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ABSTRACT 

Silicon nanophotonics represents a scalable route to deploy complex optical integrated circuits for multifold applications, 

markets, and end-users. Most recently, applications such as optical communications and interconnects, sensing, as well 

as quantum-based technologies, among others, present additional opportunities for integrated silicon nanophotonics to 

expand its frontiers from laboratories to industrial product development. Within a wide set of functionalities that silicon 

nanophotonic chips can afford, the availability of low-loss optical input/output interfaces has been regarded as a major 

practical obstacle that hampers long-term success of integrated photonic platforms. Indeed, fiber-chip interfaces based 

on diffraction gratings are an attractive solution to resonantly couple the light between planar waveguide circuits and 

standard single-mode optical fibers. Surface grating couplers provide much more alignment tolerance in fiber attach 

compared with most conventional edge-coupled alternatives, while retaining the much-needed control of the fiber 

placement on the chip surface and wafer-level-test capability that the in-plane convertors lack. Here, we report on our 

recent advances in the development of high-performance fiber-chip grating couplers that exploit the blazing effect. This 

is achieved with well-established dual-etch processing in interleaved teeth-trench arrangements or using L-shaped 

grating-teeth-profile geometries. The first demonstration of the L-shaped-based grating coupler yielded a coupling loss 

of -2.7 dB, seamlessly fabricated into a 300-mm foundry manufacturing process using 193-nm deep-ultraviolet stepper 

lithography. Moreover, silicon metamaterial L-shaped fiber couplers may promote robust sub-decibel coupling of light, 

reaching a simulated coupling loss of -0.25 dB, while featuring device layouts (>120 nm) compatible with lithographic 

technologies in silicon semiconductor foundries. 

Keywords: silicon photonics, complementary metal-oxide semiconductor technology, fiber-chip optical interface, 

surface grating couplers, sub-wavelength grating metamaterials, deep-ultraviolet lithography, immersion lithography 
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1. INTRODUCTION 

Silicon (Si) nanophotonics has been recognized as a viable integration technology to realize compact optical chips. For 

Si nanophotonics, silicon-on-insulator (SOI) substrates have been established as prominent and widely accessible 

material platforms for many applications, markets, and end-users
1-3

. Although pure SOI platforms, with Si as a 

waveguide core, definitely lacks active on-chip functionalities
4-8

, the fundamental passive function of light guiding is 

their key advantage
9,10

. Moreover, dense integration ability, low-cost fabrication, high-yield production within Si-

foundry-compatible environment are other advantages offered by SOIs.  

However, device miniaturization to sub-micron scales complicates coupling of light to or from high-index-contrast SOI 

chips. Direct butt-coupling is largely inefficient, with losses in excess of -30 dB. The coupling is particularly difficult 



 

 
 

 

due to the mismatch in mode sizes between Si waveguides and standard single-mode optical fibers
11-14

. This is a serious 

obstacle for many nanophotonic applications in areas such as communications, interconnects, or quantum information 

sciences, amongst other. The quest for low-loss light coupling in and out of the chip drives the development in SOI 

nanophotonics for many years and definitely remains a very active research area
12-14

. In this buoyant field, edge-

coupled
15-20 

and grating-coupled
21-56 

optical interfaces are leading solutions.  

With edge couplers, low loss, low polarization dependence, and wideband operation are typically obtained. However, 

limited positioning on chip edges, the call for high-quality facet preparation, and tight alignment tolerances are 

drawbacks that make them less-suited for wafer-scale testing. In opposite, surface grating couplers have a much better 

alignment margins to fiber attach and enable straightforward on-wafer tests. The latter feature not only facilitates 

integration
21

 and packaging
22

, but also bring considerable value in terms of early-stage error detection, mass-volume 

deployment, or process automation
23,24

. 

A large number of different grating couplers has been proposed and demonstrated over the course of recent years. The 

state-of-the-art surface grating couplers, both in designs and experiments, may give coupling loss well below 1-dB 

across the near-infrared (near-IR) wavelengths. These achievements are close to the best reported values for edge 

couplers. Of course, due to the dispersive operation principle of grating coupler, those levels of coupling loss are 

associated with lower bandwidths, typically of about 30-nm to 40-nm for a 1-dB drop. Leading approaches for sub-

decibel (sub-dB) grating coupler designs are schematically summarized in Fig. 1.  

 

Figure 1. State-of-the-art approaches to couple light between SOI chip and single-mode optical fiber with a sub-decibel loss 

using surface grating couplers: backside-processed SOIs with (a) metal mirror28-34 and (b) Bragg reflector21,23,35,36, (c) over-

layered waveguides37-40, (d) multi-level arrangements42-46, (e) interleaved geometry48-50, and (f) L-shaped profile51-56.  

Improved coupling loss between SOI chips and optical fibers can be obtained by forming bottom metal mirrors
28-34

 or 

Bragg reflectors
21,23,35,36

, both embedded at the chip backside, as shown in Figs. 1(a) and 1(b), respectively. However, 

local claddings adjustment, backside substrate processing, or flip-chip bonding are steps that bring more complexity in 

fabrication, and thus increase the production cost. As an alternative, the coupling loss can be enhanced by engineering 

the vertical device symmetry
37-56

. The broken device symmetry yields improved coupling in a desired direction. In a 

simplest case, this can be achieved through structures with custom-designed SOIs or etching depths
25-27

. More advanced 

solutions include low- and high-index overlays
37-40

 or multi-layer
41

 and multi-level
42-46 

grating architectures, as shown in 

Figs. 1(c) and 1(d), respectively. In recent years, we elaborated on low-loss grating couplers in SOI waveguides that 

exploit an unique blazing effect. In blazed coupler designs, the radiation performance is controlled with two asymmetric 

scatterers realized thanks to two different etch levels, typically used in waveguide and/or device fabrication
48,49

. Such 

grating arrangement allows for a full control over the interference pattern within the device. Fiber-chip grating couplers 

based on interleaved
48-50

 (Fig. 1(e)) and L-shaped
51-56

 (Fig. 1(f)) waveguides have been demonstrated, showing a rather 



 

 
 

 

good potential for low-loss Si chip interfacing. Moreover, this design concept can also be optimized for a vertical 

coupling in two polarization states
53

 or even exploited in different waveguide platforms
55,56

. 

In this work, we present our recent advances in development of low-loss fiber-chip grating couplers implemented on SOI 

waveguides. In specific, high-performance fiber-chip grating couplers exploit the unique blazing effect. This is achieved 

via established double-etch processing using L-shaped grating-teeth-profile geometry. The uniform L-shaped coupler 

yielded a coupling loss of -2.7 dB, seamlessly fabricated into a 300 mm Si-foundry process with 193-nm deep-ultraviolet 

stepper lithography
51

. Moreover, Si metamaterial-engineered L-shaped fiber couplers may promote robust coupling of 

light between SMF-28 fibers and SOI waveguides. Simulation suggest a fiber-chip coupling loss down to -0.25 dB, 

while device layouts remain compatible with established patterning technologies in Si nanophotonic foundries
54

. 

The manuscript is organized as follows. After the introductory Section 1, uniform designs and experimental results on L-

shaped waveguide grating coupler are described in Section 2. In Section 3, L-shaped coupler designs engineered with 

sub-wavelength gratings are presented. Finally, conclusions are drawn in Section 4. 

2. UNIFORM L-SHAPED GRATING COUPLERS 

Figure 2 shows a three-dimensional (3D) schematic of a fiber-chip grating coupler with an L-shaped waveguide profile.  

 

Figure 2. 3D Schematic of an uniform off-chip fiber coupler with an L-shaped grating-teeth-profile. Inset: Side view of the 

surface grating coupler with vertical (hw and he) and longitudinal (ld, ls, ln, and Λ) device parameters. 

The coupler is designed for a SOI platform with 310-nm Si (hw) and 720-nm buried oxide (BOX). The grating coupler 

features on L-shaped geometry with deep (hw =300 nm) and partial (he = 150 nm) etches that form a diffraction grating 

with the pitch (Λ), full- and shallow-etch trenches of lengths ld and ls, respectively, and unetched Si segments of length 

ln). Grating coupler maximizes transmission for transverse electric (TE) polarization at a wavelength of 1.55 μm. 

 

Figure 3. 2D mapping of the grating directionality versus lengths of the shallow-etch trenches and unetched teeth for various 

lengths of deep-etch trenches: (a) ld = 50 nm; (b) ld = 100 nm; (c) ld = 150 nm; and (d) ld = 200 nm.  

Figure 3 shows a collection of 2D maps of a grating coupler directionality as functions of all three longitudinal 

dimensions (lengths of deep- and shallow-etch trenches (ld and ls) as well as the unetched grating coupler segments (ln)). 

The grating directionality, defined a ratio between optical power radiated towards an optical fiber situated above the chip 



 

 
 

 

and an optical power radiated into the bottom Si handle. Simulations reveal that exceptional levels of grating 

directionality can be achieved, typically larger than 90% for a wide range of device dimensions. However, due to the 

large index discontinuity between the Si access waveguide and deep-etch grating trench, large back-reflection in 15% - 

30% range typically appear at this junction. An uniform coupler has following parameters
51

: ld = 120 nm, ls = 290 nm, ln 

=310 nm, Λ = 710 nm, and 30 diffraction periods. 

 

Figure 4. Results (design, experiments, and SEM images) on L-shaped fiber-chip grating couplers without (from (a) to (c)) 

and with (from (d) to (f)) a short SWG reflection-canceling region. 

Figure 4 shows design and experimental results for uniform L-shaped grating couplers without (in Figs. 4(a) to 4(c)) and 

with (in Figs. 4(d) to 4(f)) a short reflection-canceling region
51

. This region was implemented at the beginning of the 

coupler thanks to the SWG metamaterials, i.e. interleaved etched and unetched Si segments with a periodicity much 

lower that the 1
st
 Bragg reflection zone

9,10
. The reflection-canceling region was positioned in a transversal grating 

direction (see scanning electron microscopy (SEM) image of device in Fig. 4(f)). In theory, both grating coupler designs 

provided a high directionality up to 97% at 1.55 µm. Moreover, substantial decrease in grating back-reflections was 

obtained for design with a short SWG region. Back-reflections were reduced from 16% down to 2% at 1.55 µm for 

grating couplers without and with a SWG region. Spectral evolution of the grating directionality (D) and reflectivity (R) 

is shown in insets of Figs 4(a) and 4(d), respectively. Both coupler designs yielded a coupling loss of -2.1 dB.  

L-shaped grating couplers were fabricated on 300 mm SOI platform using Si-foundry process in STMicroelectronics. 

Experimental results for designs without and width SWG region are shown in Figs. 4(b) and 4(e), respectively. Coupling 



 

 
 

 

losses of -3.4 dB and -2.7 dB were measured, with a -3dB bandwidths of 46 nm and 62 nm, respectively, for respective 

L-shaped grating couplers. Furthermore, from Fabry-Perot ripples, we estimated back-reflections of about 8% and 1% 

for designs without and with a short SWG region
51

. 

3. APODIZED L-SHAPED GRATING COUPLERS 

Figure 5 shows a 3D schematic and a part of mask layout for an apodized L-shaped surface grating coupler engineered 

with SWG metamaterials. The apodized coupler region comprises full- and shallow-etch trenches with a synthesized 

subwavelength grating (SWG) metamaterial, followed by a uniform coupler region. This concept jointly provides 

enough degrees of design freedom to control the grating directionality and out-radiated field profile of the grating mode 

simultaneously. Design details are reported elsewhere
54

. As shown earlier, the grating directionality is controlled via 

longitudinal parameters, while SWG metamaterials in the grating trenches allow for proper field matching between 

profiles of the diffracted beam and the near-Gaussian mode of the SMF-28 fiber. 

 
Figure 5. 3D schematic of an apodized off-chip fiber coupler with an L-shaped grating-teeth-profile and SWG 

metamaterials. Inset: Top view on the mask layout of an L-shaped grating coupler with 3 apodized periods.  

L-shaped grating couplers with engineered SWG metamaterials can yield a low-loss towards a SMF-28 optical fibers. 

Figure 6(a) sums up the simulated coupling loss between an integrated Si waveguide coupler with apodized L-shaped 

profile and an optical fiber. The 2D map of fiber-chip coupling loss, was calculated at a wavelength of 1.55 µm as 

functions of the number of apodized grating periods (npa = 1 to 10) and the minimum width of the etched SWG holes up 

to 200 nm. It can be observed that a wide set of grating coupler designs can be chosen to afford robust coupling with 

losses below 1 dB.  

 

Figure 6. (a) 2D map of simulated coupling loss of apodized L-shaped grating couplers versus the number of apodized 

periods and minimum feature size of the SWG holes. Simulated performance of apodized L-shaped grating couplers as a 

function of a minimum feature size of lateral SWG holes for different number of apodized periods: (b) coupling loss and (c) 

back-reflections.  



 

 
 

 

Detailed look on the estimated performance (coupling loss and back-reflections) of L-shaped grating couplers is shown 

in Figs. 6(b) and 6(c), respectively. Figure 6(b) shows a coupling loss versus critical dimensions of SWG holes and this 

for different apodized grating coupler designs. Indeed, sub-dB coupling losses were calculated for considered grating 

coupler designs over a wide range of minimum feature sizes. The L-shaped grating coupler designs are well-suited to 

keep low levels of fiber-chip coupling loss for a significantly relaxed criteria on minimum feature sizes. In other words, 

the proposed grating coupler designs are compatible with established lithographic technologies typically used in Si-

foundries, including emerging high-end immersion lithography (critical dimensions of ~50 nm) as well as more 

conventional deep-ultraviolet optical lithography (critical dimensions typically larger than 100 nm). The grating coupler 

reflectivity versus critical dimensions of SWG holes is shown in Fig. 6(c). The calculated back-reflections of apodized 

L-shaped grating couplers is found to be typically below -20 dB for available range of critical dimensions. 

4. CONCLUSIONS 

In this work, we reported on recent results in development of low-loss fiber-chip grating couplers implemented on SOI 

waveguides. Low-loss fiber-chip grating couplers exploited the unique blazing effect thanks to established double-etch 

processing with a robust L-shaped waveguide geometry. The uniform grating coupler was seamlessly fabricated into a 

300 mm Si-foundry process with 193-nm deep-ultraviolet lithography, yielding a peak coupling loss of -2.7 dB and 

back-reflections of about -20 dB. Moreover, Si metamaterial-engineered L-shaped fiber couplers were developed to 

promote robust coupling of light between SMF-28 fibers and SOI waveguides. Simulation suggested a fiber-chip 

coupling loss down to -0.25 dB, while device layouts are still compatible with available lithographic technologies 

presently used in Si nanophotonic foundries. This work holds promises to further develop robust, reliable, and low-cost 

optical interfaces in integrated Si nanophotonics. 
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