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Abstract: The availability of low-loss optical interfaces to couple light between standard 
optical fibers and high-index-contrast silicon waveguides is essential for the development of 
chip-integrated nanophotonics. Input and output couplers based on diffraction gratings are 
attractive coupling solutions. Advanced grating coupler designs, with Bragg or metal mirror 
underneath, low- and high-index overlays, and multi-level or multi-layer layouts, have proven 
less useful due to customized or complex fabrication, however. In this work, we propose a 
rather simpler in design of efficient off-chip fiber couplers that provide a simulated efficiency 
up to 95% (−0.25 dB) at a wavelength of 1.55 µm. These grating couplers are formed with an 
L-shaped waveguide profile and synthesized subwavelength grating metamaterials. This 
concept jointly provides sufficient degrees of freedom to simultaneously control the grating 
directionality and out-radiated field profile of the grating mode. The proposed chip-to-fiber 
couplers promote robust sub-decibel coupling of light, yet contain device dimensions (> 120 
nm) compatible with standard lithographic technologies presently available in silicon 
nanophotonic foundries. Fabrication imperfections are also investigated. Dimensional offsets 
of ± 15 nm in shallow-etch depth and ± 10 nm in linewidth’s and mask misalignments are 
tolerated for a 1-dB loss penalty. The proposed concept is meant to be universal, which is an 
essential prerequisite for developing reliable and low-cost optical couplers. We foresee that 
the work on L-shaped grating couplers with sub-decibel coupling efficiencies could also be a 
valuable direction for silicon chip interfacing in integrated nanophotonics. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Silicon-on-insulator (SOI) has become a prominent material platform that has proved useful 
for monolithic nanophotonic integration. Using silicon (Si) as a waveguide core enables the 
realization of compact components with unique prospects in chip complexity, integration 
density, and manufacturing volumes [1–8]. 

However, scaling device size towards sub-micrometer dimensions complicates optical 
chip interfacing, particularly due to the largely disparate mode dimensions of Si waveguides 
and standard single-mode optical fibers [9–13]. This imposes a serious hurdle for high-speed 
interconnects, communication links and hubs, as well as quantum information sciences, 
among others. The presence of efficient input and output optical interfaces drives the 
development in SOI nanophotonics and also remains a very active area of research [11–13], 
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where optical couplers based on inverse tapers [14–20] and diffraction gratings [21–57] are 
routinely adopted solutions. 

Edge couplers [14–20], with a high coupling efficiency and low polarization sensitivity 
are favorable for wideband applications, although they significant require post-fabrication 
treatment. Wafer dicing, high-quality facet preparation, and high-resolution optical alignment 
are drawbacks of facet couplers, making them less-suited for on-wafer testing. Surface grating 
couplers [21–57], on the other hand, are narrowband and polarization selective devices. They 
afford a number of distinctive advantages, which strongly facilitate both integration [21,22] 
and packaging [23,24]. This includes flexible placement on the chip surface and rapid circuits 
testing using automated wafer-scale accessories. Moreover, the out-of-plane couplers are 
typically more forgiving to alignment variation in fiber attachments. 

Extensive research on grating coupler designs has been reported over recent years. 
Generally, there are two factors that combine together to hamper overall fiber-to-chip 
coupling: the fiber-grating field profile mismatch and the light leakage towards bottom Si 
substrate [11–13]. The former is overcome by grating coupler apodization, while the latter 
typically require more complex design interventions. To prevent the light leakage towards Si 
substrate, the thin-film interference at the interface between the buried oxide (BOX) and the 
Si substrate can be exploited. In particular, substantially improved coupling efficiency has 
been achieved by forming bottom mirrors embedded at the chip backside via Bragg 
[21,23,34–36] or metal mirrors [37–40], respectively. However, local BOX thinning, backside 
wafer processing, or flip-chip bonding introduce additional complexity in fabrication and 
increase the production cost. Alternatively, the efficiency can also be improved by breaking 
the vertical device symmetry [41–57]. The out-of-plane asymmetry favors improved coupling 
in a desired direction (typically towards optical fiber situated above the chip), while 
minimizing the light radiation into the Si substrate. Different approaches have been devised, 
including low- and high-index overlays [41–44], multi-layer, and multi-level grating 
architectures [45–50]. Although low-loss fiber-to-chip couplers have been reported, such 
designs typically require either customized SOI substrates or intended process steps, which 
however, differ considerably from recent standards in open-access platform offerings through 
foundry sharing initiatives [7,8]. 

Most recently, we have proposed and experimentally demonstrated efficient grating 
couplers that exploit the unique blazing effect by using only dual-etch fabrication process 
[51,52]. Here, the radiation performance is controlled through a set of asymmetric scatterers 
that yield constructive (destructive) interference in the upwards (downwards) direction. 
Surface grating couplers with interleaved [51–53] and L-shaped [54–57] waveguide 
geometries have been reported, both showing a broader potential for efficient fiber-to-chip 
coupling. Moreover, blazed dual-etch grating couplers are easy to design and can also be 
exploited in different waveguide platforms [56,57]. Despite advances achieved recently, as far 
as we are aware, surface grating couplers with a robust sub-decibel performance and device 
layouts compatible with industrial-scale manufacturing have yet to be developed. Here, we 
propose off-chip fiber couplers that meet such challenges and could present a valuable route 
for Si chip interfacing with zero changes to the existing manufacturing flow. 

2. Grating coupler optimization 

Schematic views of the proposed chip-to-fiber grating coupler are shown in Fig. 1. The 
coupler design is implemented on SOI platform with 300-nm Si (hw), 720-nm BOX, and a 
silicon dioxide (SiO2) as a surrounding medium. The refractive index of Si and SiO2 is 3.476 
and 1.444, respectively. The grating coupler is based on L-shaped geometry with full (hw = 
300 nm) and shallow (he = 150 nm) etch trenches. The diffraction structure is defined via the 
grating period (Λ) with deep- and partial-etch trenches (with lengths ld and ls), and a non-
etched Si slab (with length ln). Fiber-to-chip grating couplers are designed for transverse 
electric (TE) polarization and operation at 1.55 µm wavelength. For device design and entire 
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dB and it is accompanied by noticeable spectral shift. For a 1-dB coupling penalty, 
dimensional offsets of ± 10 nm are tolerated, as shown in the inset of Fig. 7(b). 

4. Conclusions 

We proposed an efficient chip-to-fiber grating couplers to enable a low-loss interconnectivity 
between integrated SOI nanophotonic circuits and standard single-mode optical fibers. The 
grating couplers were formed with L-shaped waveguide profile and synthesized SWG 
metamaterials. This device arrangement is favorable for providing enough degrees of freedom 
to alter the grating directionality and radiated field profile, with overall fiber-chip coupling 
efficiency approaching 95% (−0.25 dB) at a wavelength of 1.55 µm. Moreover, apodized L-
shaped grating couplers were designed for robust sub-decibel coupling and device layouts 
compatible with lithographic technologies for mass-scale production (> 120 nm). Tolerance 
analysis suggested that dimensional offsets up to ± 15 nm can be tolerated, with a 1-dB loss 
penalty. Overall, our work holds promises to further the development of robust, reliable, and 
low-cost off-chip fiber couplers within available silicon-foundry-compatible processing 
nodes. This result may provide a crucial edge in building future optical interfaces in large-
volume chip-integrated nanophotonics. 
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