thus 3 divides the number of vertices in D. This number is

|D| = |Λn,2| − (n− 3)−
n− 1

2
=

n2 − 6n + 7

2
.

This is not possible since there exists no odd integer n such that 6 divides n2 + 1.
Indeed since n is odd, 6 does not divide n thus divides (n + 1)(n − 1) = n2 − 1 or
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(n + 2)(n− 2) = n2 − 4 or (n+ 3)(n − 3) = n2 − 9 thus cannot divide n2 + 1. �

Let n ≥ 6 and C be a perfect code. Since 0n ∈ C all vertices of Λn,1 are dominated
by 0n and thus Λn,2 ∩ C = Λn,1 ∩ C = ∅. Consequently, each vertex of Λn,2 must be
dominated by a vertex in Λn,3. Since each vertex in Λn,3 has precisely three neighbors
in Λn,2 we obtain that

|Λn,3 ∩C| =
|Λn,2|

3
.

This number must be an integer thus 3 divides |Λn,2| =
n(n−3)

2 and therefore 3 divides
n(n− 3). This is only possible if n is a multiple of 3.
Each vertex of Λ1

n,2 must be dominated by a vertex in Λ1
n,3. Furthermore a vertex in

Λ1
n,3 has precisely two neighbors in Λ1

n,2. Therefore |Λ1
n,2| = n − 3 must be even and

thus n = 6p + 3 for some integer p ≥ 1.
Let E be the set of vertices of Λn,3 not in C. Vertices in E must be dominated by a
vertex in Λn,4. Furthermore each vertex in Λn,4 has precisely four neighbors in Λn,3.
Therefore 4 divides |E| with

|E| = |Λn,3| − |Λn,3 ∩ C| =
n(n− 4)(n − 5)

6
−

n(n− 3)

6
=

n(n2 − 10n + 23)

6
.

Replacing n by 6p+3 we obtain that 4 divides the odd number (2p+1)(18p2−12p+1).
This contradiction prove the Theorem. �

3 Perfect codes in generalized Lucas cube

The analogous of the generalisation of Fibonacci cube Γn(1
s) for Lucas cube is the

family Λn(1
s) of subgraphs of Qn induced by strings without 1s as a substring in a

circular manner where s ≥ 2 is a given integer. More formally [10] for any binary
strings b1b2 . . . bn and each 1 ≤ i ≤ n, call bibi+1 . . . bnb1 . . . bi−1 the i-th circulation of
b1b2 . . . bn. The generalized Lucas cube Λn(1

s) is the subgraph of Qn induced by strings
without a circulation containing 1s as a substring.
In [15] the existence of a perfect code in Γn(1

s) is proved for n = 2p− 1 and s ≥ 3.2p−2

for any integer p ≥ 2.
The strategy used in this construction is to build a perfect code C in Qn such that no
vertex of C contains 1s as substring. The set C is also a perfect code in Γn(1

s) since
each vertex of Γn(1

s) belongs to the unique closed neighbourhood in Qn thus in Γn(1
s)

of a vertex in C. Because of the following proposition we cannot use the same idea for
Λn(1

s) and s ≤ n− 1.

Proposition 3.1 Let n an integer and 2 ≤ s ≤ n−1. There exist no perfect code C in

Qn such that the vertices of C are without a circulation containing 1s as a substring.
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Proof.

Let C be a such a perfect code in Qn then 1n /∈ C. Thus 1n must be neighbour of
a vertex c in C. Since c = 1i01n−1−i for some integer i the i+ 1th-circulation of c is
1n−10. We can complete this proposition by the two following results

Proposition 3.2 Let p ≥ 2 and n = 2p − 1 then there exists a perfect code in Λn(1
n)

of order |C| = 2n

n+1 .

Proof. Let D be a Hamming code of length n and C = {d + (0n−11); d ∈ D}. Since
1n ∈ D C is a perfect code of Qn such that 1n /∈ C. Since Λn(1

n) is obtained from Qn

by the deletion of 1n every vertex of Λn(1
n) is in the closed neighbourhood of exactly

one vertex of C.

Proposition 3.3 Let p ≥ 2 and n = 2p−1 then there exists a perfect code in Λn(1
n−1)

and in Λn(1
n−2) of order |C| = 2n

n+1 − 1.

Proof. Let D be a Hamming code of length n. Then D is a perfect code of Qn

such that 1n ∈ D. Since Λn(1
n−1) is obtained from Qn by the deletion of the closed

neighbourhood of 1n every vertex of Λn(1
n−1) is in the closed neighbourhood of exactly

one vertex of C = D − {1n}. Furthermore since 1n ∈ D there is no vertex of weight
n − 2 in D. Let u be a vertex of Λn(1

n−2) and f(u) be the vertex in D such that
u ∈ NQn [u]. Since there is no vertex inD with weight n−1 or n−2 there is no circulation
of f(u) containing 1n−2 as a substring. Therefore f(u) is a vertex of Λn(1

n−2) and
u ∈ NΛn(1n−2)[f(u)]. Since a code in Qn is a code in each of its subgraph C is a perfect
code of Λn(1

n−2).
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