Experimental demonstration of a rapid sweep-tuned spectrum analyzer with temporal resolution based on a spin-torque nano-oscillator - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2020

Experimental demonstration of a rapid sweep-tuned spectrum analyzer with temporal resolution based on a spin-torque nano-oscillator

Abstract

It is demonstrated experimentally that a spin-torque nano-oscillator (STNO) rapidly sweep-tuned by a bias voltage can be used for time-resolved spectrum analysis of frequency-manipulated microwave signals with complicated multi-tone spectra. The critical reduction in the time of spectrum analysis comes from the naturally small time constants of a nano-sized STNO (1-100 ns). The demonstration is performed on a vortex-state STNO generating in a frequency range around 300 MHz, with frequency down-conversion and matched filtering used for signal processing. It is shown that this STNO-based spectrum analyzer can perform analysis of multi-tone signals, and signals with rapidly changing frequency components with time resolution on a $\mu$s time scale and frequency resolution limited only by the 'bandwidth' theorem. The proposed concept of rapid time-resolved spectrum analysis can be implemented with any type of micro and nano-scale frequency-swept oscillators having low time constants and high oscillation frequency.

Dates and versions

hal-02539709 , version 1 (10-04-2020)

Identifiers

Cite

A. Litvinenko, V. Iurchuk, P. Sethi, S. Louis, V. Tiberkevich, et al.. Experimental demonstration of a rapid sweep-tuned spectrum analyzer with temporal resolution based on a spin-torque nano-oscillator. 2020. ⟨hal-02539709⟩
68 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More