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ABSTRACT

This paper introduces a geometrico-static analysis of an in-
trinsically safe parallel manipulator called R-Min. This robot
was designed to reduce the risk of injury during a collision with
a human operator, thanks to an underactuated architecture which
enables large internal displacements in case of a collision. In-
deed, the R-Min architecture is based on a modification of the
well-known planar five-bar mechanism, where additional passive
joints are introduced on the distal links in order to create a planar
seven-bar mechanism with two degrees of underactuation. These
two additional degrees of freedom are passively driven through
the use of a supplementary passive leg, in which a tension spring
is mounted between the base and the end-effector.

In this paper, the conditions satisfying the equilibrium
and the stability of the mechanism are introduced, based on a
geometrico-static analysis. The direct and inverse problems are
then solved using a numerical approach. Solutions to both prob-
lems are presented and classified. One subset of solutions to the
inverse problem is isolated and projected in the Cartesian space
in order to obtain the payload-invariant workspace of the R-Min
robot.

*Address all correspondence to this author.

1 INTRODUCTION

Collaborative robots are intended to help humans with ar-
duous working situations. Operating in the vicinity of human
beings requires robots to evolve in highly dynamic environment
and deal with unpredictable behaviour of operators while ensur-
ing their safety in case of unavoidable human-robot collision.

Avoiding human injuries can be achieved through the use of
proprioceptive force sensing technologies allowing the detection
of collision and the appropriate reaction of the robot defined by
the controller (see [1]] for a survey of collision detection and con-
trol strategies). However, although being able to detect a colli-
sion, conventional robots must operate at low-speed, due to their
high mass and inertia, in order to fulfill the energy thresholds
given in the standard ISO/TS 15066 [2]. This document gives
the maximal energy that can be transferred to various body re-
gions and would result in a potential minor injury, in case of a
transient contact (i.e. a collision in unconstrained space). Other
strategies are based on exteroceptive sensors allowing to antic-
ipate dangerous situation and adapt the robot’s behaviour with
respect to the operator’s proximity [3]]. In practice, this approach
relies on algorithms that are hard to certify.

The drawbacks of the control approach highlight the need
for intrinsically safe robots through proper mechanical design.
This can be achieved by designing robots with lighter architec-
ture [4,/5]]. However, these robots remain stiff and must operate at
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low-speed to be able to react fast enough to a collision. A com-
plementary approach consists in using compliant joints to reduce
the peak force during a collision. This can be achieved using se-
rial elastic actuators (SEA) [6]], or preferably, variable stiffness
actuators (VSA) [7H10], whose stiffness can be adapted to dif-
ferent kind of tasks and keep a safe behaviour. However VSA
integrate small actuators and thus lead to complex, heavy and
costly mechanisms. Another approach consists in using torque
limiters [[11H14], that offer precise positioning in a normal oper-
ating mode, while allowing disengagement when a torque thresh-
old is exceeded due to a collision. Such torque limiters have
been for instance installed between a suspended manipulator and
its end-effector in [|15]]. Recently, a collaborative parallel robot
for pick-and-place tasks was introduced in [16]. It is based on a
regular five-bar mechanism whose distal links are made of soft
material so that they can deform in case of collision. Despite the
interest of this concept, collisions with the robot were not sim-
ulated nor experimented making it difficult to conclude on the
benefits from a safety point a view.

In a previous paper [17], we introduced the R-Min robot
whose architecture is based on the well-known planar five-bar
mechanism, where additional passive joints are introduced to the
distal links. The obtained mechanism is a planar seven-bar mech-
anism with two degrees of underactuation, authorizing the robot
to passively self-reconfigure in case of collision. A supplemen-
tary passive leg, in which a tension spring is mounted, is added
between the base and the end-effector in order to constrain the
additional degrees of freedom. Simulations were conducted in
order to analyze the impact force and the HIC (Head Injury Cri-
teria) [|18]] during a collision with the head of an operator at high-
speed (> 1.2 m/s). The results of these simulations showed that
R-Min is intrinsically much safer than a regular rigid five-bar
mechanism.

The purpose of the present paper is (i) to investigate the com-
putation of the forward and inverse geometrico-static problems
of the R-Min robot and (ii) analyze its workspace properties. As
a result, the paper is divided as follows. Section II introduces the
robot architecture and recalls its behaviour under the application
of several types of loadings. Section III explains the resolution
of the the forward and inverse geometrico-static problems. In-
deed, because the robot is under-actuated, its equilibrium con-
figurations are necessarily defined by both the geometric and the
statics equations. In Section IV, we analyze the joint and Carte-
sian robot spaces, and identify solutions to the direct and inverse
geometrico-static problems. Finally, in Section V, conclusions
are drawn.

2 PRESENTATION OF THE ROBOT
2.1 Description of the kinematic architecture

R-Min robot, presented in Fig. [[[(a), is based on a modified
five-bar parallel mechanism, which is widely used for pick-and-

place operations at high speed [[19]. This five-bar mechanism
(Fig.[[[b)) is a parallel robot made of two actuated revolute joints
located at points O;; (i = 1,2), and three passive revolute joints
at points O12, O2, and P. All joint axes are normal to the vertical
plane & : (A,x0,zp). This robot has two degrees of freedom
(dof), two motors, and is then fully actuated and able to position
the point P in the plane &y with a high rigidity. While being
able to perform at high-speed/high-accelerations (15 G of accel-
eration at the end-effector [19]]), it is unable to collaborate with
humans because of its high impedance.

As a result, in order to conserve the interesting speed prop-
erties while decreasing its impedance, we propose to modify the
architecture of the five-bar mechanism as shown in Fig.[T[a). R-
Min robot is thus composed of’:

e a seven-bar parallel mechanism, with two actuated revolute
joints located at points O;, and five passive revolute joints
at points O, O;3 and P (i = 1,2). All joint axes are nor-
mal to the vertical plane &) : (A,Xp,zo). This mechanism
has four dof (instead of two for the five-bar mechanism),
but only two motors. It is thus underactuated, with two un-
constrained dofs. This seven-bar mechanism is thus of little
practicability due to its null stiffness.

o therefore, we add a preload system made of a kinematic
chain located between points A and P, which is composed of
two passive revolute joints at A and P, whose axis are normal
to the plane %, a passive prismatic joint aligned along ﬁ
lying in &y, and a compression spring exerting a compress-
ing effort between points A and P. This preload system plays
the same role as elastic elements introduced in the design of
underactuated hands [20], i.e. it is added here in order to
passively drive the unconstrained dofs of the robot and to
kinematically constrain its configuration. Preloaded springs
could have been installed on one passive joint of the seven-
bar mechanism, but this would have increased the mass of
bodies that are likely to collide with an operator. The se-
lected solution of a preload bar located inside the two legs
of the seven-bar mechanism is safer, since it does not allow
the operator to collide with this bar and in the same time
permits to obtain a lightweight design of the external legs.

Indeed, this preload system is able to tense the passive under-
actuated chain O13, O3, P, O3, O, which is then more rigid
than in the case of the single seven-bar mechanism. However, it
will have much less stiffness than a traditional five-bar mecha-
nism, thus making it a good candidate for a collaborative parallel
robot.

2.2 Description of the concept

In Fig. 2] the equilibrium of the robot is shown for differ-
ent types of efforts applied on the robot. It appears that, when
the robot is subject to gravity effects only or with an additional
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(b) A five-bar mechanism

(a) R-min robot

FIGURE 1: Kinematic chains of (a) R-Min robot, (b) a five-bar
mechanism. Grey joints are the active joints.

vertical force applied at the end-effector P and directed down-
wards (Fig.[2(a)) (equivalently to the robot payload), points Oy,
O;3 and P are near to be aligned, i.e. spring plus the external
loadings tense the passive bars. When a force with an upward
component is applied either at the end-effector P or on a passive
link (Fig. 2[b-c)), which would be equivalent to forces appear-
ing during an impact (Fig. 2{d)), the robot encounters large dis-
placements of its bodies during its internal reconfiguration. As a
result, when the robot is subject to types of loadings appearing
during the manipulation of objects (i.e. downward forces), the
end-effector location is close to the one that would be attained by
a five-bar mechanism with distal links whose lengths are equal to
£0,,0;; +Xo,;p, Which is convenient for pick-and-place operations
planning. On the contrary, when the robot is subject to types of
loadings appearing during an impact with a human (i.e. forces
with an upward component), the robot encounters large internal
reconfigurations and is thus likely to avoid transmitting a large
part of its energy during impact thanks to this reconfiguration.
These properties makes him a good candidate for safe physical
interactions during pick-and-place operations.

It should also be noted that the analysis of several config-
urations showed that displacements of the point on which the
force is applied are bigger when the force is applied on the distal
links (Fig. [2(d)) rather than on the end-effector (Fig. [J[c)). So
intuitively, an impact on the links may lead to less energy trans-
mission during collision than an impact on the end-effector. This
behavior was shown in the simulations performed in [17].

In what follows, we denote as:

® q, = [qll q21]T the vector of the active joint coordinates
representing the motion of the motors located at O and
Ox1,

° qu = [qlz q13 22 ng]T the vector of passive joint coordi-
nates,

e p= [x z] " the position of point P, which is the end-effector
location.

e ¢, the angle between axis xo and the preload bar.

e ps = ||AP|| = V/x2 + 72 is the length of the preload system.

(b) Upward asymmetric force on
(a) Downward force on the end- (he end-effector.
effector.

(c) Force applied on the medial (d) A human head collides with the
joint. robot.

FIGURE 2: Representation of equilibrium configurations of the
R-Min robot when subject to different types of external forces.
The robot self-configures in case of a collision with a human.

3 GEOMETRICO-STATIC ANALYSIS

Unlike conventional robots, the equilibrium configuration of
the R-Min robot does not only rely on the geometric constraints
but also on gravitational effects, external forces and stiffness
of the preloaded spring. This is due to the presence of uncon-
strained degrees of freedom in the mechanism. In the following,
we present a method to solve the Direct Geometrico-Static Prob-
lem (DGSP), based on the minimization of the potential energy
of the system. We then investigate the Inverse Geometrico-Static
Problem (IGSP), i.e. we determine the control input q, for a
desired position p. In both cases, the stability of the obtained
equilibrium configurations is also considered.

3.1 Direct Geometrico-Static Problem (DGSP)

Solving the DGSP consists in finding all configurations q, =
" q}] " that minimize the potential energy of the system and
verify the geometric constraints for a given set of the active joint
coordinates q,. This can be formulated as a classical optimiza-
tion problem. In what follows, we assume no friction in the joints
and the robot is assumed to be in static conditions.

Potential energy model The potential energy of the
robot is computed from the potential energy U ; of the links (i, )
(i=1,2, j=1,2,3). It depends on the mass m;;, the position of
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the center of inertia S;; and the lengths ¢;; of the different links.
The gravity field is denoted as g. We assume the points O;;, S;;

and O;j are aligned and we denote as (s;; the length [|O;;S;;||».
For the compressive leg (respectively, for the prismatic joint), £s4
is the distance from point P to its center of gravity Ss (respec-
tively, £ss is the distance from point A to its center of gravity Ss),
my (respectively ms) is its mass, Uy (respectively Us) its potential
energy. As a result, we have fori = 1,2:

Ui.1 = gmitlsit sin(qi1), (D

Uip = gmi (Lin sin(gi1) +£siz sin(gi1 +gi2)) 2
Uiz = gm3 (Lin sin(gi1) + €2 sin(gi1 + gio)

+ Usizsin(gi1 +qi2 +qi3)) (3)

Us = gmaz (1+Ls4/ps) 4)

Us = gms/sssin(qa) &)

The energy of the spring U; is moreover calculated from the
spring stiffness k and its free length ¢:

U, = %k(\/xz +z2—€0)2 6)

We consider a constant payload f applied on the end-effector.
Different loci of application of the external force could be con-
sidered but are out of the scope of this paper. This force is as-
sumed conservative and its potential function is added to the total
potential energy:

3
Y Uij+Us+Us+U—f'p (7)
i=1j=1

U =

NS

The potential energy U depends on q,, qg, p and f. It
should be noted that coordinates q,, q; and p depend on an-
other due to the geometric constraints expressed through rela-
tions @ (qq, qq, p) = 0 that must be verified for any configuration
of the robot.

For our robot, there exists four geometric constraints

grouped in @ = [¢11 $12 021 9] (i=1,2):

—
¢it =0 =001 - X0+ {i1 cos(qi1) + Lincos(qi1 +qin)
+lincos(qit +qin+qi3) —x
— . .
0 =0=00; 20+ ;1 sin(gi1) + L sin(gi +gi2)
+liasin(gin + g2 +qi3) — 2

®)

Identifying stable solutions to DGSP A solution to
the DGSP is found when the potential energy U is at a local

minimum while the four geometric constraints (§) are verified.
This can be formulated as the following constrained optimiza-
tion problem:

q; = argmin U(qq,qq,p;f) subject to ¢(qq,qq,p) =0  (9)

where q; was defined above as q; = [pT qg] " The force f and
the coordinates q, are considered fixed parameters.

This is a classical optimization problem which can be solved
using the method of Lagrange multipliers. We therefore intro-
duce the Lagrangian function . = U + A" ¢, with A the vector
of Lagrange multipliers. The stationary points can then be found
by solving the following equations with A and ¢, the unknowns:

Vo U(Q0:qa:p.f) +A Vg =0,  ¢(qu,qs,p) =0  (10)

where V, designates the gradient with respect to the variables in

q:.

However, at this stage, not all the obtained equilibrium con-
figurations are stable. We therefore introduce the following
second-order condition [21]]:

H’ =Z"HZ -0 (11)

in which:

e H is the Hessian of the Lagrangian obtained from the Hes-
sian HH, of the potential energy U with respect to the vari-

able q;, and from the Hessians Hf;f of the constraint ¢ with
respect to the variables in q;, as follows:

H=HY+ ) AHY (12)
k=14

e Z is the matrix which spans the null space of V¢, @, i.e.
Vo0 Z=0 (13)

Due to the complexity of the problem, an analytic solution
could not be found. We therefore used a numerical approach to
solve the DGSP.

Solver. In this section, we present the implementation
of the optimization algorithm. The solver used is an interior
point algorithm which takes advantage of the knowledge of the
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analytic gradients and Hessian presented in the previous sec-
tions. Indeed, matrices Vq,U, Vg, 9, Hf{t and Hf;,k were imple-
mented analytically to help the solver to converge and to re-
duce the computation time. Their mathematical expressions are
not given in this article. The initial point of the optimization

T T
qt(o) = [p(O)T q d(O)T] is chosen randomly, with p(® chosen

such that x,z € [—1, 1] since this space includes all solutions sat-
isfying the geometric constraints for the studied prototype (see
section on workspace analysis), and with coordinates q;(*) cho-
sen in the interval [—7, ).

This optimization is carried out 100 times with a new choice
of qfo) at every iteration. We denote .7(qa,f) = {@rm},_ .,
the set of found solutions to the DGSP, with n; the number of
solutions.

Extending the solution set by continuity. The used
optimization method is computationally costly and does not
guarantee that all solutions will be found. In order to reduce
the computation time, while increasing the probability to find
all solutions, we use a method based on the prolongation by
continuity of a solution. It was inspired from the method of
continuation used in [22] to find the workspace boundaries of
a planar tensegrity mechanism. Practically, if there exists a solu-
tion q; € .#(qy,f) in the vicinity of q,, that is not close to any
of the found solutions q, € .(qu,f), then this solution might
be a missed solution. It is thus used as an initial point of a
new optimization to help the algorithm converge to this neigh-
bouring solution. A solution is considered close to another if
max |q} — q;| < €, with € a threshold.

3.2 Inverse Geometrico-Static Problem (IGSP)

The IGSP consists in finding all equilibrium and stable con-
figurations q,q = [an qg]T for a given position p of the end-
effector and for a given external force f exerted on the end-
effector. In this case, the equilibrium conditions can not be de-
rived from the potential energy, since the compression of the
preloaded bar is given by the position of the end-effector p. We
therefore study the equilibrium of forces at the end-effector. Our
method is derived from one commonly used to compute the equi-
librium configurations of a tensegrity mechanism, which consists
in verifying the equilibrium of forces at each node [23].

Equilibrium conditions The total force at the level of
the end-effector must be equal to zero (£ = 0) to guarantee
the static equilibrium of the system. X/ is computed as follows

(Fig.[3).

Yr=fi3+fs+f+f (14)

le 0
FIGURE 3: Balance of forces applied on the end-effector.

where:

o f3 is the force exerted by the leg i on the end-effector;
o f, is the force exerted by the preload bar on the end-effector;
e fis the force exerted by the environment on the end-effector.

The expressions of these forces are given in the following.

Forces of leg i. Assuming no external load is applied on the
link (i2) or (i3) but gravity and joint forces, we apply the equi-
librium of forces on each link of both passive legs. As a result,
the force f;3 can be expressed as a function of 6;; = ¢;; + ¢i» and
0i3 = qi1 + qi> + g3 under the following form:

g(mioc - miB)
2 xo = 15
i3 X0 tan(6;3) —tan(6;) (15

io tan(6;3) —m;g tan(H;
fiT3 20 = g(mig tan(6;3) m;g (612)) (16)
tan(6;3) —tan(6y)
with ¢; and f3;, two masses defined as:
L; L

Miq = <Z;2mi2 +mi3) o mg =mg3 le 17

It should be noted that all components of the force f;3 become
indeterminate when sin(g;3) = 0. In this case, the links i2 and
i3 are aligned and the problem is ill-defined. This singularity
should be analyzed in a further study.

Force of the preload system. Similarly, the force f; applied by
the preload system (Fig. [3) on the end-effector is:

fg X = — (k(fo — p5) + % sin(q4)> COS(Q4) (18)

ff 2o = —k(ly — ps) sin(q4) +mag+ % cos(q4)2 (19)
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with:
N = samy +Lgsms (20)

Identifying stable configurations to IGSP Again,
due to the complexity of the problem, we solve the IGSP through
a numerical approach. The IGSP is formulated as an optimiza-
tion problem, stated above:

Qqq = argmin Xz (qq,qq, p,f) subject to (qa,qq,p) =

0
(21
and zF(‘laa‘ldanf) =0

where q,4 was defined above as q.q = [p” q | T

Similarly as what was done for the DGSP, the method used
to solve this optimization problem is an interior point algorithm
with analytic gradients and Hessian. The stability of the found
equilibrium configuration is verified using the necessary condi-
tion: the projected Hessian given in Eq. (IT)) is positive definite.

In the next Section, the configurations reachable by proto-
type of R-Min robot are analyzed.

4 WORKSPACE COMPUTATION

In this section, we present the results obtained numerically
to the direct (DGSP) and inverse (IGSP) problems. These meth-
ods are applied to the R-Min prototype presented in Fig. {]
The associated link lengths, masses and centers of masses posi-
tions are given in Table[T]

4.1 Analysis of solutions to DGSP

In this section, we analyze the solutions found to the DGSP.
In order to reduce the computation time, the analysis is con-
ducted on a restricted joint space 2, = {qq| — % <qn <
27”, f% <T—qy < 27” , T—¢q21 < q11}- The previous inequali-
ties permit to reduce the studied joint space considering mechan-
ical stops on both actuators and the symmetry of the robot. This
restricted joint space 2, is sampled with a resolution of 7r/200.

The number of solutions found to the DGSP for q, € 2,,,
when no force is applied on the end-effector (i.e. f=0), is pre-
sented in Fig.[3]

This figure shows that the number of stable configurations
for a given value of q, varies from O (the robot assembly is not
possible) to 4. In Figure[6] the robot is represented in four differ-
ent configurations, each corresponding to a solution of the DGSP
obtained for a particular value of q, = q/ = [4.574,4.312]T,
shown on Fig.[5] The first configuration Fig.[f[a) corresponds to
a configuration desirable for manipulating a payload in a collab-
orative mode. The preload bar pushes the effector downwards,
so that the passive arms are almost completely extended. Indeed,

FIGURE 4: R-Min prototype

TABLE 1: Dimensions and mass properties of the prototype links

Link Length Mass COM
(i) 4y (m) || m;; (kg) || £sij (m)
(1&2;1) 0.28 1.29 0.0768
1&22) | 02 024 | o012
(1&2;3) 0.202 0.19 0.01
(-4) 0.82 042 || -031
(-:5) - 0.81 0

they are slightly folded due to gravity effects. The second con-
figuration Fig. [§(b) could be interpreted as similar as the second
assembly mode of the classical five-bar robot. In this case, the
force exerted by the preload bar is directed upwards. The third
equilibrium configuration is presented on Fig. [6{c). In this case,
the right arm is folded over itself and the left arm is completely
extended. A symmetric configuration, is presented on Fig. [6[d).
Two other solutions of the DGSP are represented on Fig. [7| for

another value q, = ¢® = [5 .202,4.943]T. These solutions are
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FIGURE 5: Number of solutions to the DGSP in the joint space
in case no force is applied on the end-effector.

further analyzed in the next section.

Classification of solutions to DSGP Based on an ex-
haustive analysis of the set .#; of all solutions to the DGSP, we
identified five different subsets of solution .#] to .%5 in the joint
space:

57 :memC} NCy
I =S NCrNC

S =SNC

S =SNC

s :Ymcmc} NCy

(22)

in which the sub-spaces C; to Cy are defined by using the follow-
ing set of inequalities:

T T
- {ue-F <o)
1 q; € 2<Q13<2

T T
sz{qthGI——<q23<—}
C3={(],€R6 _n_<q4_611121121<0}

C4:{q,€R6|O<q23<7r and —7r<qzl<0}

A projection of these subsets of solutions in the joint space
(resp. Cartesian space) is presented in Fig. [§] (resp. Fig.[9) and
detailed below:

(a)
0.2
0
&)
- 0.2
04
0.6

04 02 0 02 04

z (m)
0.4
()
0.2
0
G
L 0.2
04
06
04 02 0 02 04
z (m)

0.4

0.2

0

E)

L 0.2
04
0.6

04 02 0 02 04

z (m)
0.4
(d)
0.2
0
G
- 0.2
04
06
04 02 0 02 04
z (m)

FIGURE 6: Representation of the four different configurations of
the robot corresponding to the four solutions to the DGSP with

q) = [4.574,4.312)" and f = 0.

0.4

(a)

0.2

047

04 -02 0 02 04
z (m)

04 02 0 02 04
z (m)

FIGURE 7: Representation of the two different configurations of
the robot corresponding to the two solutions to the DGSP with

q% =[5.205,4.943)" and f = 0.
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FIGURE 8: Contour of the subsets of DGSP solutions projected
in the joint space.

e ¥ corresponds to the configuration desired for collabora-
tive manipulation of the robot as illustrated in Fig. [f](a) or
Fig. m(a), since both distal arms are extended and can thus
fold in case of a collision with a human. Furthermore, it
permits to obtain the largest workspace (see Fig.[9).

e % corresponds to the second assembly mode as illustrated
in Fig. [6(b), the force exerted by the spring is here opposed
to the gravity.

e . (resp. .74) corresponds to a configuration of the robot
where the right arm (resp. the left arm) is completely folded
like shown on Fig.[f[c) (resp. on Fig. [6(d)).

e ¥ corresponds to a configuration where the angle g3 is
negative (Fig. [7/[b)).

. . S,
| I 52
P 1%
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~~~~ 1.
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FIGURE 9: Contour of the subsets of DGSP solutions projected
in the Cartesian space.

4.2 Analysis of solutions to IGSP

In this section, we analyze the solutions found to the
IGSP for f = 0 N. The search space is limited to 2, =
{P|0<x<0.6,-0.7<z<0} (x > 0 since we consider the
symmetry of the robot). The number of solutions to the IGSP
for any p € 2,, is shown in Fig. [I0]

In the same manner as the one for the study of the subsets of
solutions to the DGSP, we identified subsets of solutions to the
IGSP. We kept only one subset 7 that provides a configuration
of the robot where both distal arms are extended and the preload
bar lies between both distal arms, see Fig. |§ka). This subset .7 is
defined with the following equation:

T =9;NDiND,ND3ND4NDs 24)

with .7, the set of all solutions to the IGSP for p € 2, and D; to
Ds, a set of sub-spaces defined as:

T T
D ={ Rﬁ)—— —}
1 Qad € 2<(]13<2

DZZ{Qad€R6‘—ﬂ<q4—u2qzl<0}

D;={queR0<qgn+qz<m }
D4:{qadeR6|—7r<q22<0 }
Ds = {qad€R6|qa€Qa}

(25)

This type of configuration is desirable for multiple reasons:

e both distal arms can fold in case of a collision with a human,
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FIGURE 10: Number of IGSP solutions for a given position
of the Cartesian space, in case no force is applied on the end-
effector.

e the preload bar does not present any risk of injury since it lies
between both distal arms and thus can not enter in contact
with anybody,

o it offers the largest projection in the cartesian space,

o the weight of the payload has no (or little) effect on the po-
sition of the end-effector.

The obtained workspace is represented on Fig. [IT} It cor-
responds to the projection of the selected subset .7 of solutions
to the IGSP in the Cartesian space. This workspace has been
analyzed for forces f directed downwards, and equal to 0, 2, 4,
6, 8, 10 N. It can be seen, that the boundaries of the workspace
are not much affected when the payload varies from O to 10 N,
making this robot well-adapted to manipulation tasks. Analyses
of the workspace for higher payloads or forces directed in other
directions are left as future works.

5 CONCLUSIONS

In this paper, we introduced the geometrico-static analysis
of an intrinsically safe parallel manipulator for fast pick-and-
place operations, called R-Min. R-Min has been designed so that
the risk of injury during a collision with a human operator is re-
duced, while maintaining high speed and acceleration capacities.
The proposed architecture is based on an underactuated paral-
lel kinematic chain constrained by a mechanical preload system
mounted between the base and the end-effector. The robot is thus
able to passively self-reconfigure during a collision.

Because the robot is underactuated, its equilibrium configu-
rations do not only rely on the geometric constraints but also on
gravitational effects, external forces and stiffness of the preload
bar. A geometrico-static model of the robot was thus introduced

0.5 ‘Workspace
Force 0 N
-0.6 I Force 10 N
t =« == Symmetry axis
0.7 !
0 0.1 0.2 0.3 0.4 0.5

z (m)

FIGURE 11: Contour of the Cartesian workspace corresponding
to the projection of a single subset of solutions to the IGSP. The
workspace is plotted for two cases, when no force is applied on
the end-effector and when a force of 10N is applied downwards.

in order to solve the direct and inverse problems. In both cases,
2" order conditions were used to check the stability of the ob-
tained equilibrium solutions. Due to the complexity of expres-
sions, solutions to both problems were obtained using a numer-
ical approach. The number of solutions to the direct problem,
when no force is exerted on the end-effector, was shown to vary
from 0 to 4. We then introduced multiple sets of inequalities to
classify these solutions into independent subsets of continuous
solutions. In the same manner, the number of solutions to the in-
verse problem was shown to vary from O to 8. We identified the
solution that is desirable for the robot to operate in a safe manip-
ulation mode. This solution provides a configuration where both
distal arms are extended, they can thus fold in case of a collision
with a human. Furthermore, the projection of this subset of so-
lutions in the Cartesian space offers a large workspace which is
not much affected when the payload varies from O to 10 N. Fu-
ture works will include experiments on the designed prototype,
singularity analysis and optimal design based on safety criteria.
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