
HAL Id: hal-02539647
https://hal.science/hal-02539647v1

Submitted on 8 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model order reduction assisted by deep neural networks
(ROM-net)

Thomas Daniel, Fabien Casenave, Nissrine Akkari, David Ryckelynck

To cite this version:
Thomas Daniel, Fabien Casenave, Nissrine Akkari, David Ryckelynck. Model order reduction assisted
by deep neural networks (ROM-net). Advanced Modeling and Simulation in Engineering Sciences,
2020, 7 (1), �10.1186/s40323-020-00153-6�. �hal-02539647�

https://hal.science/hal-02539647v1
https://hal.archives-ouvertes.fr


Daniel et al. Adv. Model. and Simul.
in Eng. Sci.           (2020) 7:16 
https://doi.org/10.1186/s40323-020-00153-6

RESEARCH ART ICLE Open Access

Model order reduction assisted by deep
neural networks (ROM-net)
Thomas Daniel1,2*, Fabien Casenave1, Nissrine Akkari1 and David Ryckelynck2

*Correspondence:
thomas.daniel@safrangroup.com
1SafranTech, Rue des Jeunes
Bois, Chateaufort, 78114
Magny-les-Hameaux, France
Full list of author information is
available at the end of the article

Abstract

In this paper, we propose a general framework for projection-based model order
reduction assisted by deep neural networks. The proposed methodology, called
ROM-net, consists in using deep learning techniques to adapt the reduced-order model
to a stochastic input tensor whose nonparametrized variabilities strongly influence the
quantities of interest for a given physics problem. In particular, we introduce the
concept of dictionary-based ROM-nets, where deep neural networks recommend a
suitable local reduced-order model from a dictionary. The dictionary of local
reduced-order models is constructed from a clustering of simplified simulations
enabling the identification of the subspaces in which the solutions evolve for different
input tensors. The training examples are represented by points on a Grassmann
manifold, on which distances are computed for clustering. This methodology is applied
to an anisothermal elastoplastic problem in structural mechanics, where the damage
field depends on a random temperature field. When using deep neural networks, the
selection of the best reduced-order model for a given thermal loading is 60 times faster
than when following the clustering procedure used in the training phase.

Keywords: Model order reduction, Machine learning, Deep neural networks,
Nonlinear structural mechanics

Introduction
Numerical simulations in physics have become an essential tool in many engineering
domains. The development of high-performance computing has enabled engineers and
scientists to use complex models for real-world applications, with ultra-realistic sim-
ulations involving millions of degrees of freedom. However, such simulations are too
time-consuming to be integrated in design iterations in the industry. They are usually
limited to the final validation and certification steps, while the design process still relies
on simplified models. Accelerating these complex simulations is a key challenge, as it
would provide useful numerical tools to improve design processes. The development of
numerical methods for fast simulations would also enable using new models that have
not been applied to industrial problems yet, because of their complexities. Uncertainty
quantification is another important example of analysis that would become practicable if
the cost of simulations was sufficiently reduced. Indeed, quantities of interest monitored
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in numerical simulations depend on the environment of the physical system, which is usu-
ally not exactly known. In some cases, these uncertainties strongly influence simulation
results, and the probability distributions of the quantities of interest must be estimated in
order to ensure the reliability of the industrial product.
The cost of numerical simulations can be reduced by projection-based model order

reduction, which consists in restricting the search of the solution to a low-dimensional
space spanned by a reduced-order basis. This reduced-order basis is inferred from a set
of pre-computed high-fidelity solutions, using linear dimensionality reduction techniques
such as the proper orthogonal decomposition (POD, [1–3]). In addition to this reduction
in terms of degrees of freedom, a second reduction stage may be necessary for nonlin-
ear problems, this time in terms of integration points. This is called hyperreduction, or
operator compression according to the terminology introduced in [4]. Operator compres-
sion methods include the empirical interpolation method (EIM, [5]), the missing point
estimation (MPE, [6]), the a priori hyperreduction (APHR, [7]), the best point interpo-
lation method (BPIM, [8]), the discrete empirical interpolation method (DEIM, [9]), the
Gauss-Newton with approximated tensors (GNAT, [10]), the enery-conserving sampling
and weighting (ECSW, [11]), the empirical cubature method (ECM, [12]), and the linear
program empirical quadrature procedure (LPEQP, [13]).
In this article, we consider uncertainties on a tensorial input variable which affects the

solution of the partial differential equations (PDEs) governing the physical system. This
input tensor can represent a three-dimensional field, physical constants used in the con-
stitutive equations, images of defects, a X-ray computed tomography scan characterizing
a microstructure, boundary conditions, or geometrical details. In the example presented
at the end of this paper, the input tensor represents a three-dimensional temperature field
influencing the physical properties of the system. The objective is to accelerate numerical
simulations where a quantity of interest highly depends on this stochastic input tensor
subjected to nonparametrized variabilities. This objective can be achieved with a single
reduced-order model, as long as uncertainties on the input tensor are small enough or
have a minor impact on the quantity of interest. In other situations, the solution of the
governing PDEs lies in a manifold which cannot be covered by a single reduced-order
model without increasing its dimension and thus degrading its efficiency. For example,
traditionalmodel order reduction techniques fail to solve advection-dominated problems.
These problems require more sophisticated techniques, such as those proposed in [14]
or [15]. In structural mechanics, the fatigue lifetime assessment of high-pressure turbine
blades of an aircraft engine is very sensitive to variations of the temperature field, see
[16]. Linear dimensionality reduction is not always suitable for this kind of applications.
Nonetheless, linear methods have the critical advantage of being compatible with the
Galerkin method, providing a reduced problem in the form of equations assembled on a
reduced-order basis.
Many strategies have been proposed to address such problems. The concept of local

reduced-order models was first introduced in [17], and applied to computational fluid
dynamics in [18]. In these works, the set of pre-computed high-fidelity solutions was
partitioned into several clusters, each of them being used to build a small cluster-specific
reduced-order model. The resulting dictionary of local reduced-order models was then
used to adapt the reduced-order basis to the current state of the solution by finding the
closest cluster center. This technique works very well when the solution evolves on a
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low-dimensional manifold. However, for some specific applications where there is no
guarantee that the solution lies in a low-dimensional manifold, this technique might
be subjected to the curse of dimensionality [19]. Indeed, in high dimension, the nearest
neighbour is almost as far as the furthest point in the dataset because of the loss of contrast
in distances, explaining the difficulties of high-dimensional clustering. Other approaches
rely on the interpolation of reduced-ordermodels. This trendwas initiated by the subspace
angle interpolation method [20–24]. A generalization of this method has been proposed
in [25] with the ROM adaptation method based on the Grassmann manifold (also called
Grassmannian). It has been successfully applied to the CFD-based aeroelastic analysis of a
complete aircraft configuration for varyingMach number and angle of attack. In [26], this
method has been improved to achieve real-time performance for linear problems. More
recent works [27,28] propose other interpolation methods on Grassmannians. All these
interpolation methods give excellent results for problems depending on a small number
of parameters, but none of them have yet been applied to nonparametrized variabilities
of a large input tensor.
The generic methodology developed in this article, called ROM-net, is another attempt

to deal with the limits of traditional tools available in themodel order reduction literature.
It relies on projection-based model order reduction assisted by deep learning techniques.
Our objective is to define a general framework for reduced-order model adaptation using
deep neural networks, in order to see to what extent model order reduction can benefit
from the recent advances in deep learning. Indeed, the growing interest for this discipline
has led to the development of innovative methods in many fields. These advances have
facilitated the development of surrogate models and data-driven approaches in physics,
providing approximate solutions in real time. Other modeling strategies are based on
a hybrid approach, mixing physics-based modeling and machine learning. For example,
deep neural networks were used in [29] to model the Reynolds stress anisotropy tensor
in Reynolds Averaged Navier Stokes (RANS) models, in computational fluid dynamics. In
[30], a nonlinear dimensionality reduction is performed using deep convolutional autoen-
coders. The modeling strategy presented in [31] was the first hybrid approach involving
both a dictionary of local hyperreduced-order models and computer vision techniques. In
the context of image-basedmodeling, it showed that convolutional neural networks could
be used to recognize the loading case of a mechanical experiment on a digital image, and
select a suitable hyperreduced-order model to simulate the experiment.
The concept of ROM-net introduced in this article is an extension of the methodology

presented in the aforementioned paper, designed to accelerate numerical simulations
where a quantity of interest depends on a stochastic tensorial input. Dictionary-based
ROM-nets can bemade of one or several deep neural networks selecting the best reduced-
order model from a dictionary. In our case, unlike the strategy presented in [31], this
dictionary derives from the clustering of outputs of simplified simulations using distances
on a Grassmannian. In the first section of this article, we introduce the formal definitions
of ROM-nets and dictionary-based ROM-nets. Then, we describe the training procedure
for dictionary-based ROM-nets. An application to a temperature-dependent problem in
structural mechanics is presented in the last section of this paper, where we focus on the
clustering procedure and the construction of a classifier for model selection.
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ROM-nets and dictionary-based ROM-nets
Classical projection-basedmodel order reduction

Let us consider a physics problem whose primal variable of the governing equations is
denoted by u and defined on a domain � ⊂ R

β , β ∈ [[1; 3]] and on a (normalized) time
interval [0; 1]. The governing PDEs are generally posed on an infinite-dimensional Hilbert
space, but in practice, these equations are solved numerically on a finite-dimensional sub-
space, denoted byH in this article. In solidmechanics for example,H is the space spanned
by finite-element shape functions

{
φi

}
1≤i≤dim(H), and the primal variable u corresponds

to the displacement field. The primal variable u computed at the n-th time step can be
represented by a vector Un ∈ R

dim(H) containing its coordinates in the finite-element
basis

{
φi

}
1≤i≤dim(H). In solid mechanics, this numerical solution can be obtained with

the Newton–Raphson algorithm, an iterative procedure based on the linearization of the
virtual work principle. The resulting linear system to be solved for the m-th iteration at
the n-th time increment reads:

J(m)
n δU(m)

n = −R(m)
n (1)

where J(m)
n ∈ R

dim(H)×dim(H) is the Jacobian matrix, also called (global) tangent stiffness
matrix, R(m)

n ∈ R
dim(H) is the vector of residuals, and δU(m)

n ∈ R
dim(H) is the correction

applied to the vector of increments of the primal variable defined by:

�U(m)
n = �U(m−1)

n + δU(m)
n (2)

with �U(0)
n = 0. When the convergence criterion ||R(m)

n || ≤ εNR||Fextn || is satisfied for a
given m = m∗ with εNR being the tolerance of the Newton–Raphson algorithm and Fextn
being the vector of external forces, the solution at the n-th time increment is defined as:

Un = Un−1 + �U(m∗)
n (3)

Equation (1) is the high-dimensional linear system deriving from the high-fidelity model
composed of equilibrium, compatibility and constitutive equations.
Projection-based model order reduction consists in searching an approximation of the

high-fidelity solution in a low-dimensional subspace VROM ⊂ H adapted to the cur-
rent physics problem. This subspace is spanned by an appropriate reduced-order basis
{
ψi

}
1≤i≤N , with N being very small compared to dim(H). The reduced-order basis

approximation of the primal variable reads:

∀t ∈ [0; 1], ∀x ∈ �, u(x, t) =
N∑

i=1
γi(t)ψi(x) (4)

where {γi}1≤i≤N are the reduced coordinates which can be stored in a vector γ ∈ R
N . The

coordinates of the modes
{
ψi

}
1≤i≤N in the finite-element basis

{
φi

}
1≤i≤dim(H) are stored

in columns in a matrix V ∈ R
dim(H)×N called reduction matrix. Hence:

∀i ∈ [[1;N ]], ∀x ∈ �, ψi(x) =
dim(H)∑

j=1
Vjiφj(x) (5)

These modes can be obtained by applying the POD [1] or the snapshot POD [2,3] to a set
of pre-computed high-fidelity solutions evaluated at different time steps or for different
configurations of the physical system. After the Galerkin projection of the governing
equations on VROM , the reduced linear system to solve at each iteration of the Newton–
Raphson algorithm in the reduced-order model (ROM) is then:

VT J(m)
n Vδγ (m)

n = −VTR(m)
n (6)
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Anyordered set of k ≤ dim(H) linearly independent vectors inH is called a k-frame. The
Stiefel manifold V (k,H) is the set of all orthonormal k-frames in H. In projection-based
model order reduction, reduced-order bases obtained by POD or snapshot POD belong
to a Stiefel manifold. In this article, the notation V (H) stands for the set of reduced-order
bases:

V (H) =
dim(H)⋃

i=1
V (i,H) (7)

The linear system (6) results from a first reduction stage in terms of degrees of freedom.
For some nonlinear problems, a second reduction stage is required to efficiently decrease
the computation time. This second reduction stage is referred to as hyperreduction or
operator compression, as mentioned in the introduction. In this case, the definition of the
set V (H) can be extended to include sets of hyperreduction parameters in addition to the
set of reduced-order bases.

ROM-nets

Our objective is to predict a quantity of interest Y via the computation of a primal vari-
able u that belongs to a reduced approximation space and satisfies nonlinear physics
equations depending on a stochastic input tensor X . In this article, X denotes the set of
input variabilities andY represents the set containing the quantity of interest. In structural
mechanics,Y can represent a damage field, the vonMises stress in a zone of interest, or the
displacement of a specific point in the structure, while X can stand for material constants,
boundary conditions, geometrical parameters, a X-ray computed tomography scan char-
acterizing themicrostructure, images of defects, or even a three-dimensional field defined
on the domain � such as a temperature field, residual stresses, or heterogeneous material
parameters. The only restriction on the input is that it must have a tensorial represen-
tation, that is, a representation as a multidimensional array. For instance, images are
second-order tensors or two-dimensional arrays, X-ray computed tomography scans are
third-order tensors or three-dimensional arrays, and fields discretized on a finite-element
mesh can be represented by first-order tensors or one-dimensional arrays. These tenso-
rial inputs are stochastic because they contain the uncertainties on the physical system
under study: when considering polycrystalline materials, X-ray computed tomography
scans could be used to study macroscopic properties under microstructural variabilities
such as grains’ sizes, shapes and orientations. We refer the reader to [32,33] for more
details on finite-element modeling based on X-ray computed tomography scans. In the
application presented at the end of this paper, X is the finite-element discretization of a
temperature field with variabilities evolving in L2(�). These stochastic variabilitiesmay be
related to turbulence in a fluid-structure interaction with a high-Reynolds-number fluid
flow. In aircraft engines, the temperature field in high-pressure turbine blades results
from a complex turbulent flow coming from the combustion chamber. While the tensor
X can be generated by a parametric stochastic model, it is assumed that we have no prior
knowledge of the underlying model. Therefore, the proposed methodology is suitable
for nonparametrized (or generic) input variabilities which can represent uncertainties on
the environment of the physics problem. This feature is required when the method is
trained on data simulated by a parametric model, but applied to real data with unknown
distributions obtained from experimental measures or from a more complex model.
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When the input X ∈ X is modified, the primal variable u evolves on a manifoldM. In
some situations, it is complicated to build a relevant reduced-order model giving accurate
predictions for the primal variable on the whole manifold. In such cases, predictions on
the quantity of interest Y are inaccurate since they derive from the behavior of the primal
variable. The reduced-ordermodelmust be adapted to the input to capture nonlinearities.
In this paper, we propose a general framework for reduced-order model adaptation via
deep learning algorithms.
Given two setsA and B, the notation BA represents the set of functions f : A → B. Let

us now give the definitions of a reduced-order solver and a ROM-net:

Definition 1 (Reduced-order solver) Let us consider a physics problem, where a quantity
of interest Y ∈ Y depends on a tensorial input variable X ∈ X . A reduced-order solver
is an operator S : V (H) → YX taking a reduced-order model m ∈ V (H) as an input
and returning a predictor S[m] : X → Y for the quantity of interest. Given X ∈ X , the
quantity of interest Y can be approximated by:

Ỹ := S[m](X) (8)

�	

In this definition, the reduced-order model m consists in a reduced-order basis and,
optionally, parameters related to a hyperreduction algorithm. The function S[m] can be
seen as an operator solving the reduced linear system (6) and computing the quantity of
interest associated to the reduced-order solution u.

Definition 2 (ROM-net) Let us consider a physics problem, where a quantity of interest
Y ∈ Y depends on a tensorial input variable X ∈ X and can be predicted by a reduced-
order solver S : V (H) → YX . A ROM-net R : X → V (H) is a deep learning algorithm
returning a reduced-order model R(X) ∈ V (H) adapted to the input X ∈ X . Given
X ∈ X , the quantity of interest Y can be approximated by:

Ỹ := S[R(X)](X) (9)

�	

Contrary to surrogate modeling, using a reduced-order model R(X) enables satisfying
homogeneous Dirichlet boundary conditions and solving the constitutive equations at
least at some specific points if operator compression (hyperreduction) is used. Hence, a
ROM-net provides ahybrid approachmixingphysics-basedmodeling anddeep learning. It
is used as a reduced-order basis generator for complex problems where the reduced-order
basis must be adapted to a tensorial input. In addition, it is noteworthy that the definition
of the quantity of interest remains quite flexible after the training of a ROM-net. In solid
mechanics for instance, the definition of the damage indicator of an uncoupled damage
model can be changed without restarting the training phase. Figure 1 summarizes the
concept of ROM-nets.

Remark In [30], another deep learning strategy for model order reduction is proposed for
parametrized ordinary differential equations. The governing equations aremapped onto a
nonlinear manifold thanks to a deep convolutional autoencoder. Contrary to projection-
based model order reduction methods using linear dimensionality reduction techniques
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Fig. 1 Flowchart of model order reduction using a ROM-net

such as the POD or the snapshot POD, this methodology performs a nonlinear dimen-
sionality reduction. The reduced (or generalized) coordinates in the latent space defined
by the autoencoder’s bottleneck layer are combined by the decoder in a nonlinear fash-
ion to get the high-dimensional state approximation. When the decoder is linear, this
methodology is equivalent to classical projection-based model order reduction. In the
present paper, instead of looking for an approximate solution on a nonlinear trial man-
ifold, ROM-nets adapt the linear subspace to the input variability. As explained in the
next section, dictionary-based ROM-nets use several subspaces to get a piecewise linear
approximation space, while the aforementioned methodology would have approximated
the solution manifold by a single nonlinear manifold. The choice of keeping a linear
method for dimensionality reduction is motivated by its compatibility with the Galerkin
method, enabling an easy construction of a hyperreduced problem. �	

Dictionary-based ROM-nets

When the solution manifoldM is embedded in a low-dimensional vector space, one can
construct a single global reduced-ordermodel in order to compute approximate solutions
of the physics problem for different input variabilities. When the solution manifold M
is not embedded in a low-dimensional vector space, using one single global reduced-
order model would result in either time-consuming or inaccurate reduced simulations,
depending on the number of modes selected in the reduced-order basis. By partitioning
the set X of input variabilities, one can define a dictionary of local reduced-order models
which enables approximating M by several affine subspaces. Clustering algorithms can
be used to split the setX into distinct subsets called clusters. Inputs belonging to the same
cluster lead to solutions which can be predicted with the same local reduced-order model
because of their proximity on themanifoldM. More precisely, for a given integerK ∈ N

∗,
the clustering algorithm gives a partition of the set X :

X =
K⋃

k=1
Xk (10)

∀k ∈ [[1;K ]], Xk 
= ∅ (11)

∀(i, j) ∈ [[1;K ]]2, i 
= j =⇒ Xi ∩ Xj = ∅ (12)
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Fig. 2 Flowchart of a dictionary-based ROM-net

The dictionary of local reduced-order models contains K cluster-specific reduced-order
models. Hence, for a given input X ∈ X , one must identify the corresponding cluster Xk
to select the most appropriate reduced-order model.

Definition 3 (Dictionary of reduced-order models) Given an integer K ∈ N
∗, an injective

functionDK : [[1;K ]] → V (H) is called a dictionary of reduced-ordermodels of dimension
K , or K-ROM-dictionary. �	

Definition 4 (Dictionary-based ROM-net) Let us consider a physics problem, where a
quantity of interest Y ∈ Y depends on a tensorial input variable X ∈ X and can be
predicted by a reduced-order solver S : V (H) → YX . Given an integer K ∈ N

∗, a ROM-
net RK is a dictionary-based ROM-net if there exist a deep classifier FK : X → [[1;K ]]
and a K -ROM-dictionaryDK : [[1;K ]] → V (H) satisfying:

∀X ∈ X , RK (X) = DK ◦ FK (X) (13)

�	

Figure 2 illustrates the concept of dictionary-based ROM-nets. The strategy presented
in [31] for image-based modeling using convolutional neural networks and a dictionary
of local reduced-order models fits the definition of a dictionary-based ROM-net. In this
definition, the expression deep classifier denotes deep neural networks returning a single
class label in [[1;K ]] for a given tensorial input. In multiclass classification, deep classifiers
usually have a softmax activation function in the output layer, giving an output vector
ypred ∈ R

K such that ypredk is the probability for the input tensor to belong to the k-th
class. The probabilities ypredk are also called membership probabilities. The deep classifier
returns the integer corresponding to the class with the highest membership probability,
that is:

∀X ∈ X , FK (X) = arg max
k∈[[1;K ]]

(ypredk (X)) (14)

Such classifiers are called classical deep classifiers in this article. The concept of deep
classifier used in the definition of a dictionary-based ROM-net can be extended to include
not only the classical ones, but also deep clustering algorithms [34–36]. These algorithms
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use encoders to cluster the data in a low-dimensional latent space, avoiding the difficulties
of high-dimensional clustering [19]
As mentioned earlier, the partition of the set X used to define cluster-specific reduced-

order models is given by a clustering algorithm. Clustering algorithms generally rely on
a dissimilarity measure quantifying the difference between two points in the dataset. In
this paper, the expression dissimilarity measure refers to a pseudo-semimetric:

Definition 5 (Dissimilarity measure) A dissimilarity measure on X is a function δ :
X × X → R+ such that δ(X, X ′) = δ(X ′, X) for all (X, X ′) ∈ X 2 and δ(X, X) = 0 for all
X ∈ X . �	

Dictionary-based ROM-nets involving classical deep classifiers

The rest of the article focuses on dictionary-based ROM-nets involving a classical deep
classifier. In this case, the deep classifier FK solves a classical multiclass classification
problem to recommend a suitable reduced-order model from the dictionary. Neverthe-
less, as the classes are given by a clustering algorithm, one could wonder why a deep neural
network is used for cluster assignment. When using a center-based clustering algorithm,
each cluster Xk is represented by a center X̃k . In theory, one could compute the dis-
similarities between the new input tensor X and all the clusters’ representatives X̃k , and
then select the cluster with the smallest dissimilarity δ(X, X̃k ). However, this procedure is
not reasonable when repeated many times, because of the computation time required to
evaluate the dissimilarities. Indeed, as further explained in the next section, dissimilarity
measures that are suitable for model order reduction applications may involve numerical
simulations. Hence, the time saving obtained by model order reduction would be coun-
terbalanced by the time-consuming operations required for cluster assignment. The true
classifier defined by:

KK (X) = arg min
k∈[[1;K ]]

(δ(X, X̃k )) (15)

is too expensive because it is based on numerical simulations. Note that KK is not an
artificial neural network. When using the ROM-net, the true classifier KK is replaced by
the approximate classifierFK to bypass the computations required for cluster assignment.
In the application presented at the end of this paper, replacing the true classifier by the
approximate one enables fast ROM selection with a computation time reduced by a factor
of 60. The next section gives some general guidelines for the training of a dictionary-based
ROM-net.

Training procedure for dictionary-based ROM-nets
Let K be a positive integer. In this section, we describe the training phase of a dictionary-
based ROM-netRK made of a classical deep classifier FK and a K -ROM-dictionary DK .
First, an automatic data labelling procedure is presented. It aims at preparing the data for
the supervised learning of the deep classifier FK , using simplified numerical simulations
and a clustering algorithm. Then, we train the deep classifier FK and build the K -ROM-
dictionaryDK on the grounds of the clusters identified by the labelling procedure. Figure 3
summarizes the main steps for the training of a dictionary-based ROM-net.
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Fig. 3 Workflow for the training of a dictionary-based ROM-net

Automatic data labelling via clustering

ROM-oriented dissimilaritymeasure

Clustering the input space X enables labelling the training data for the deep classifier,
and guides the construction of the ROM-dictionary by defining regions of the input space
where high-fidelity simulations must be run to build local reduced-order models. The key
point is the choice of the dissimilarity measure for clustering. Indeed, clustering aims at
grouping points of a dataset that are similar. As shown in the last section of this article, for
some specific applications, defining a dissimilarity measure based on a distance between
input tensors leads to inaccurate reduced-order solutions. Furthermore, the difficulties of
high-dimensional clustering appear when dealing with large input tensors.
In the application to structural mechanics presented at the end of this paper, this issue is

due to the complex interaction between the thermal and the mechanical loadings. In this
application, the input tensorX is a temperature field influencing themechanical response
of thematerial. To illustrate the aforementioned difficulty, let us imagine two temperature
fieldsT1 andT2 taking different values only in a very small partω of the structure�. Let us
introduce a third temperature field T3 being equal to T1 in ω and taking arbitrary values
in the rest of the solid domain. If ω is a critical zone from a mechanical point of view, T1
and T2 might lead to dissimilar displacement fields, while T3 might give approximately
the same displacement field as T1 (if thermal expansion is negligible with respect to the
strains induced by themechanical boundary conditions). In this case, T1 and T3 should be
assigned to the same cluster, while T2 should be assigned to another one. However, taking
the L2 distance between temperature fields as the dissimilarity measure would assign T1
and T2 to the same cluster, as these fields are identical in most of the solid domain.
Consequently, for such cases, one must define a ROM-oriented dissimilarity measure

accounting for the variability induced by the stochastic input tensor. In this paper, the
dissimilarity is defined using the Grassmann distance [37] between subspaces spanned
by outputs of a simplified physics problem. The simplified physics problem consists in
computing a few time steps of the original problem with a less restrictive convergence
criterion. The boundary conditions can even be simplified to facilitate convergence. The
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idea is to discover the subspace in which the solution evolves at the beginning of the
simulation for a given input X . Two input variabilities leading to solutions lying in nearby
subspaces (in terms of principal angles) are then considered as similar.
Before giving a formal definition of the ROM-oriented dissimilarity measure, let us

define some useful concepts. The Grassmannian Gr(k, n) is a Riemannianmanifold whose
points are all the k-dimensional linear subspaces of R

n. The infinite Grassmannian
Gr(k,∞) parametrizes the k-dimensional subspaces in R

n for all n ≥ k . As shown in
[37], one can define a distance between two subspaces of different dimensions. This dis-
tance is independent of the dimension of the ambient space. The Grassmann metric
dGr(∞,∞) is defined on the doubly-infinite Grassmannian Gr(∞,∞), which parametrizes
subspaces of all dimensions regardless of the ambient space [37]. In practice, this metric
can be obtained with the following formula:

dGr(∞,∞)(A,B) =
⎛

⎝π2

4
| a − b | +

min(a,b)∑

i=1
α2
i

⎞

⎠

1/2

(16)

whereA and B are two linear subspaces of dimension a and b respectively, and where the
αi’s are the principal angles obtained by singular value decomposition:

ATB = U�VT (17)

with A and B being semi-orthogonal matrices whose columns form orthonormal bases
of A and B respectively, and � ∈ R

a×b is a matrix whose only nonzero coefficients are
�ii = cos(αi) for i ≤ min(a, b). These coefficients are non-negative, thus αi ∈ [0;π/2] for
all i.
Let us introduce the application V : X → Gr(∞,∞) assigning the input tensor X ∈ X

to the subspace V(X) spanned by the primal variableU of the governing equations during
the numerical simulation of the simplified physics problem:

V(X) = span ({Un(X), n ∈ [[1; nt ]]}) (18)

with nt being the number of time increments in the simplified simulation and Un(X)
denoting the vector representation of the primal variable computed for the input X and
evaluated at the n-th time increment. The ROM-oriented dissimilarity measure used for
the clustering of X is written δ and defined by:

∀(Xi, Xj) ∈ X 2, δ(Xi, Xj) = dGr(∞,∞)
(
V(Xi),V(Xj)

)
(19)

The dissimilarity measure is computed for all pairs of inputs belonging to the training
set, resulting in a dissimilarity matrix δ ∈ R

nT×nT , where nT is the cardinality of the
training set.

The clustering algorithm

Once the dissimilarity matrix is calculated, a clustering algorithmmust be applied to par-
tition the dataset into K clusters. The choice of the algorithm depends on the context. In
this methodology, clustering is used for the definition of local approximations of a non-
linear solution manifold. Hence, the algorithm must focus on compactness rather than
connectivity when looking for clusters in the dataset. This property is satisfied by k-means
algorithm [38], the most well-known clustering approach. However, this algorithm needs
to calculate clusters’ centroids or means, which is impossible when the input data corre-
spond to vector spaces. For this reason, we choose the k-medoids algorithm presented in
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[39], relying on a Voronoi iteration approach like k-means. The algorithm proposed in
[39] can be summarized as follows:

• Initialization step: select K initial medoids from the dataset.
• Repeat the two following steps until convergence:

– Data assignment step: assign each point of the dataset to the cluster correspond-
ing to its closest medoid.

– Medoid update step: for each cluster, update the medoid by finding the point
which minimizes the sum of distances to all the points in the cluster.

The choice of the hyperparameter K depends on the problem. More details concerning
this aspect of the methodology can be found in the final section of this article.

Construction of the ROM-net

Training of a deep classifier for fast model selection

The ROM-net’s classifier FK is trained in a supervised fashion from pairs of examples
(Xi,KK (Xi)) given by the clustering algorithm, where the label KK (Xi) ∈ [[1;K ]] is the
index of the cluster containing Xi. As explained earlier in the article, the true classifier
defined by:

KK (X) = arg min
k∈[[1;K ]]

(δ(X, X̃k )) = arg min
k∈[[1;K ]]

(
dGr(∞,∞)

(
V(X),V(X̃k )

))
(20)

is too expensive because it is based on numerical simulations, which motivates the use of
an approximate classifier. In the previous equation, X̃k is the medoid of the k-th cluster.
The dataset is split into a training, a validation and a test set. For a given deep neural

network architecture and for a given set of hyperparameters, the parameters of the classi-
fier FK are calibrated on the training set via backpropagation with Adam optimizer [40].
The accuracy of the calibrated classifier is evaluated on the validation set. The classifier is
calibrated with different architectures and hyperparameters settings until the accuracy on
the validation set reaches a satisfying value. Once the best architecture and set of hyperpa-
rameters have been selected, the calibrated classifier is evaluated on the test set to get the
accuracy of the model for new unseen data. When the input X is an image, one could use
well-known convolutional neural networks’ architectures and fine-tune their pre-trained
parameters to adapt the model to the current data, which is a common transfer learning
technique [41].

Construction of a ROM-dictionary

Contrary to the classifier, the ROM-dictionary DK is trained in an unsupervised fash-
ion. Clustering results help for the selection of data-points in X for which high-fidelity
simulations must be run. The solutions computed at every time step of these high-fidelity
simulations are called snapshots. Selecting clusters’medoids as simulation points for snap-
shots is recommended, since the clusters are represented by their medoids. Additional
snapshots can be computed if necessary. For each cluster, the snapshot POD is applied to
the set of snapshots to obtain a local reduced-order basis.
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Fig. 4 Finite-element mesh of the structure. Contains 33047 quadratic tetrahedral elements and 54649
nodes. Details about the boundary conditions can be found in Eqs. (21)

Application to an anisothermal elastoplastic problem in structural mechanics
In this section, a temperature-dependent problem in structural mechanics is considered.
Our objective is to study the influence of thermal loading uncertainties on a mechanical
quantity of interest such as a damage field. The input tensor corresponds to the final
temperature field in the structure, defined by a truncated Gaussian field. The quantity of
interest is a damage indicator based on the accumulated plastic strain field and defined
on the whole structure.

The high-fidelity model

Let us consider the solid body � shown on Fig. 4. The heat produced by mechanical phe-
nomena is neglected, which enables solving the heat equation and then use the resulting
temperature field history as a thermal loading for the mechanical problem. The structure
is subjected to a displacement-controlled monotonic loading. Assuming a quasi-static
evolution, equilibrium equations at the local level and boundary conditions read:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

div(σ(x, t)) = 0 ∀t ∈ [0; 1] ∀x ∈ �

u(x, t).ey = −tu0 ∀t ∈ [0; 1] ∀x ∈ Su

u(x, t).ex = 0 ∀t ∈ [0; 1] ∀x ∈ Sx0

u(x, t).ey = 0 ∀t ∈ [0; 1] ∀x ∈ Sy0

u(0, t).ez = 0 ∀t ∈ [0; 1]
σ(x, t).n(x, t) = 0 ∀t ∈ [0; 1] ∀x ∈ ∂� \ (Su ∪ Sx0 ∪ Sy0 )

(21)

The structure is made of an elastoplastic generalized standardmaterial described by the
von Mises yield criterion and a nonlinear isotropic hardening law. In the framework of
the infinitesimal strain theory, the constitutive equations are:

• Hooke’s law:

σ = C : ( ε − εp − α(T − T0)1) (22)

• von Mises yield criterion with isotropic hardening:

f ( σ, R) = σeq(σ) − R − σy σeq(σ) =
√
3
2
s : s s = σ − 1

3
tr(σ)1 (23)

• Nonlinear isotropic hardening law (with p denoting the accumulated plastic strain):

R(p) = R∞(1 − exp(−bp)) (24)
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• Flow rule for the plastic strain rate tensor:

ε̇p = 3
2
ṗ

s
σeq(σ)

(25)

• Karush–Kuhn–Tucker conditions:

ṗ ≥ 0, f ≤ 0, ṗf = 0 (26)

• Consistency condition for the determination of the plastic multiplier:

ṗḟ = 0 (27)

Under the assumption of isotropic elasticity, the fourth-order elastic stiffness tensor C
can be decomposed as follows:

C = E
1 + ν

K + E
1 − 2ν

J (28)

where E is the Young’s modulus, ν is the Poisson’s ratio, and K (resp. J) is the pro-
jector onto the space of deviatoric (resp. spherical) second-order tensors. Material con-
stants E, ν,α, σy, R∞ and b generally depend on the temperature. For this application,
temperature-dependent coefficients E,α, σy are taken from experimental data on high
strength structural steels for fire-resistant structures [42]. The other material parameters
are taken as constants. The thermal loading applied to the structure is defined by:

∀t ∈ [0; 1], ∀x ∈ �, T (x, t) = T0 + t(Tmax(x) − T0) (29)

with T0 = 22oC . The field Tmax(x) will be replaced by a random temperature field to
account for uncertainties on the thermal loading, while the mechanical loading is deter-
ministic. Hence, for this study, the stochastic input X is a tensorial representation of the
random temperature field obtained at t = 1. Let us consider a simple damage indicator
D : � × [0; 1] → [0; 1] defined by:

∀t ∈ [0; 1], ∀x ∈ �, D(x, t) = p(x, t)
pf

(30)

where pf is the material’s plastic strain to failure. A crack initiates at x0 ∈ � if D(x0, t)
reaches the value 1 for some t ∈ [0; 1]. The quantity of interest for this application is the
field Y = D( . , 1) : � → [0; 1].
The high-fidelity mechanical problem is solved using the finite-element method.

Numerical simulations are performed with Z-set software [43].

Stochastic model for the thermal loading

A training set of random thermal loadings is generated using the stochastic model
described in Appendix A. Briefly speaking, the stochastic model draws random com-
binations of fluctuation modes which are superposed with a reference temperature field
Tref : � → R. In Eq. (29), the field Tmax is replaced by the resulting random temperature
fields, which gives the random thermal loadings. The reference temperature field defines
the mean thermal loading. For this application, the reference temperature field is uniform
at 650oC . For real-world applications, the reference temperature field can be given by
aerothermal simulations. Random temperature fields are denoted by Trand : � × � → R,
where � is the sample space of the probability space associated to the stochastic model
described in Appendix A.
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Fig. 5 Construction of random temperature fields. 150 zero-mean temperature fluctuation modes are
generated, randomly combined and then superposed to a reference temperature field to get random
temperature fields

Generating a database of nT = 104 random temperature fields Trand(., θi) : � → R for
i ∈ [[1; nT ]] from 150 fluctuation modes takes 17 min on one single computer thread. The
standard deviation of random fluctuations is 50oC . The database T of thermal loading
variabilities can then be defined as (see Fig. 5):

T = {T : � × [0; 1] → R ∃ i ∈ [[1; nT ]],

∀t ∈ [0; 1], ∀x ∈ �, T (x, t) = T0 + t(Trand(x, θi) − T0)}
(31)

Remark When training the ROM-net, it is assumed that we have no prior knowledge of
the data-generating stochastic model. Training data may come from complex aerother-
mal simulations with random boundary conditions defined by experts. In the present
case, in the absence of such data, we use a stochastic model to generate the training data.
This stochastic model is parametric, since every random temperature field comes from a
random linear combination of 150 fluctuation modes. However, when training the deep
classifier for local ROMrecommendation, the training data corresponds to nodal values of
the temperature fields rather than the 150 random coordinates. This way, in the test phase
(or online phase in themodel order reduction community), the ROM-net can be applied to
thermal loadings coming from unknown stochastic models, complex aerothermal simula-
tions or even experiments, as long as these thermal loadings correspond to perturbations
of the reference thermal loading. Hence, the ROM-net can deal with nonparametrized
variabilities of the input data. �	

Figure 6 illustrates the influence of the thermal loading on the damage field computed
with the high-fidelity model. The fields on the left represent two different temperature
fields reached at t = 1 in the simulation. The critical zone is located around the first
column of holes on the left-hand side of the structure. The second temperature field
(case B) on the figure takes high values in this zone, leading to high values of the damage
indicator. On the contrary, values taken by the first temperature field (case A) in this zone
are relatively small. The resulting damage field takes smaller values in the first column of
holes. One can observe that the shapes of damaged zones in A and B are not the same.
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Fig. 6 Influence of the temperature field. Two damage fields (on the right) obtained from two different
temperature fields (on the left)

In addition, the second column of holes is a bit damaged in A, while this region remains
undamaged in B.

Construction of a dictionary-based ROM-net

To compute the damage field as a function of the thermal loading in a reasonable time,
a dictionary-based ROM-net RK based on a classical deep classifier FK is used. In this
paper, we focus on the training of the deep classifier FK .

Computation of the ROM-oriented dissimilaritymatrix

For every thermal loading,we solve a simplifiedmechanical problemwhich is similar to the
original one, with a less restrictive tolerance for Newton–Raphson’s algorithm to reduce
the number of required time steps. For the sake of simplicity, only two displacement fields
of the simplified simulation are kept: one in the elastic regime, and one in the plastic
regime. The space V(T ) is the 2-dimensional space spanned by these fields. The solutions
at the other time steps are discarded, but computing them is necessary to ensure the
convergence of all the simplified simulations. The 104 × 104 matrix δ is defined as the
dissimilarity matrix whose coefficients are:

δij = δ(Ti, Tj) = dGr(∞,∞)
(
V(Ti),V(Tj)

)
(32)

The 104 simplified mechanical simulations are distributed between 84 computer
threads. The total computation time is 9h05min, which represents 5min per simula-
tion. Once the simplified simulations are done, computing the dissimilarity matrix takes
11h16min, if its coefficients are distributed between 48 computer threads. Note that less
than half of the coefficients are calculated, since the dissimilaritymatrix is symmetric with
zeros on its diagonal.

k-medoids clustering

The ROM-oriented dissimilarity is used to cluster the data with the k-medoids algorithm.
The number K of clusters is a hyperparameter provided by the user. Numerous empirical
methods have been proposed to estimate the best number of clusters for different criteria.
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Fig. 7 MDS plots of clustering results. The positions of the clusters’ labels correspond to the medoids. Each
point corresponds to a subspace V (Ti ) spanned by two displacements fields of the simplified mechanical
problem with the thermal loading Ti

In our case, the dataset is not organized in distinct clusters. Therefore, the clustering
algorithm is applied for different values of K , and the quality of clustering results is
evaluated using silhouette analysis [44]. When selecting the most appropriate number of
clusters based on silhouette analysis, one must also consider the trade-off between large
numbers giving a better approximation of the nonlinear manifold, and small numbers
facilitating the classification problem for the deep neural network. In addition, using a
large number of clusters increases the cost of the construction of the ROM-dictionary.
For the current problem,K = 6 has been identified as a good compromise. A single run of
the clustering algorithm takes about 10 s. The true classifier associated to this clustering
procedure is denoted by KK .

Visualization of clusters on the nonlinearmanifold

The clustering results can be visualized thanks to Multidimensional Scaling (MDS) [45].
MDS is an information visualization method which consists in finding a low-dimensional
dataset Z0 whose matrix of Euclidean distances d(Z0) is an approximation of the input
dissimilaritymatrix δ. To that end, a cost function called stress function isminimized with
respect to Z:

Z0 = arg min
Z

(ς (Z; δ)) = arg min
Z

⎛

⎝
∑

i<j
(δij − dij(Z))2

⎞

⎠ (33)

This minimization problem is solved with the algorithm Scaling byMAjorizing a COm-
plicated Function (SMACOF, [46]) implemented in Scikit-learn [47]. Figure 7 shows clus-
tering results with low-dimensional representations obtained bymetricMDS. The relative
error ς (Z0; δ)/ς (0; δ) is 11% for the 2D representation and 10% for the 3D representation.
These visualizations illustrate the nonlinear manifold on which solutions of the mechan-
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ical problem evolve when changing the thermal loading. Note that the positions of the
clusters’ labels coincide with the medoids.

Multiclass classification

Classifier based on an ensemble of DNNs. Clustering results obtained with the true classi-
fierKK enable training the approximate classifierFK of the ROM-netRK . Among the 104

thermal loadings in the dataset, 6400 are used as training data, 1600 as validation data, and
2000 as test data for final evaluation. As the data labelling procedure involves numerical
simulations, the dataset contains a limited amount of training examples in comparison
with standard image classification problems. Working on a small dataset makes our deep
classifier prone to overfitting. To address this issue, we use the ensemble averagingmethod
[48],which consists in taking anensembleof classifiers andaveraging their predictedmem-
bership probabilities. Ensemble averaging is a common technique in ensemble learning.
Generally speaking, ensemblemethods aim at creating ameta-estimator from several base
estimators (or models). Combining different estimators leads to more robust predictions
and reduces overfitting. In addition, using an ensemble method replaces the task of find-
ing a single very accurate model by the task of building an effective meta-estimator from
several models with lower accuracies. The winners of numerous deep learning challenges
used ensemble averaging to improve their predictions [49–51]. Our ensemble contains
Nmodels = 12 different DNNs trained for the same classification problem with the same
training data using Keras [52] and Tensorflow [53] libraries on Python, but with different
architectures and loss functions. All of them use the softmax activation function to get
membership probabilities. These predictions are combined in a soft voting scheme to give
the final prediction:

FK (T ) = arg max
l∈[[1;K ]]

(ypred(T, l)), with ypred(T, l) = 1
Nmodels

Nmodels∑

k=1
ykl (T ) (34)

with ykl (T ) denoting the membership probability of class l predicted by the k-th model.
The 12 models in the ensemble include fully-connected networks (FC), convolutional
neural networks (CNN) [54] and global average pooling convolutional neural networks
(GAP-CNN) [55]. These DNNs are trained with different loss functions, namely cross-
entropy, balanced cross-entropy to handle class imbalance, and the focal loss [56] which
enables focusingmore onmisclassified data. Using an ensemble enables recycling the best
DNNs obtained during training, and overcoming some weaknesses of every single model
in the ensemble. Training one of the DNNs used in this ensemble on a Nvidia Quadro
K5200 GPU takes about 2h on average in our case.
An important aspect of our classification problem is the preprocessing step, in which

thermal loadings are prepared to be fed into neural networks. Thermal loadings in T are
represented by their corresponding random temperature fields reached at t = 1. These
temperature fields are projected onto a 38 × 17 × 4 regular grid defined on a bounding
box surrounding the solid body, see Fig. 8. For the grid’s vertices being inside �, the value
of the temperature is evaluated using the finite-element shape functions, while vertices
being outside � are assigned a zero value. This procedure gives a 3D bitmap image of the
temperature field, represented by a third-order tensor. Thanks to this tensorial represen-
tation, 3D convolutional filters can now be applied to extract features of the input data,
like 2D convolutional filters do for image analysis. For fully-connected networks, although
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Fig. 8 Input tensor. Bounding box used to get a 3D image of a temperature field to be fed into DNNs

Table 1 Accuracies of the classifiers composing the
ensemble

Model Type Loss function Test accuracy (%)

1 FC Cross-entropy 72.50

2 FC Balanced cross-entropy 71.90

3 FC Focal loss 67.95

4 FC Focal loss 68.45

5 CNN Cross-entropy 72.05

6 CNN Cross-entropy 72.45

7 CNN Cross-entropy 73.75

8 CNN Balanced cross-entropy 72.00

9 CNN Focal loss 69.45

10 GAP-CNN Cross-entropy 63.05

11 GAP-CNN Cross-entropy 68.00

12 GAP-CNN Balanced cross-entropy 70.05

Ensemble Unweighted averaging – 80.00

Table 2 Classification results

Class Precision Recall F1-score Support

0 0.92 0.92 0.92 421

1 0.80 0.73 0.76 335

2 0.66 0.70 0.68 263

3 0.66 0.73 0.69 280

4 0.77 0.74 0.75 326

5 0.92 0.90 0.91 375

Micro avg – – 0.80 2000

Macro avg 0.788 0.787 0.785 2000

Weighted avg 0.805 0.800 0.800 2000

the third-order tensor is flattened, the projection on the grid acts as a subsampling proce-
dure. This preprocessing operation takes about 3 min when the 104 fields are distributed
between 280 computer threads, which means that the projection of a single field takes 5 s.

Analysis of classification results In the present study, when evaluated on the test set, the
ensemble of DNNs reaches an accuracy of 80%, whereas accuracies of its base classifiers
range from 63.05 to 73.75%, see Table 1. As expected, ensemble averaging reduces over-
fitting and thus improves the ability of the classifier FK to generalize to new unseen data.
Table 2 summarizes the values of precision, recall and F1-score. Figure 9 gives the confu-
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Fig. 9 Confusion matrix. Confusion matrix obtained on test data with the ensemble of DNNs

sion matrix, whose coefficient (i, j) is the percentage of examples of class i being assigned
to class j. This matrix is diagonally dominant here, indicating that the predicted class
usually corresponds to the true class. Because of the elongated aspect of the dataset and of
the numerotation adopted here, the tridiagonal aspect of the confusion matrix indicates
that misclassified examples are assigned to neighbouring clusters. This result can also be
observed when visualizing misclassified examples on MDS plots, see Figs. 10, 11 and 12.
On these figures, one can clearly see that misclassified examples of class i are mostly
located close to the border between the i-th cluster and its neighbours. This is actually
a nice property, because it means that when the ensemble fails to select the appropriate
reduced-order model in the dictionary, it returns a reduced-order model that covers a
part of the manifold that is close to the target one.

Evaluation of the methodology and discussion

Let us quickly summarize what has been done up to that point. A dataset of 104 thermal
loadings has been generated with a stochastic model. Its ROM-oriented dissimilarity
matrix has been computed. Based on this matrix, the dataset has been split into K = 6
clusters with k-medoids clustering algorithm. An ensemble of DNNs has been trained
to assign new unseen thermal loadings to the best clusters using the ensemble averaging
method.
When considering a new thermal loading, true cluster assignment requires one simpli-

fied simulation (5 min) and the computation of six Grassmann distances (less than 1 s).
On the other hand, when using the deep classifier FK , preprocessing operations take 5 s
and the evaluation of the deep classifier is quasi-instantaneous. Hence, the computation
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Fig. 10 Misclassified examples (classes 0 and 1)

Fig. 11 Misclassified examples (classes 2 and 3)

Fig. 12 Misclassified examples (classes 4 and 5)

time for the selection of the best reduced-order model is decreased by a factor of 60 when
using the ROM-net’s deep classifier FK instead of the true classifier KK .
The clustering of the thermal loading database T with the ROM-oriented dissimilarity

has defined 6 clusters which can be used to construct a dictionary of 6 local ROMs. Let
us compare our methodology with another approach consisting in the construction of a
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Fig. 13 Distributions of intra-cluster ROM-oriented dissimilarities

temperature-based ROM-dictionary DT . Such a dictionary comes from a direct cluster-
ing of the input space, that is, a k-medoids clustering of T using distances between the
temperature fields evaluated at t = 1. This clustering only considers the input data and
does not use simplified simulations to account for mechanical phenomena. Hence, cluster
assignment is directly obtained by taking the minimum distance to clusters’ medoids. In
this case, there is no need for DNNs since the cost of the classification task is negligible.
However, clustering high-dimensional data leads to meaningless results due to the loss
of contrast in pairwise distances. This problem is known as the curse of dimensionality
[19] and appears naturally when dealing with fields defined on a finite-element mesh. To
overcome this difficulty, dimensionality reduction techniques must be applied prior to
clustering. Distances are calculated in the low-dimensional latent space, whose dimen-
sion is a hyperparameter. In this paper, principal component analysis (PCA) is applied for
linear dimensionality reduction with 30 principal components, the dimension 30 being a
compromise between large dimensions and low dimensions discarding too much infor-
mation.
The values δ(Ti, Tj) for two inputs Ti, Tj belonging to the same cluster are called intra-

cluster ROM-oriented dissimilarities. The distributions of intra-cluster ROM-oriented
dissimilarities for the ROM-net RK and temperature-based dictionaries are shown on
Fig. 13. The distribution obtained with a temperature-based dictionary does not depend
on the number of clusters, and coincides with the distribution of dissimilarities δ(Ti, Tj)
obtained without imposing the inputs Ti, Tj to belong to the same cluster.
This result shows that a distance on temperature fields does not lead to local ROMs for

theGrassmann distance in the present application. However, in the context of ROM inter-
polation, the Grassmann distance was shown to be the adequate concept when manipu-
lating ROMs [25,27,28]. Because of the complex interactions between the thermal and the
mechanical loadings, direct clustering in the space of temperature fields is not appropriate
for the mechanical problem presented in this paper.
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Fig. 14 Temperature-based clustering results visualized on the MDS plot of the dissimilarity matrix δ

When using some dissimilarity measure δ′ for clustering in order to build a ROM-
dictionary, the comparison of the distribution of intra-cluster ROM-oriented dissimilari-
tieswith the global distribution of ROM-oriented dissimilarities can be used as a validation
criterion. If these distributions are similar, it means that the dissimilarity measure δ′ does
not provide local ROMs for the Grassmann distance. In this case, a dictionary-based
ROM-net should be used with the ROM-oriented dissimilarity measure based on the
Grassmann distance.
Figure 14 gives another visualization of the results shown on Fig. 13. It illustrates cluster-

ing results obtained for a temperature-based dictionary with 13 clusters. Points belonging
to the same cluster have the same color. The high dispersion of the points assigned to a
given cluster proves that direct clustering of the input space does not lead to local ROMs
for the Grassmann distance.
These promising results highlight the potential of dictionary-based ROM-nets. Once

clusters have been defined, one can construct one local ROM for each cluster, like in
[17,18] where small local ROMs outperform a single global ROM in terms of accuracy
and speed. This study in the context of dictionary-based ROM-nets is underway.

Conclusion
The concept of ROM-net gives a general framework for reduced-order model adaptation
using deep neural networks. In this article, the potential of dictionary-based ROM-nets
has been illustrated on a mechanical problem with nonparametrized variabilities of the
thermal loading. It has been shown that direct clustering of the input space may give
clusters which cannot be exploited to define local reduced-order models. This issue can
be avoided by defining a ROM-oriented dissimilarity involving the Grassmann metric on
results of simplified numerical simulations. Online cluster assignment can be performed
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with a classifier based on deep neural networks to bypass numerical simulations, which
reduces the computation time by a factor of 60.
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Appendix A: Stochastic model for the thermal loading
In the training procedure, uncertainties on the thermal loading are represented by a
stochastic model generating zero-mean fluctuations around a reference temperature field
Tref : � → R. Random temperature fields are generated following a three-step procedure
based on the assumption of a linear thermal behavior:

• Step 1: compute temperature fluctuation modes on the solid’s boundary ∂�;
• Step 2: for each mode, solve the heat equation with Dirichlet boundary conditions

being defined by the mode itself. Solutions of these heat equations give bulk fluctua-
tion modes Av

i satisfying the heat equation;
• Step 3: draw a random linear combination of the bulkmodes, denoted by τ : �×� →

R, and superpose it with the reference temperature field to obtain a realization of the
random temperature field.

More precisely, the random field τ is defined using independent and identically dis-
tributed random variables yi following the standard normal distributionN (0, 1):

∀θ ∈ �, ∀x ∈ �, τ (x, θ ) =
Nmodes∑

i=1
yi(θ )Av

i (x) (35)

Consequently, τ is a Gaussian random field. To avoid getting unrealistic temperatures
when superposing the reference temperature field with the random fluctuations, values

https://gitlab.com/drti/basic-tools
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below zero Kelvin or beyond the melting point are truncated. The resulting random
temperature field T : � × � → R satisfies the condition:

∀x ∈ �, E [T (x, .)] ≈ Tref(x) (36)

where E denotes the mathematical expectation. Errors in this equation are negligible,
since truncated values fall into the tail of the distribution.
The procedure for the construction of temperature fluctuation modes on ∂� in step 1

follows the ideas of [57]. An isotropic correlation function is defined:

ρ(x, y) = ρ(d(x, y)) = exp
(

−d(x, y)
d0

)
(37)

where d(x, y) is the geodesic distance computed on the surface ∂�. Geodesic distances
are calculated thanks to the algorithm developed by Mitchell, Mount and Papadimitriou
[58] and implemented in [59], see [60] for the code. In practice, geodesic distances are
only evaluated between nodes of the finite-element mesh. After having computed the
correlationmatrixCij = ρ(xi, xj) and defined a variance vector, one can get the covariance
matrix 	 and find A such that AAT = 	. The columns of A define the fluctuation modes
on the solid’s boundary.
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