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Abstract—Optical interconnects are promising alternatives to 

copper-based wirings in on-chip communications. Recent 

advances in integrated group-IV nanophotonics should address a 

range of challenges related with speed, energy consumption and 

cost. Monolithically integrated germanium pin photodetectors on 

silicon-on-insulator (SOI) waveguides are indispensable devices 

in this buoyant research field. Here, we comprehensively 

investigate the opto-electrical properties of hetero-structured pin 

photodetectors. All photodetectors were fabricated on top of 200-

mm SOI substrates using industrial-scale semiconductor 

manufacturing processes. Under a low-bias voltage supply of 1 V, 

pin photodetectors exhibit dark-currents from 5 nA to 100 nA, 

dark current densities from 0.404 A/cm2 to 0.808 A/cm2, 

responsivities in a range of 0.17 A/W to 1.16 A/W, and cut-off 

frequencies from 7 GHz to 35 GHz, respectively. Such 

achievements make them promising for use in power-efficient 

optical links operating at 40 Gbps, with a device energy 

dissipation of only few fJ per bit. 

 
Index Terms—Complementary metal-oxide-semiconductor 

technology, germanium photodetectors, inter- and intra-chip 

interconnects, optical communications, silicon nanophotonics. 

 

I. INTRODUCTION 

PTICAL interconnects has superseded electrical wirings 

for  inter and intra-chip links due to the performance 

limits of the latter. Driven by the exponential growth in 

Internet traffic and portable digital communications, optical 

solutions are looking increasingly promising not only for long-

haul fiber systems, but also in emerging industries such as 

short-reach data centers, clouds or high-performance 
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computing, amongst other. Therefore, optical interconnects at 

the chip-scale level are presently used to address a range of 

challenges associated with affordable speed, energy 

consumption and cost [1-6]. 

 Recent advances in nanophotonics yielded compact and 

high-performance devices on a single chip [5, 6]. 

Nanophotonics is notably based on a class of materials known 

as group-IV elemental semiconductors such as silicon (Si) and 

germanium (Ge) [7-12]. 

Si, an indirect bandgap material with an energy of 1.1 eV, is 

an excellent material for low-loss waveguides and high-

performing passive devices at near-and mid-infrared (near- 

and mid-IR) wavelengths [1, 9-11]. In contrast, Ge with its 

direct bandgap energy of 0.8 eV only, provides several 

distinctive advantages and complementarities over Si chips 

and addresses major Si limitations [1]. Optical absorption is 

indeed high in Ge over the 1.3 – 1.55 µm wavelength range 

used for fiber-optic communications. The epitaxy of Ge over 

Si has otherwise progressed tremendously over the last twenty 

years. Finally, mature process steps using complementary 

metal-oxide-semiconductor (CMOS) tools and procedures are 

nowadays available to process Ge-based devices [11, 12]. 

Intensive efforts are underway to use Ge and/or Ge-based 

alloys for light emission [13], modulation [14, 15], and 

detection [16]. In this active research field, the synergy 

between mature semiconductor manufacturing infrastructure, 

high fabrication yield, and low fabrication cost is the key for 

future monolithic integrated circuits [7, 8]. 

Ge-based photodetectors have been extensively studied 

since the late 1990s [17-39]. Nowadays, Ge photodetectors 

have performance metrics, which are close to that of III-V 

materials. Ge detectors are currently available in open-access 

platform offerings through foundry sharing initiatives [8], as 

they are compatible with other passive and active devices on 

standard silicon-on-insulator (SOI) platforms. 

Ge photodetectors integrated at the end of optical 

waveguides are more appealing for nanophotonics than 

surface-illuminated devices. In a wave-guided on-chip 

detection scheme, the optical absorption path is indeed de-

coupled from the carrier collection path. In other words, light 

absorption occurs along the optical mode propagation 

direction and perpendicularly to the carrier collection path. 
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This approach advantageously circumvents the conventional 

design trade-off between device responsivity (quantum 

efficiency) and device speed (opto-electrical bandwidth) and 

fits modern CMOS processes [1, 16]. Since the first successful 

implementation of this concept by Ahn, et al., a large number 

of architectures have been proposed and experimentally 

demonstrated. Ge homo-junction [17-31] and Si-Ge-Si hetero-

junction [32, 35-40] photodetector arrangements have notably 

been evaluated. Both types of devices consist in pin junction 

arrangements, with a light absorption occurring in the intrinsic 

regions. The performances of full-Ge devices are hindered by 

process issues and optical considerations (i.e. no light 

confinement in the intrinsic detector region). In homo-

junctions photodetectors, ion implantation is used to fabricate 

heavily n-type and p-type doped side regions, which then have 

to be contacted to metal via. Both process steps are not as 

performant in Ge as in Si. This results in slower responses, 

reduced photo-responsivities, and higher dark-currents in 

homo-junction structures [17-31]. In contrast, hetero-

structured Ge photodetectors with full Si via-contacts and 

doping scheme avoid Ge processing issues and might 

substantially simplify the process flow [32, 35-40]. For 

example, the same masking, ion implantation, and metal 

contacting steps can be used for the fabrication of active 

optical link components such as Si modulators and Si-Ge-Si 

photodetectors [41]. This architecture also leads to the flexible 

control of the light confinement in the intrinsic region. Such 

photodetectors have been realized and demonstrated with 

significantly improved performances in near-IR wavelengths 

[32,35-40].

 
Fig. 1. Optical micrograph images of waveguide-integrated pin photodetectors 

with lateral silicon-germanium-silicon hetero-junctions: (a) Full array of 
devices and (b) close-up view of some structures. (c) Cross-sectional 

schematics of the photodetector with a lateral silicon-germanium-silicon 

heterojunction integrated at the end of the silicon-on-insulator waveguide. 
Light coming from an input strip waveguide is injected into the intrinsic Ge 

region perpendicularly to the schematics. Inset: Scanning electron microscopy 
image of a fabricated pin photodetector. 

 

In this work, we comprehensively investigate the properties 

of optical photodetectors with lateral Si-Ge-Si heterojunctions. 

All photodetectors are integrated at the end of conventional Si 

waveguides on 200 mm SOI substrates and are readily 

compatible with industrial-scale semiconductor manufacturing 

processes. Capitalizing on our previous efforts [39, 40], in this 

work, we provide a detailed experimental study of optical 

photodetectors of different waveguide geometries. The 

resulting Ge photodetectors exhibit promising opto-electrical 

performances in terms of dark-currents, responsivity, 

bandwidth and power consumption. Those devices are suitable 

for the future needs in high-speed links operating at 40 Gbps. 

II. DESIGN, INTEGRATION AND FABRICATION 

 In this work, the Ge photodetectors, shown in Fig. 1, were 

integrated on top of regular SOI waveguide platforms, with 

220 nm thick Si layer on top of 2 µm thick buried oxide 

(BOX) layer. As schematically illustrated in Fig. 1(c), the Ge 

photodetector is a pin diode structure (made of p-doped-type / 

intrinsic (i) / n-doped-type regions) at the end of the Si 

waveguide. The waveguide-integrated Si-Ge-Si pin 

photodetector consists in a Ge light-absorbing layer (intrinsic 

Ge zone, i-Ge) with a thickness of about 260 nm. The Ge layer 

is selectively grown in slits (with ~60 nm thick Si bottom 

layers just above the BOX) sandwiched between n-type and p-

type doped Si slabs (p-Si and n-Si, respectively) with metal 

via contacts on top. 

Surface grating couplers (Fig. 1(b)) were used to inject light 

from a standard optical fiber into the on-chip Si waveguides. 

A C-band wavelength (i.e. 1.55 µm) was selected and a 

transverse electrical (TE) waveguide mode evaluated. Strip 

waveguides were used for low-loss butt-coupling light 

injection into the Si-Ge-Si photodetectors. The input strip 

waveguides, 220 nm thick and 500 nm wide, were designed to 

preserve single-mode propagation. Light funneling into the Ge 

photodetector via the butt-coupling approach is a robust 

injection scheme with no further optimization needed, as the 

Ge intrinsic zone is in direct contact with the input waveguide. 

Devices were fabricated with a simplified process flow and 

conventional CMOS tools in CEA LETI’s cleanroom. We 

used 200 mm SOI wafers, with 220 nm thick Si layer on top of 

2 µm thick BOX. The process was initiated by fabricating the 

passive devices such as fiber couplers and waveguides. The 

main process steps used were: (i) Si waveguide fabrication: 

cap layer formation, ion implantations and Si cavity 

formation; (ii) intrinsic Ge selective epitaxial growth, 

followed by passivation and insulation; and (iii) back-end-of-

line standard CMOS metallization with tungsten (W-type) 

metal plugs and aluminum copper (AlCu) electrodes. The 

detailed description of the fabrication flow can be found in 

Refs. [39, 40]. Optical micrograph images of fabricated optical 

photodetectors are shown in Figs. 1(a) - full detectors array 

and 1(b) - enlarged view with a few devices and surface 

grating couplers. A cross-sectional Scanning Electron 

Microscopy image of a photodetector cross-section can be 

found in the inset of Fig. 1(c). 
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III. PHOTODETECTOR PERFORMANCE: RESULT AND 

DISCUSSION 

 In the following, we describe the various experimental 

characterization techniques and quantify the opto-electrical 

performances of our waveguide-integrated hetero-structured 

Si-Ge-Si pin photodetectors. 

A. Leakage dark-current measurements 

 Dark-currents were evaluated through static current-voltage 

(I-V) measurements without light illumination, as a function of 

the applied reverse bias voltage for various waveguide-

integrated photodetectors. Low-reverse-bias voltages were 

selected for device operation, as they do not degrade the opto-

electrical performances in terms of responsivity and cut-off 

frequency response. Minimizing the operation bias is also 

desired for integration with CMOS circuitry. I-V tests were 

conducted on devices with different widths (wge) and lengths 

(lge) of the intrinsic Ge zone.  More specifically, Ge detector 

widths of 0.3, 0.5, 0.8 and 1.0 µm and lengths of 5, 10, 20 and 

40 µm were considered. Figs. 2 shows the best dark-current 

levels for the various photodetectors. 

 
Fig. 2. (a) Conventional static current-voltage characteristics of hetero-

structured pin photodetectors with different junction areas (age = wge × lge) 
under dark-illuminated conditions. Ge detector widths of 0.3, 0.5, 0.8 and 1.0 

µm and lengths of 5, 10, 20 and 40 µm were investigated. Evolution of the 

leakage dark-currents versus photodetector junction area under 1 V reverse 
bias voltage for Ge widths of (b) 0.3 µm and 0.5 µm, and (c) 0.8 µm and 1.0 

µm, respectively. 

 

Fig. 2(a) shows conventional dark-current curves for pin 

photodetectors with the largest Ge areas (age = wge × lge). 

Under low-bias (in particular, at -1 V bias), dark-currents 

remain low, of the order of a few tens of nA only. The 

maximum dark-currents were consistently measured on the 

largest devices (age = 40 µm2), with values approaching 150 

nA. The measured dark current levels are comparable [32, 33] 

or slightly higher than those achieved with other hetero-

structured pin photodetectors [34-38], yet they are 

substantially lower than many pure homo-junction devices 

[19, 21, 22, 24, 26, 28, 30]. To reach the highest signal-to-

noise ratio (SNR) possible, the dark-current levels should be 

as low as possible. As confirmed above, small-sized 

photodetectors favor low noise operation as dark-currents 

scale with the detector active volume. It is also worth to 

mention that conventional pin photodetectors operated under 

low-bias supplies are typically connected to additional 

receiver electronic circuits with a trans-impedance amplifier 

(TIA) and a limiting amplifier (LA) [30]. In those situations, 

the dark current is not a dominating noise source, as the input-

referred noise of TIA is comparatively larger than the dark 

current. Photodetectors presented in this work exhibit low dark 

current levels, typically well-below 1 µA. This is promising 

for the development of high-speed optical receivers based on 

group-IV nanophotonic platform. Indeed, the dark-current also 

directly increases with the reverse bias and/or the shrinking 

the intrinsic width of the Ge detector. The later trend is due to 

the stronger electric field within the intrinsic Ge zone, as for a 

given reverse bias the electric field increases as the intrinsic 

Ge region width decreases. As shown in Fig. 2(a), there is a 

significant increase of the dark-current with the electric field 

(age = 6, 20 and 32 µm2 devices). Meanwhile, the relatively 

weak electric field present in the largest devices does not yield 

such bias dependence (age = 40 µm2 device). Figures 2(b) and 

2(c) show that the dark-current leakage increases linearly with 

the detector area, this whatever the intrinsic width. All devices 

were biased with a 1 V reverse bias. The mean dark current 

densities for the smallest and the largest devices are in a range 

of 0.404±0.019 A/cm2 to 0.808±0.129 A/cm2, respectively. 

The large dark current densities are attributed to the small 

junction area, as the Ge layer is only ~260 nm thick, and to the 

low to moderate dark current values. 

B. Photo-responsivity measurements 

 To characterize the device responsivity (quantum 

efficiency), we performed additional I-V measurements, this 

time under light illumination. The light generated by a tunable 

laser source was injected from a single-mode optical fiber into 

the Si chip using surface grating couplers. Prior to coupling, a 

polarization controller was used to maximize the grating 

coupler transmission for TE-like waveguide mode and a 

central operating wavelength of 1.55 µm. The output power 

was monitored thanks to an optical power meter, with a 

measured level of about -11 dBm and an estimated uncertainty 

of ±0.25 dB. The device photo-responsivity (rp) was 

calculated as follows [1]: 

 
 

./
c

dcpc

p
p

ii
WAr


  (1) 

Here, ipc and idc stand for generated photo- and dark-currents, 

respectively, and pc is the average optical power coupled into 

the waveguide photodetector. 

 
Fig. 3. Responsivities for a set of waveguide-integrated pin photodetectors 
with lateral silicon-germanium-silicon heterojunctions as functions of the 

applied reverse voltage. The measurements were conducted at a nominal 

wavelength of 1.55 µm. (a) Photodetectors with different junction areas (age = 
wge × lge) and photodetectors with various lengths and widths of the intrinsic 

Ge region: (b) wge = 0.3 µm and (c) wge = 1.0 µm. The measured photo-current 

resulted from an average optical power injected in devices of about –11 dBm.  

  

 Figure 3 shows responsivities of hetero-structured 
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photodetectors with different geometries as functions of the 

applied reverse bias. Fig. 3(a) shows the evolution of the 

photo-responsivity for the largest device areas (age = wge × lge), 

which have the following in-plane geometries: age = 0.3 µm × 

20 µm; 0.5 µm × 40 µm; 0.8 µm × 40 µm and finally, 1.0 µm 

× 40 µm. Meanwhile, Figs. 3(b) and 3(c) show device photo-

responsivities for various Ge lengths, this for 0.3 µm- and 1 

µm-wide devices. 

 Under 0 V bias, the responsivity of hetero-structured Si-Ge-

Si photodetectors remains low, because of the weak built-in 

electric field. In particular, as shown in Fig. 3(a), for device 

junction areas of age = 0.3 µm × 20 µm; 0.5 µm × 40 µm; 0.8 

µm × 40 µm, and finally, 1.0 µm × 40 µm, measured 

responsivities are equal to 0.14 A/W, 0.27 A/W, 0.47 A/W, 

and 0.63 A/W. As expected, the responsivity increases with 

the reverse voltage. This is due to a high electric field within 

the intrinsic Ge region of the photodetector. Such a behavior is 

also associated with a very fast and sharp responsivity 

increase. The responsivity maximum is typically reached at a 

low-bias voltage of -0.5 V. The extracted responsivities in Fig. 

3(a) devices are substantially larger, then: 0.17 A/W, 0.44 

A/W, 0.73 A/W, and 1.16 A/W. Excellent operation at low-

bias shows that Si-Ge-Si pin photodetectors have a marked 

ability to sweep out the vast majority of electron-hole pairs 

within their lifetime. Indeed, high responsivities (>1 A/W) 

were also demonstrated in both full-Ge [19, 21, 22, 24, 25] 

and hetero-structured devices [32, 33, 35]. The responsivity 

increases with the width and the length of the intrinsic Ge 

region. Beyond 0.5 V reverse bias, responsivities reach a 

plateau for the largest devices, with a negligibly low or a 

moderate dependency on the applied reverse bias voltage. The 

evolution of the photo-responsivity with an applied bias is 

more pronounced in devices with narrower widths of the Ge 

intrinsic region. This can likely be attributed to the following, 

jointly acting, factors: (i) The built-in electric field, which is 

higher in narrow than in wide intrinsic regions, results in a 

higher voltage dependency. (ii) The increase of the electric 

field at the interface between the doped Si regions and the 

intrinsic Ge zone enables the E-field to penetrate in the Si 

regions, which can lead to collection of carriers generated 

within the Si-doped slabs and can also it initiate a local impact 

ionization process, producing a small gain of the generated 

current. (iii) A reduced modal confinement within the narrow 

intrinsic Ge region. The later aspect may decrease the 

absorption efficiency in Ge and increase adverse losses 

coming from the higher overlap between the TE-like 

waveguide mode and the heavily doped Si regions. 

 It is obvious, when looking at Fig. 3 data, that waveguide-

integrated pin photodetectors with hetero-structured lateral 

junctions yield very high levels of quantum efficiency (η), 

approaching the theoretical limit of 100%. In other words, pin 

photodetectors built upon lateral Si-Ge-Si heterojunctions 

transform very efficiently incident photons into electrons and 

therefore photo-currents. The quantum efficiency is defined as 

follows [1]: 

  .
24.1

%



pr

  (2) 

Here, rp is the experimentally determined photo-responsivity 

and λ is the reference wavelength of 1.55 µm. Similarly to 

device photo-responsivity, the quantum efficiency scales with 

the lengths and widths of the intrinsic Ge region. Quantum 

efficiency, at 1.55 µm wavelength and with 0.5 V reverse bias, 

is equal to 13.75% for age = 6 µm2, 35.1% for age = 20 µm2, 

58.7% for age = 32 µm2, and 92.8% for age = 40 µm2. 

C. Opto-electrical bandwidth assessments 

 The opto-electrical properties of Si-Ge-Si hetero-structured 

pin photodetectors have been investigated through small-

signal radio-frequency (RF) measurements. A standard RF-test 

set-up and a commercial Lightwave Component Analyzer 

(LCA), including an internal laser source and a modulator, 

provided responses of the S21 parameter over the 0.1 GHz to 

50 GHz range, the latter frequency being the upper limit of the 

LCA. Off-chip light coupling was done thanks to a fiber-chip 

surface grating coupler. The photodetectors under study were 

reversely biased via a bias-tee connected to a source 

measurement unit. 

 
Fig. 4. Radio-frequency responses of the normalized S21 parameter for 

waveguide-integrated pin photodetectors with different widths of the intrinsic 

Ge region under a reverse bias of (a) 1 V and (b) 2 V, respectively. Frequency 
measurements of S21 parameter were performed at a wavelength of 1.55 µm 

with a power coupled into the photodetectors of about -11.4 dBm. Insets: 

Reference and retrieved eye diagrams for 0.8 µm- and 1 µm-wide devices 
under 0 V at a bit rate of 10 Gbps. 

  

 Figure 4 shows a collection of normalized S21 traces from 

small-signal RF tests on hetero-structured pin photodetectors 

with different intrinsic zone geometries (wge / lge = 0.3 µm / 20 

µm, 0.5 µm / 40 µm, 0.8 µm / 40 µm and 1.0 µm / 40 µm). 

Devices were biased at reverse voltages of 1 V (Fig 4(a)) and 

2 V (Fig. 4(b)), respectively. The power coupled to the 

photodetectors was estimated to be -11.4 dBm. 10 Gbps eye 

diagrams (reference and retrieved) of 0.8 µm- and 1 µm-wide 

devices probed at 0 V bias are included in insets of Figs. 4(a) 

and 4(b), respectively. The reference diagrams correspond to 

optical input signals. Retrieved eyes remain closed due to the 

small -3 dB cut-off frequency. The extracted zero-bias -3-dB 

bandwidths are: 4.8 GHz, 2.8 GHz, 1.3 GHz, and 1.1 GHz 

respectively to the intrinsic Ge region dimensions given 

above. Such small cut-off responses are due to the long transit 

carrier time and the weak built-in electric field. This hinders 

the device ability to efficiently collect photo-generated pairs 

of electrons and holes under 0 V bias. Moreover, this is also in 

line with the low responsivities at 0 V. 

 In opposition, as shown by RF responses in Fig. 4, biasing 

at 1 V and 2 V considerably enhanced the -3-dB bandwidths 
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of pin photodetectors compared to reference bandwidths at 0 

V bias. The -3-dB cut-off frequency also drastically increases 

as the photodetectors become narrower. Bandwidths for all 

tested devices as functions of the applied reverse bias are 

provided in Figs. 5(a) and 5(b), respectively. The extracted -3 

dB bandwidths under a low-bias voltage of 1 V are equal to 

35.0 GHz, 24.2 GHz, 15.7 GHz, and 6.7 GHz for 0.3, 0.5, 0.8, 

and 1.0 µm-wide intrinsic Ge regions. Fast responses achieved 

with our hetero-structured Si-Ge-Si devices well match the 

speed performances in the state-of-the-art full-Ge and hetero-

structured photodiodes [17-38]. As shown in Fig. 5(a), the -3 

dB bandwidth does not really depend on the length of the 

intrinsic Ge region (here, for a fixed device widths of 0.3 µm 

and 1.0 µm, respectively). Indeed, only marginal ripples were 

observed inside the measured bandwidth. This reveals that the 

bandwidth properties of the hetero-structured Si-Ge-Si 

photodetectors remain constant with the variation in device 

lengths and that the main bandwidth limitation is driven by the 

transit time. 

 
Fig. 5. Opto-electrical bandwidth properties for different lengths (a) and 
widths (b) of the intrinsic Ge region. (c) Product of quantum efficiency and -

3-dB opto-electrical bandwidth as a function of applied reverse bias voltage 
for different junction areas of the pin photodetectors with lateral silicon-

germanium-silicon heterojunctions. The small-signal radio-frequency tests 

were carried out at a wavelength of 1.55 µm and the average optical power 

coupled to the devices was estimated to be -11.4 dBm. 

 

 Figure 5(c) shows the product of the quantum efficiency by 

the -3-dB optical bandwidth as a function of the applied 

reverse bias voltage for the largest Ge areas of hetero-

structured pin photodetectors. These Ge areas are the same as 

before. The efficiency-bandwidth product provides a figure-

of-merit suitable for photodetector design in terms of opto-

electrical performance and footprint. 

 Device areas of 6 µm2 (the smallest one: wge = 0.3 µm and 

lge = 20 µm) and 40 µm2 (the largest one: wge = 1.0 µm and lge 

= 40 µm) result only in moderate opto-electrical 

performances. The former type of device enables fast 

operation (beyond 50 GHz, potentially). However, its 

responsivity under 1 V bias is 0.19 A/W only (15.03% in 

quantum efficiency). Those values are not high enough to use 

in nanophotonics. Meanwhile, the latter detector layout has an 

outstanding responsivity to incident photons of 1.17 A/W 

(approaching 100% quantum efficiency). However, the device 

speed is lower and fundamentally restricted by the large cross-

section, i.e. transit time limited operation. 

 As shown in Fig. 5(c), the best opto-electrical performances 

under a low-bias condition were achieved for 20 µm2 and 32 

µm2 photodetector areas. The corresponding in-plane 

dimensions of the Ge region are as follows: 0.5 µm x 40 µm 

and 0.8 µm x 40 µm. Both devices provide opto-electrical 

performances that fit for high-speed applications, including 

high-rate data networks, while their compact footprint allows a 

high density integration of multiple opto-electronic devices on 

a single Si chip. Their specific responsivities of 0.47 A/W and 

0.76 A/W (37.7% and 60.84% in quantum efficiency) are 

coupled with fast responses of the order of tens of GHz. 

D. Large-signal data link measurements 

 To assess the viability of waveguide-integrated pin 

photodetectors with lateral Si-Ge-Si heterojunctions in optical 

data links, we have also carried out large-signal measurements 

via detailed eye diagram inspections. To that end, data were 

transmitted in a non-return-to-zero (NRZ) modulation format. 

The pseudo-random-binary-sequence (PRBS) pattern of length 

27 -1 was used for different data rates. Due to the frequency 

limitation of the pattern generator, we could not provide high-

speed tests beyond 40 Gbps. A DFB laser at a wavelength of 

1.55 µm was modulated with an external modulator, followed 

by an optical amplifier, an optical filter, and a fibered coupler. 

One output of the coupler was connected to a 60 GHz 

photodiode of an oscilloscope to display the modulated 

respective input signal as a reference. The other output signal 

of the coupler was transmitted towards the device through an 

optical attenuator and an in-line power meter to control the 

optical power level. The polarization of the input light was 

controlled to match the TE-like mode of the Si waveguide and 

optimize the signal intensity. Finally, the signal was sent into 

the chip thanks to a fiber-to-chip surface grating coupler and 

detected by hetero-structured pin photodetectors, without the 

use of subsidiary electronic stages with trans-impedance 

amplifier or limiting amplifier. Electrical data were collected 

with a RF set-up and sent to the high-speed oscilloscope [40]. 

 Figure 6(a) - 6(c) show eye diagrams for 40 µm-long pin 

photodetectors with different intrinsic Ge widths (1.0 µm, 0.8 

µm, and 0.5 µm) under a 0.5 V reverse bias state and at a data 

rate of 10 Gbps. Reference 10 Gbps eye diagram aperture is 

shown in Fig. 6(d). In all cases, eye diagrams are clearly open 

under such conditions. Low-voltage operation is desirable to 

keep dark-currents as low as possible and be compatible with 

CMOS circuits. On the other hand, it is worth noting that 

simple pin photodiodes typically yield low electrical output 

levels. As a consequence, the implementation of trans-

impedance amplifier with pin photodiodes is foreseen to be an 

essential step to access full transmission system assessments 

with the presented devices [30]. 
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 Besides low-bias operation and affordable high-speed 

transmission ability, the amount of energy consumed by each 

active device, in this case, an optical photodetector, is 

essential in an optical communication system design. The 

energy consumption, denoted here as ec, is estimated as 

follows [30]: 

   
1

.pcec fJ bit i v
br

    (3) 

Here, br is the transmission bit rate, ipc is the measured current 

(including photo- and dark-currents), and v is the reverse bias. 

 

 
Fig. 6. Eye diagram apertures under low-reverse-bias of 0.5 V and a fixed data 

rate of 10 Gbps for 40-µm-long waveguide-integrated pin photodetectors with 

varying Ge intrinsic region widths: (a) 1.0 µm, (b) 0.8 µm, and (c) 0.5 µm. (d) 
Reference eye diagram for a bit rate of 10 Gbps. The power coupled into the 

photodetectors was estimated to be -8.9 dBm. Here, x [ps/div] and y [mV]/div 

are horizontal and vertical axes of the scope, respectively. (e) Calculated 
energy consumption per transmitted bit of the studied pin photodetectors as a 

function of the Ge intrinsic width under different reverse voltages and a fixed 
10 Gbps optical link rate. 

 

 Figure 6(e) shows the evolution of the consumed energy 

versus the width of the intrinsic Ge region. Here, the pin Ge 

photodetectors were 40-µm-long and were probed under 

several reverse bias states (0.5 V, 1 V, and 2 V). The 

considered link data rate was 10 Gbps. We may state that 

wider Ge detectors yield higher energy consumption and that 

the increase consumption remains roughly proportional to the 

reverse voltage increase for each width. This trend is more 

perceptible under higher bias voltages. More specifically, 

under a 0.5 V bias point, doubling the width of the intrinsic Ge 

region (from 0.5 µm to 1.0 µm) yields moderate increase of 

consumed energy (from 3.1 fJ/bit to 7.7 fJ/bit), while under a 

2 V bias state, this increase is from 11.5 fJ/bit to 31.2 fJ/bit. 

Nevertheless, in all cases, the energy consumption remains 

reasonably low, typically units or few tens of fJ/bit under low-

bias states. This makes hetero-structured Si-Ge-Si pin 

photodetectors promising for use in energy-efficient Si-based 

optical interconnects. 

 
Fig. 7. Eye diagram apertures of 0.8 µm-wide by 40 µm-long pin 

photodetector under a 1 V reverse bias and an optical input power coupled 

into the device of -9 dBm. Large-signal data link inspections are performed 
for different data rates of (a) 10 Gbps, (b) 20 Gbps, (c) 25 Gbps, (d) 28 Gbps, 

(e) 32 Gbps, and (f) 40 Gbps. Insets: Reference eye diagrams. Here, x [ps/div] 

and y [mV]/div are horizontal and vertical axes of the scope, respectively. 

  

 Figure 7 shows the eye diagrams of a 0.8 µm-wide and 40 

µm-long hetero-structured pin photodetector biased at -1 V for 

different transmission data rates, from 10 Gbps up to 40 Gbps. 

Reference eye diagram apertures are shown as insets in Fig. 7. 

Eye diagrams remain open, even for data rates beyond 25 

Gbps, which is promising for the future on-chip detection of 

high-speed signal traffic. At a data rate of 40 Gbps, the pin 

photodetector operates in the voltage-limited regime, since the 

eye diagram begins to close. Indeed, the small-signal RF 

measurements have reported that the -3-dB bandwidth was 

around 16 GHz (under -1 V). This result explains the eye 

diagram aperture trends and perfectly agrees with performed 

large-signal optical link measurements. For 32 Gbps (see Fig. 

7(e)), the eye diagram is still clearly open, while for 40 Gbps, 

it starts to have a closure. Moreover, energy consumption is 

predicted to be, for this photodetector and under a 1 V reverse 

bias, as low as 9.8 fJ/bit and 2.4 fJ/bit for 10 Gbps and 40 

Gbps optical link rates, respectively. 

IV. CONCLUSION 

 To summarize, we comprehensively studied the opto-

electrical properties of waveguide-integrated pin detectors 

with lateral Si-Ge-Si heterojunctions. Such devices take full 

advantage of an easier integration scheme than that of Ge 

homo-junction photo-detectors. Such photodetectors are 

promising for use in nanophotonics as they are (i) built upon 

abundantly available materials, (ii) power-friendly and (iii) 

easily driven by low-voltage supplies, resulting in competitive 
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opto-electrical performances. They are promising for use in 

future energy-efficient 40 Gbps optical communication links.  
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