Robust Trajectory Planning of Under-Actuated
Cable-Driven Parallel Robot with 3 Cables
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Abstract Cable-driven parallel robots (CDPRs) are under-actuated if they use a
number of cables smaller than the degrees of freedom (DoF) of the end-effector
(EE). For these robots, the constraint deficiency on the EE may lead to undesir-
able EE oscillations along the path that it is supposed to track. This paper pro-
poses a trajectory-planning method for underactuated CDPRs which is robust
against dynamic-model uncertainties or parameter variation, aiming at mini-
mizing EE oscillations along a prescribed path. Oscillation reduction and robust-
ness are achieved by means of Zero-Vibration Multi-Mode Input Shaping and Dy-
namic Scaling of a reference trajectory. Simulation results show the effectiveness
of the method on a 3-cable 6- DoF robot.

Keywords: Cable-Driven Parallel Robot, Under-actuated Systems, Trajectory Plan-
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1 Introduction

Cable-driven parallel robots (CDPRs) employ cables in place of rigid-body links in
order to control the end-effector (EE) pose. A CDPRis underactuated if the num-
ber of cables is smaller than the number of the EE degrees of freedom (DoFs). This
means that only a sub-set of the generalized coordinates of the EE can be con-
trolled, while the others are determined by the system dynamics, possibly leading
to undesirable EE oscillations. The use of CDPRs equipped with a limited num-
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ber of cables is justified in several applications, in which the task to be performed
requires the control of a limited number of EE DoFs or a limitation of mobility is
acceptable to enhance workspace accessibility or decrease system cost. In recent
years, increasing effort has been devoted to investigate the kinematics [1, 3] and
dynamics [5, 6, 10] of these manipulators.

The trajectory-planning problem for point-to-point motions of under-actuated
CDPRshas proven to be a major challenge, seldom studied. Ida et al. [6] presented
a method to design rest-to-rest motions with prescribed path and motion time,
for a generic under-actuated CDPR whose dynamic model is perfectly known.
Hwang et al. [5] presented a method based on Multi-Mode Zero-Vibration Input-
Shaping (MMZVIS) to conveniently shape the input motion laws of a 3-cable
CDPR performing trajectories with a limited variation of the robot natural fre-
quencies. Both theoretical and experimental results showed effectiveness of ei-
ther methods, but robustness to model uncertainties was never considered.

In this paper, we propose a trajectory-planning method for point-to-point mo-
tions of an under-actuated 3-cable CDPRs that is robust against the variation of
configuration-dependent parameters in the robot dynamic model, which affects
the robot natural frequencies. Robustness is achieved by combining MMZVIS and
Dynamic Scaling (DS) of the reference trajectory. Section 2 introduces the robot
model, and a methodology to compute its natural frequencies based on [5]. Sec-
tion 3 describes the novel trajectory-planning method. Section 4 reports the re-
sults of numerical simulation, and Section 5 draws conclusions.

2 CDPRModelling

Consider a 6-DoF CDPR composed of an EE coupled to the base by 3 actuated
cables. Oxyz is an inertial frame, Px'y'z’ is a mobile frame attached to the EE
(Fig. 1a). The platform pose is described by p, the position vector of P, and R, a
rotation matrix parametrized by the Euler angles € = [¢,0, y]” according to the
Tait-Bryan xyz convention. The platform generalized coordinates are q = [p,€]”.
The i-th cable, modelled as massless and inextensible, is guided into the
workspace from point B;, described by b; in Oxyz, by a swivel pulley (see [6] for
modelling details) and it is attached to the platform at point A; (Fig. 1a). G is the
platform center of mass. The coordinates of G and A; are described in the mo-
bile frame by vectors *r’ and ”a/, and in the inertial frame by r = p+r' =p+R"r
anda; =p+a,=p+ RPa;.. Vector p; = a; —b; is tangent to the pulley, and the
geometrical constraint imposed by the i-th cable on the platform is:

plp;—1li-B;iDj)*=0 M

where [; is the total cable length, comprising the rectilinear length | p; |l and the
arc B; D; wrapped onto the pulley. The time derivatives of Eq. (1) leads, after some
computation to [6]:
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where J; is the i-th row of the analytic Jacobian of the system:
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(2) denotes a unit vector, (:) denotes the skew-symmetric representation of the
vector product.

The dynamic model of the CDPR emerges from the platform dynamics, subject
to the cable constraints. m is the EE mass, 1 its constant inertia matrix about
Gin Px'y'z/,1g = RPIGRT the inertia matrix in Oxyz, and Ip = I — m¥'¥ its rep-
resentation about P. If f; and mg are the resultant external force and moment
about G, the platform equilibrium about P leads to [6]:
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where T = [7],72,73]7 contains the cable tensions, and I5 and 0g are the (3 x 3)
identity matrix and the (6 x 1) null vector, respectively. The generalized coordi-
nates can be partitioned in 3 actuated coordinates q, and 3 unactuated coordi-
nates q,, whose time evolution is determined by the system dynamics driven by
the actuated variables. According to this partition, Eq. (4) can be written as:

Su
Given the under-actuated nature of the system, cable tensions can be algebraically
eliminated from Eq. (6), leading to the system internal-dynamics equation:
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where:
A=Mu;—JJ;'Maa,  U=My,—JJ;' My,  8'=s,-JuJ5'sa 8

If q, and its time derivatives are assigned, q,, can be determined by solving Eq. (7)
with an assigned initial condition. In case the initial condition is a stable equilib-
rium pose, it may be evaluated as in [3]. Equation (7) may also be used to deter-
mine the EE oscillation natural frequencies around equilibrium configurations.
To do so, q, and {, can be isolated in Eq. (2) and the result substituted into Eq.
(7), which can then be linearized about an equilibrium configuration qo:

My, (q0)Aqy + Ky (qo)Aqy = 03 9)
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Fig.1 CDPR properties: (a) Geometric model, (b) natural frequencies along a path

where Aq, = q, —qy, is the deviation from the equilibrium of the unactuated
variables, M, (qp) and K,(qo) are (3 x 3) symmetric positive-definite matrices
(constant for an assigned qg) whose derivation can be found in [5]. Natural fre-
quencies may be determined as the eigenvalues of matrix Mu(qo)‘lKu(qO), and
itis clear that they change as qq varies through the workspace (see Fig. 1b, corre-
sponding to the path qq(u) followed by the robot described in Section 4).

3 Trajectory Planning by Input Shaping and Dynamic Scaling

When planning a trajectory of duration T of the actuated coordinates q, it may
be convenient to separately design its geometric path, namely q, = q,(u), and the
motion law u(t), with u(0) =0 and u(T) =1 [2]. If the path is assigned, we need to
determine the motion law only. In the case of line-segment paths, which are the
ones considered in this paper for the sake of simplicity, the trajectory connecting
two set-points qq,s and qg, f is:

qa(t) =qgs+ (Qa,f —Qgq,s) u(l) (10)

A method for the design of u(#) allowing the residual oscillations of q,, to be elim-
inated, when both the motion time T and the path geometry are prescribed, was
presented in [6], which suffers though from two drawbacks: the motion-law com-
putation time is a priori unbounded (thus, it may be large), and it depends on
the perfect knowledge of system parameters. Multi-Mode Zero-Vibration Input
Shaping (MMZVIS) was instead used in [5] to shape actuated-coordinate trajec-
tories; however, in order to reduce the delay time introduced by IS, a non-robust
version of the latter was employed, leading to satisfactory results only in case of
motions in a horizontal plane, where the natural frequencies of the robot at hand
were only slightly variable.
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Fig.2 (a) ZV and ZVD IS for f = 1Hz, (b) Direct and Convoluted IS for f; =0.6,1.1,1.5Hz

IS is an approach dedicated to the reduction of oscillations of second-order
linear dynamic systems, and it is well-known for its simplicity [7]. Its implementa-
tion requires the convolution of a series S(¢) of impulses, called the input shaper,
with a reference signal. By denoting the convolution operator with *, the input
shaping of the trajectory in Eq. (10) is given by:

k
Qa(t) * S(t) = Qa,s + Qo f — Qa,s) WD) % S(1), S =) Aibi(t—1;) (A1)
i=1

where 6;(t =1;) =1, 0;(t # t;) =0, A; is the impulse amplitude, ¢; is the time at
which it occurs, and k is the number of impulses. The time delay added by the IS
is simply t; = t;, the time location of the k-th impulse. The pairs (A;, ;) can be
determined by setting to zero the amplitude Ag,(f) of the Fourier trasform of S(#),
for an assigned frequency f and k impulses (Zero-Vibration or ZV IS [7], Fig. 2a):

A%(f)=\j

By definition, an input shaper is able to eliminate oscillations at the given fre-
quency f (and some multiples of it), and to reduce the amplitude of oscilla-
tion associated with every other frequency (see to the graph ZV in Fig. 2a). If the
shaper is supposed to eliminate the oscillations at u frequencies f; (j = 1,..., ),
two techniques can be employed, which result in a different number of impulses
and time delays [8]. The so-called direct method always uses the minimum num-
ber of impulses kg;» = 1+ u, whereas the so-called convolved method leads to
kcony = 2. Usually, tg 4ir < tacony = Z?:l 1/(2f;) but Ag, is slightly higher when
it is not zero (8] (see Fig. 2b for f; = 0.6,1.1,1.5Hz, u = 3). On the practical side,
a convolved IS is easy to determine, because it results from the convolution of
1 ZV shapers (each one with 2 impulses), which can be computed analytically,
whereas a direct IS has to be numerically computed by imposing Eq. (12) to be
satisfied simultaneously at fi,..., f;, which requires 1 + u impulses only (one im-
pulse more for each additional frequency in the shaper). It should be noted that
the minimum number of impulses of a direct shaper is always preferable for real-
time implementation, since the amount of time required for the calculation of

k 2 [k 2
ZA,'cos(Zﬂfti)) + ZAisin(anti)) =0 = (4;, 1) (12
i=1 i=1
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u(t) = S(¢), for each ¢, and thus trajectory computational complexity, increases
with the number of impulses in the shaper.

The natural frequencies of a system are not always precisely known, due to
either uncertainty in the dynamic-model parameters or a variation of its inter-
nal configuration (both cases occur to a robot). Loosely speaking, a trajectory is
robust against natural-frequency uncertainty or variation if the amplitude spec-
trum of q,(#) * S(¢) is limited over some frequency range. In line-segment paths,
for assigned set-points, only u(f) *S(¢) is responsible for the location of maximum
and minimum values of this amplitude spectrum. If U(f) is the amplitude of the
Fourier trasform of u(¢), the amplitude spectrum of u(t) * S(¢) is U(f) Ay (f).

Limiting the amplitude of U(f) A% (f) over a frequency range around a given
frequency fjy can be achieved by Robust IS, which uses additional impulses, and
thus variables (A;, t;), to either set Ay (fo) = 0Ao (fo)/0f =...= 6hA% (fo)/afh =0
(ZV-Derivative ZVD IS [7], Fig. 2a), or set Ay (f) = 0 in frequencies neighboring
fo (Extra-Insensitive EI IS [9]). In either case, the amplitude of U(f) * Ag(f) is
flattened, and thus limited, around fy. The addition of impulses, though, aug-
ments the time delay of the shaper, thus increasing the trajectory duration, and
its computational complexity. As an alternative way to obtain similar robust-
ness results on U(f) Ay (f) without the need to modify the IS, we propose to
use Dynamic Scaling (DS) of the reference trajectory [4]. An optimal value of T
(as well as other trajectory parameters), for a fixed motion law profile (trape-
zoidal velocity, polynomial, etc..), can be determined by setting U(f), or equiv-
alently U(f) = —@2n f)?>U(f), to zero for the assigned frequency f. This strategy
has the additional advantage of determining an upper bound for the total robust-
trajectory duration, T + 4. As an example, for a trapezoidal velocity profile, with
aT acceleration and deceleration durations (0 < a < 0.5), @« and T can be deter-
mined by setting:

U(f) = ( Isin[(1-a)xfT]lsinlaxfT]|=0 (13)

2

1-marT)?f
By considering two frequencies fi and fy, such that fi = fy, and setting the
arguments of the two sine functions to 7, we obtain a,p; = fo/(f1 + fo) and
Topr = (f1 + f0)/ (fof1), where T,y is strictly decreasing with fi. It is interesting
to notice that, for fi — fo, @opr,s = 0.5 and Tops,s = 2/ fo, while, for fi — +oo,
@opt,1 =0and Ty = 1/ fo. This in turn means that the optimal time is bounded
by the lowest frequency and, for any f, a is always well defined. Moreover, total
robust trajectory duration is bounded by: Top¢ + 14 < Topt,s + td,conv

4 Numerical Example

To verify the effectiveness of the combination of IS and DS, we consider a linear
trajectory of a 6- DoF 3-cable CDPRwith a trapezoidal velocity motion law. Model
parameters are as in [6] and are not reported here due to space limitation. Natural
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Fig. 3 Computed variables with critical oscillatory behaviors: (a) 6, (b) 72

frequencies along the path between qs = [0.793,1.180,-0.208,0.058, —0.641, 0.042]
and qr = [-0.826,1.104,—1.424,-0.041,0.634,0.002] (units in m and rad) vary as
in Fig. 1b. The equilibrium value of 7 in qy is very small, and potential EE os-
cillation in this configuration could lead to cable slackness. Since the system
has 3 frequency spectra, an IS with p = 3 is used, as in [5], but a direct method
(with 4 impulses) is employed, and the corresponding frequencies are heuristi-
cally selected as the minimum, maximum, and median ones from Fig. 1b, i.e.
f =0.621,1.247,2.154Hz. In addition, since U(f) is decreasing with f and only 2
frequencies can be employed for the determination of a,p: and Typ¢, the mini-
mum and median ones are considered for DS. These choices lead to:

A1 = Ay =0.2965, Ay = A3 =0.2035 ps: Fopt= 0.332

IS 1 Z0s, 1= 0425, 13 =0.705s, £y = 1.1255 Topt =2.413s

(14)

The parameters in Eq. (14) are used to compute trajectory in Eq. (11), where the
actuated variables are selected as the position p of the EE reference point (qq s
and qg,  are then the first 3 elements of qs and qy, respectively). Equation (7) is
numerically solved with assigned initial conditions q,, = [0.058, —0.641,0.042] rad
and q, = [0,0,0]rad/s, in order to determine the evolution of the unactuated vari-
ables along the assigned trajectory. This step allows one to assess oscillations,
but also to check for cable slackness. In case these specifications are not satis-
factorily met, an intuitive solution may be to robustify IS: oscillations are nat-
urally reduced and the increase in time delay bounds cable tensions near their
static equilibrium values. Most critical oscillatory variables are reported in Fig. 3
for four trajectories: the first one is planned according to DS only, the second
one is an IS version of the first one (IS-DS), the third and fourth ones are IS ver-
sions of trapezoidal motion laws with @ = 1/3 (commonly employed value) and
T =0.6Topr < Topr US-T < Topt) and T = 1.2T,p; > Topr (IS-T > Typy), respec-
tively. It is clear that the use of IS leads to a more limited oscillatory behavior,
and smaller oscillations occur for an increasing T (since the amplitude of U(f) is
decreasing with T). However, on the practical side, T should be as small as pos-
sible, and IS may not lead to satisfactory results if T is too small. Basically, DS
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helps in the choice of the best value of T (and «, for a trapezoidal velocity profile)
that optimizes the transition time and limits the oscillatory behavior. Addition-
ally, cable slackness due to oscillations is avoided with IS-DS (see Fig. 3b, where
T is computed from Eq. (6)). In the end, if critically low oscillations are required,
total transition time can always be increased by means of robust IS.

5 Conclusion

In this paper, we proposed the combined use of IS and DS for the robust trajec-
tory planning of under-actuated CDPRs. Simulation results were presented for a
6-DoF 3-cable CDPR moving along a linear path with a trapezoidal velocity mo-
tion law. Results are satisfactory, as oscillations are appreciably reduced, when
compared to a trajectory planned with DS only. In the future, smoother motion
laws with a larger number of parameters and generic geometric paths will be con-
sidered, in order to avoid cable tension discontinuities.
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