
HAL Id: hal-02539443
https://hal.science/hal-02539443v1

Submitted on 8 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamics-based Algorithm for Reliable Assembly Mode
Tracking in Parallel Robots

Adrien Koessler, Alexandre Goldsztejn, Sébastien Briot, Nicolas Bouton

To cite this version:
Adrien Koessler, Alexandre Goldsztejn, Sébastien Briot, Nicolas Bouton. Dynamics-based Algorithm
for Reliable Assembly Mode Tracking in Parallel Robots. IEEE Transactions on Robotics, 2020, 36
(3), pp.937-950. �10.1109/TRO.2020.2987855�. �hal-02539443�

https://hal.science/hal-02539443v1
https://hal.archives-ouvertes.fr

1

Dynamics-based Algorithm for Reliable Assembly
Mode Tracking in Parallel Robots

Adrien Koessler1, Alexandre Goldsztejn2, Sébastien Briot2 and Nicolas Bouton1

Abstract—Finding the current pose of the end-effector of a
parallel robot is a problem, since its forward geometric model
generally has several solutions. Current methods to address this
problem operate mainly under the assumption that the robot
never changes its assembly mode nor gets close to Type 2
singularities.

Nonetheless, recent works proved that a parallel robot can
change its assembly mode thanks to dedicated trajectory gener-
ation and control. Such a feature allows increasing the opera-
tional workspace of such manipulators. Hence tracking correctly
the end-effector pose while crossing Type 2 singularities, is
mandatory for a practical usage of this workspace enhancement
method. However, on Type 2 singularities several solutions of
the forward geometric model merge, making current tracking
methods ineffective.

To fill this gap, we propose a two-step pose-tracking method-
ology: First, a differential inclusion based on kinematics and
dynamics is solved. Second, joint measurements are used to
tighten resulting enclosures. The effectiveness of this method
is discussed thanks to experimental data gathered on a planar
parallel robot.

Index Terms—Parallel Robots, Assembly Modes, Robot Dy-
namics, Singularity Crossing, Interval Analysis

I. INTRODUCTION

A. Methods for Assembly Mode Change

PArallel robots have gained popularity in industry thanks
to recent developments. Compared to serial robots, their

low cycle time and high payload-to-weight ratio are acknowl-
edged. Yet, such advantages are balanced with an important
drawback: They have a small workspace compared to serial
robots, which generally contains singularities.

In particular, Type 2 singularities [1], [2] generally split
the workspace into several subsets that can be defined as
generalized aspects [3] and correspond each to one or several
assembly modes. In these configurations, the manipulator
gains uncontrollable degrees of freedom. Usual motion control
strategies like PID regulation do not take this into account and
compute unpredictable voltage setpoints, making any attempt
at crossing Type 2 singularities hazardous. Hence, aspects
cannot be interconnected in a trivial manner. This explains
why joint motion range on industrial robots is often software-
limited to stay away from Type 2 singularities.

1 Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal,
63000 Clermont-Ferrand, France {Adrien.Koessler, Nicolas.Bouton}@sigma-
clermont.fr

2 Centre National de la Recherche Scientifique (CNRS), Laboratoire des
Sciences du Numérique de Nantes (LS2N), UMR CNRS 6004, Nantes, France
{Alexandre.Goldsztejn, Sebastien.Briot}@ls2n.fr

Numerous solutions to enlarge the operational workspace
of parallel robots have been proposed to solve this problem.
They are mainly dependent on the design of the robot:

• Optimal design allows to find the best geometric param-
eters given a desired workspace volume [4]. Yet, this
method does not address workspace splitting.

• Design of singularity-free robots avoids the problem of
workspace splitting [5], [6]. Proposed architectures may
have other drawbacks such as reduced stiffness.

• Actuation redundancy [7], [8] and modified actuation
scheme [9], [10] permit to avoid the impact of singular-
ities, but induce control complexity and supplementary
design costs.

• Some architectures do meet geometric requirements for
a non-singular assembly mode change, either with cusp
points [11], [12] or Type 1 singularities [13], but this is
not applicable in the general case.

As opposed to these solutions, researches on Type 2 singu-
larity crossing emerged, as shown by early works [14], [15],
[16]. They were continuated by a more recent approach based
on optimal trajectory planning and dedicated control. Under
the condition that the wrench exerted on a robot’s end-effector
is purely reciprocal to the directions of uncontrolled motion,
it is proven that the dynamic model of the robot does not
degenerate even in singularities [17], [18]. This result can
be used in computed torque control (CTC) schemes with the
following strategy [19]:

1) Plan a crossing trajectory that respects the former con-
dition;

2) Enforce the condition by computing torques from a non-
degenerating inverse dynamic model when the singular-
ity is crossed.

This method proved its efficiency in most cases, though the
trajectory itself plays a critical role in the success of the as-
sembly mode change. Tracking errors, which are unavoidable,
have a strong impact near singular configurations and may lead
to a failure in following the desired trajectory. Consequently, in
addition to trajectory planning and control, there is a specific
need for validation of the assembly mode change, which is
tackled by the present paper. The new algorithm presented in
this paper intends to catch failures by tracking the pose of
the end-effector together with its assembly mode during the
Type 2 singularity crossing, so that the robot can operate in
an autonomous and safe way.

2

f1

f2

i

X

Y

O

Fig. 1. Ambiguity in assembly mode change. The robot starts in configuration
i and reaches a Type 2 singularity (blue dots). Is the final pose really f2 or
rather f1?

B. Pose and Assembly Mode Tracking Algorithms

It is well known that solving the Forward Kinematic Model
(FKM) of a robot is usually problematic, since the solution
is not unique in most cases. In the context of assembly mode
changing, the robot switches between different solutions to
the FKM, see Fig. 1: It passes through a double solution
of the FKM, and both trajectories f1 and f2 are compatible
with the active joint coordinates. The desired trajectory f2 can
be implemented only dynamically relying on the inertia of
the robot, and the pose tracking algorithm needs to track the
assembly mode as well, i.e., decide which trajectory among
f1 and f2 is actually performed by the robot.

Several methods based on exteroception already exist to
compute the current assembly mode of a parallel robot.
Introducing sensors in passive joints to create measurement
redundancy has been extensively investigated [20] and is still
used for new robot architectures [21]. Drawbacks are the lack
of generality in additional sensor placement, impossibility to
implement sensors in some joints (eg. spherical) and necessity
for mechanical redesign. External measurement with vision
[22] can answer partly this problem, for instance by tracking
a target placed on the end-effector, but sensor precision is too
low to distinguish different assembly modes in the vicinity of
singularities, especially if depth estimation is needed. Such
an approach comes at an extra cost and require heterogeneous
sensor data fusion.

It is therefore desirable to design a pose tracking algo-
rithm, relying only on encoder information, which is robust
to assembly mode change. Such pose tracking algorithms
solve the FKM for successive active joint measurements qak
coming from encoders to compute successive poses xk. Since it
generally has several solutions , it is crucial to solve the FKM
locally to compute the only solution that corresponds to the
actual pose. Usually, either the assembly mode is fixed by the
design of the robot and one can use an explicit expression of
the correct FKM solution, or one performs a Newton iteration
starting at the previous pose xk−1 to solve the Loop Closure
Equation (LCE)

f(x,qak) = 0, (1)

which is foreseen to converge very quickly to the correct new
pose xk. However, this latter simple and efficient strategy may

fail and converge to a wrong solution, in particular in the
vicinity of singularities.

Merlet [23] investigated the resolution of the FKM, and
proposed a certified pose tracking algorithm based on interval
analysis, which operates in two steps. The first step consists
in computing a crude interval domain [xC]k for xk by solving
the following simple update equation, which requires the
knowledge of a maximal end-effector velocity vmax:

xk = xk−1 +
∫ ts

0
ẋ(t)dt ∈ [x]k−1 + ts[vmax] =: [xC]k, (2)

where the velocity domain [vmax] encloses all possible veloci-
ties by fixing [vmax] := [−vmax,vmax]. The second step consists
in obtaining a sharp enclosure [x]k by solving the LCE (1) us-
ing an interval Newton operator and the crude enclosure [xC]k
as an initial domain. This pose tracking algorithm has very
interesting properties: Provided that a correct velocity upper
bound is used, the strict contraction of the interval Newton
operator proves that the correct pose has been enclosed. This
can be checked numerically, while the computational effort is
compatible with real time. However, two drawbacks are related
to the present paper.

1) The upper bound vmax on the pose velocity is difficult
to compute formally: While the desired pose velocity is
often known from the trajectory planing, the impact of
tracking errors on the velocity is difficult to assess, in
particular in the vicinity of Type 2 singularities.

2) As pointed out in [23], several solutions to the FKP are
enclosed in the crude domain [xC]k in the vicinity of
Type 2 singularities, which prevents the interval New-
ton operator to strictly contract and this pose-tracking
algorithm to succeed. Hence, FKM solutions cannot be
separated anymore once singularity is reached.

Therefore, the pose tracking algorithm proposed in [23]
cannot be used to correctly track the pose and the assembly
mode when crossing singularities. Furthermore, an underesti-
mated maximal velocity could lead this algorithm to capture
the wrong pose in the vicinity of Type 2 singularities, then
continuing to track the pose in the wrong assembly mode
without any prompt, a behavior that we wish absolutely to
avoid.

The second drawback mentioned above was recently ad-
dressed by the authors of the present paper in [24] by tracking
the end-effector velocity together with its pose:

ẋk = ẋk−1 +
∫ ts

0
ẍ(t)dt ∈ [ẋ]k−1 + ts[amax] =: [ẋC]k, (3)

xk = xk−1 +
∫ ts

0
ẋ(t)dt ∈ [x]k−1 + ts[ẋC] =: [xC]k, (4)

which now requires an enclosure [amax] = [−amax,amax] on
the end-effector acceleration. Using (3) instead of [vmax]
describes more accurately the set of admissible velocities, and
in particular it provides an information on the direction in
which the end-effector is moving. This additional information
has been proved to allow separating the different solutions
to the FKM when crossing singularities in [24]. As in [23],
resulting crude enclosures are sharpened to [ẋ]k and [x]k using
the LCE and now the first order Forward Kinematic Model

3

(FKM1) respectively. It was shown in [24] that for correctly
planned trajectories, tracking the velocity using (3) and using
[ẋC] instead of [vmax] in (4) actually allows tracking the pose
and its assembly mode when crossing a singularity. However,
requiring an upper bound amax on the end-effector acceleration
presents the same drawbacks as requiring an upper bound on
its velocity: It is difficult to assess, while too large overestima-
tion leads the algorithm to diverge and underestimation may
lead to an incorrect tracking of the assembly mode. Indeed,
a too small acceleration upper bound may incorrectly enforce
the pose tracking algorithm to track a wrong trajectory passing
smoothly through the singularity with small pose acceleration
while the true trajectory reaches the singularity locus but does
not cross it, appearing to bounce on the singularity with high
end-effector acceleration. Details are not given here since the
present paper supersedes this previous work of the authors.

C. Proposed methodology and contributions

In order to avoid requiring an upper-bound on the end-
effector acceleration, the proposed pose and assembly mode
tracking algorithm computes the crude enclosures of the end-
effector velocity and pose by simulating a differential inclu-
sion [25]. This differential inclusion allows computing an en-
closure of the end-effector acceleration by using both the 2nd-
order Forward Kinematic Model (FKM2), which is accurate
away of Type 2 singularities but degenerates in their vicinity,
and an adequate Direct Dynamic Model (DDM), which is less
accurate but does not degenerate in Type 2 singularities. Due to
the diverging nature of differential inclusion resolution along
time, at-time step contraction of enclosures should be provided
based on encoder measurements. Assembly mode detection
would then be achieved if no Type 2 singular configuration
belongs to the contracted pose enclosure.

This approach requires both an expression of the direct
dynamics of parallel robot and a method to solve differential
inclusions. The resolution of the differential inclusion requires
enclosures of the joint values, rates, accelerations between
time-steps, as well as of the torques and the uncertainties
on the DDM. Although meaningful enclosures are available,
they cannot be rigorously enclosed. Most importantly however,
underestimated enclosures that lead to a wrong assembly mode
tracking will now make the differential inclusion inconsistent,
hence preventing continuing to track the pose in the wrong
assembly mode. This is therefore a definite advantage with
respect to the usage of a maximal end-effector acceleration.

This strategy is used to create an algorithm for parallel robot
pose estimation without additional sensing, which is the main
contribution of the paper and comprises:
• a new expression of the DDM which is shown to be

consistent in Type 2 singularities
• the concurrent usage of kinematic and dynamic models

to reliably enclose end-effector acceleration even around
singularities

• interleaving of the differential inclusion enclosure with
the at-time step contraction using encoder information

• theoretical results and practical algorithm for solving
differential inclusions

• exhaustive experimental results showing the worth and
the limits of the proposed algorithm.

D. Outline of the paper
The article is organized as follows: Kinematic and dynamic

models of parallel robots will be presented in Section II.
Crucially, a new formulation for the direct dynamic model
is given that does not degenerate in Type 2 singularities.
Using these models as constraints by the means of differential
inclusion techniques, a generic algorithm able to track the
pose of the end-effector and its assembly mode is presented
in Section III. The methodology is instantiated to a 2-degrees
of freedom planar five-bar parallel robot called DexTAR in
Section IV. Experiments are carried out on the real robot
and the conditions for assembly mode detection success are
investigated in Section V.

II. KINEMATIC AND DYNAMIC MODELING

A. Parallel Robot Kinematic Modeling
In this section, the general equations for kinematic analysis

of parallel robots are recalled. They are all demonstrated in
[26]. For concision matters, we will only consider fully parallel
manipulators, that are n-dof robots driven by n actuators, but
the following can be extended to other types of parallel archi-
tectures. Kinematic analysis establishes relations between:
• the vector of active joint coordinates qa ∈ Rn and its

derivatives q̇a, q̈a ∈ Rn;
• the vector of end-effector pose coordinates x∈Rn and its

derivatives ẋ, ẍ ∈ Rn;
• the vector of constant geometrical parameters ξξξ ∈ Rng .

We also introduce qd which is the vector of passive joint
coordinates and its derivatives q̇d , q̈d . They are used further
on for dynamic modeling.

Parallel mechanisms usually have a LCE [26] that can be
written as

f(x,qa,ξξξ) = 0. (5)

Through derivation of the former, the 1st -order kinematics can
be deduced as

A(x,qa,ξξξ) ẋ+B(x,qa,ξξξ) q̇a = 0 (6)

where A and B are (n× n) Jacobian matrices of the robot.
The kinematic Jacobian, which links joint rates to end-effector
velocity, is defined as J = −A−1B. Another derivation step
leads to the equation for 2nd-order kinematics, that is

A(x,qa,ξξξ) ẍ+B(x,qa,ξξξ) q̈a = b(x, ẋ,qa, q̇a,ξξξ) (7)

The two former models can be used to compute respectively ẋ
and ẍ. (6) and (7) are the aforementionned FKM1 and FKM2.
In Type 2 singular configurations, matrix A becomes rank-
deficient [1] and FKMs are indeed not defined. Therefore, ẍ
cannot be computed and another equation is necessary: the
DDM presented in next section.

Briefly speaking, it is also possible to relate the passive
joint coordinates to the end-effector pose and active joint
coordinates by a relation of the form [27]

h(x,qa,qd) = 0. (8)

4

leading to the following kinematic relationship

Jtd q̇d = Jtrẋ−Jtaq̇a (9)

where Jtd is a (n× nd) matrix, Jtr and Jta (n× n) matrices.
This relation is needed for further developments. The way to
obtain them is not recalled here and the reader should refer to
[27].

B. Parallel Robot Dynamic Modeling

The goal of this section is to establish a model that allows
to compute ẍ in Type 2 singularities, where FKM2 (7) is not
defined. A classic expression of the Direct Dynamic Model of
parallel robots computed from input torques τττ can be found
in [27] under the form

ẍ = M−1
rob(x)

(
JT

invτττ− crob(x, ẋ)
)
, (10)

where Mrob is a (n×n) matrix, crob a (n×1) vector and Jinv =
−B−1A is the inverse Jacobian matrix. In (10), all variables
related to joint measurements have been substituted by their
expression in x, ẋ and ẍ. Thus, expression (10) could be used to
compute end-effector acceleration thanks to enclosures on x, ẋ
(that are initially deduced from joint measurement). However,
this method is prone to overestimation , up to the point that
infinite enclosures are computed around Type 2 singularities.
Numerical evidence is provided in appendix A. This is caused
by the multiple occurrences of pose and velocity intervals.
Consequently, this is not suited for our application and we
need to express DDM in another way, where possible inputs
are active joint values, rates and accelerations.

We start back from the classical Inverse Dynamic Model
(IDM) of parallel robots as given in [27]:

τττ = τττa +JT wp +JT
d τττd , (11)

where J is the Jacobian Matrix defined after (6), Jd is the
matrix that links active joint rates to passive joint rates (defined
in what follows), τττ is the vector of input torques and τττa, τττd ,
wp are defined next.

As proposed in [27], virtual efforts τττa, τττd in the legs are
expressed from the Lagrangian of the robot L as a function of
active joint values qa and rates q̇a, passive joint values qd and
rates q̇d (of size (nd×1)), end-effector pose x and velocity ẋ:

τττa =
d
dt

(
∂L
∂ q̇a

)T

−
(

∂L
∂qa

)T

= Maaxq̈a +Mdaxq̈d + cax

(12a)

τττd =
d
dt

(
∂L
∂ q̇d

)T

−
(

∂L
∂qd

)T

= Madxq̈a +Mddxq̈d + cdx.

(12b)

with mass matrices Maax, Mdax, Madx, Mddx and vectors of
Coriolis, centrifugal and gravity effects cax, cdx. Meanwhile,
the virtual efforts wp exerted on the platform, derived from the
Lagrangian L, depend only on end-effector pose parameters
and can be written as

wp =
d
dt

(
∂L
∂ ẋ

)T

−
(

∂L
∂x

)T

= Mp(x)ẍ+ cp(x, ẋ) (13)

where Mp is the mass matrix of the end-effector and cp a
vector of Coriolis, centrifugal, gravity and friction effects.

We now seek to eliminate the dependance on passive joint
variables. The dependance on qd can be removed thanks to
(8). Using (9) allows to get rid of passive joint velocities
in equations, despite matrix Jtd not being invertible in some
configurations involving Leg Passive Joint Twist Singularities
(LPJTS) [2]. In the following, we assume that the robot is
not in such a configuration as they are fairly rare and only
exist on mechanisms with complex limbs. Passive joint rates
are then computed as q̇d = Jd q̇a where Jd = J−1

td (JtrJ−Jta) is
the matrix necessary in equation (9). Since passive joint values
can always be computed thanks to active joint values and end-
effector pose, all mass matrices and vectors in equations (12)
and (13) do not rely on passive joint variables. It is important
to notice that those mass matrices are always full-rank [27].
Differentiating the relation (9) with respect to time yields a
formula for passive joint accelerations:

q̈d =J−1
td (Jtrẍ−Jtaq̈a +dd) . (14)

with dd only depending on x, ẋ, qa and q̇a too.
Integrating (12) (where passive accelerations are computed

with (14)) and (13) in the IDM (11) yields a result of the form:

τττ = Mxẍ+Mqq̈a + cxq (15)

with

Mx = MdaxJ−1
td Jtr +JT Mp +JT

d MddxJ−1
td Jtr (16)

Mq = Maax−MdaxJ−1
td Jta +JT

d Madx

−JT
d MddxJ−1

td Jta (17)

cxq = MdaxJ−1
td dd + cax +JT cp

+JT
d
(
MddxJ−1

td dd + cdx
)
. (18)

The former expressions cannot be evaluated in Type 2
singular configurations because of the kinematic Jacobian J.
Left-multiplying them by JT

inv =−AT B−T allows to get rid of
matrix J in (16) and (18). The resulting expression is

JT
invτττ = Mixẍ+Miqq̈a + cixq, (19)

with

Mix = JT
invMdaxJ−1

td Jtr +Mp +JT
invJT

d MddxJ−1
td Jtr (20)

Miq = JT
invMaax−JT

invMdaxJ−1
td Jta

+JT
invJT

d Madx−JT
invJT

d MddxJ−1
td Jta (21)

cixq = JT
invMdaxJ−1

td dd +JT
invcax + cp

+JT
invJT

d
(
MddxJ−1

td dd + cdx
)
. (22)

The terms Mix, Miq and cixq can be computed in Type 2
singular configurations, since none involve the computation
of J, i.e. inversion of matrix A.

Consequently, the Direct Dynamic Model (DDM) comput-
ing end-effector acceleration can be obtained as

ẍ = M−1
ix
(
JT

invτττ−Miqq̈a− cixq
)
, (23)

which is a generic expression of the Direct Dynamic Model
of a parallel manipulator that can be used even in Type
2 singularities. It is noteworthy that given this expression,

5

DDM (23) cannot be computed in Type 1 singularities, but
this is not a problem since FKM2 (7) is well-conditioned
in those configurations. When combined, FKM2 and DDM
allow to compute the acceleration of the end-effector in every
configuration, provided that Type 2 and LPJTS singularities
do not coincide.

Invertibility analysis of matrix Mix is complex because of
its structure, so it is out of the scope of this paper. However,
this matrix is always invertible for the case-study presented in
Section IV.

III. POSE TRACKING ALGORITHM

This section presents the pose tracking algorithm. It is
organized as follows: Subsection III-A provides some brief
background on interval analysis. Subsection III-B actually
describes the the pose tracking algorithm. Finally, Subsec-
tion III-C discusses the expected behavior of the algorithm,
the uncertainties on its inputs and its overall reliability.

A. Background on Interval Analysis

Interval analysis [28], [29] (IA) relies on interval arith-
metic, which is the extension of usual operators like ad-
dition, subtraction, multiplication, division and elementary
functions like sin, cos, etc., to interval arguments. For
example, the addition between two intervals is defined
by [x,x] + [y,y] = [x + y,x + y] and their multiplication by
[x,x]× [y,y] = [min{xy,xy,xy,xy},max{xy,xy,xy,xy}]. Func-
tions compound of these operations can then be evaluated
for interval arguments, allowing the computation of image
intervals that contain the range of the function over the interval
arguments. For example, the interval evaluation [x]2− [x] for
the interval [x] = [−1,1] is [−1,1]2− [−1,1] = [−1,2], which
is a superset of the corresponding function range {x2 − x :
x ∈ [−1,1]} = [− 1

4 ,2]. Vector and matrix operations are also
extended accordingly, e.g., [x]T [y]⊇ {xT y : x ∈ [x],y ∈ [y]}.

IA has been used in a wide range of applications in robotics,
e.g., mobile robot localization [30], trajectory planning [31],
continuous solution of the inverse geometric model [32],
robust control [33], [34], parameter estimation [35], [36],
tolerance analysis and synthesis [37], [38], [39] or workspace
computation [40], [41].

In our context, IA is used to:
• Enclose the trajectories of a differential inclusion in Sub-

section III-B1. The detailed description of this algorithm
is given in Appendix B.

• Contract the pose and velocity domains for given joint
coordinates domains using the geometric model of the
robot in Subsection III-B2. To this end, numerical con-
straint programming techniques are used to solve the
systems of equations of the LCE (5) and FKM1 (6).
Contraction of pose coordinates intervals is ensured by
the composition of a classical Forward-Backward method,
based on the classical algorithm HC4revise [42]) and a
polytope contractor based rigorous linearizations called
X-Taylor [43]. Contractions of velocity enclosures is
obtained using classical Gauss-Seidel iteration (see [29],
chap. 7).

B. Description of the algorithm

The algorithm inputs are:
• An enclosure of the initial pose coordinate [x]0;
• Joint coordinates measurements [qa]k at time-steps tk =

kts.
The proposed pose tracking algorithm works in two steps:
First, a differential inclusion that models the dynamic of the
robot is simulated between the last time step tk−1 and the
current time-step tk, leading to a crude enclosure [x]k−1,k of
the pose coordinates between time-steps tk−1 and tk, and a
crude enclosure [xC]k at time tk. This process is described
in Subsection III-B1. Second, the crude enclosure [xC]k is
contracted using numerical constraint programming by solving
the LCE (5) for the joint coordinates measurement [qa]k,
leading to a sharp pose coordinates enclosure [x]k at time-step
tk, see Subsection III-B2.

1) A differential inclusion for the between-time-step inte-
gration of the pose coordinates: The two models FKM2 (7)
and DDM (23) define two ordinary differential equations

ẍ(t) = FKM2(ẋ(t),x(t),qa(t), q̇a(t), q̈a(t)) and (24)
ẍ(t) = DDM(ẋ(t),x(t),qa(t), q̇a(t), q̈a(t),τττ(t)). (25)

Since expressions of qa(t), q̇a(t) and q̈a(t), τττ(t) are not
available, they are replaced by interval domains giving rise
to two differential inclusions (DI)

ẍ(t) ∈ FKM2(ẋ(t),x(t), [qa], [q̇a], [q̈a]) and (26)
ẍ(t) ∈ DDM(ẋ(t),x(t), [qa], [q̇a], [q̈a], [τττ]). (27)

Since ẍ needs to belong to these two DIs, we obtain a single
one by intersecting them two:

ẍ(t) ∈ [FKM2](x(t), ẋ(t))∩ [DDM](x(t), ẋ(t)), (28)

where parameter domains are dropped for compactness. This
has several advantages: In Type 1 singularities FKM2 becomes
unbounded but DDM remains bounded, while in Type 2
singularities DDM becomes unbounded but FKM2 remains
bounded. Therefore performing their intersection allows ob-
taining a meaningful DI in both cases (in Type 3 singularity
however the DI (28) is unbounded and therefore useless).
Furthermore, far from Type 1 singularities FKM2 is more
accurate than DDM allowing computing a sharper between-
time-step pose coordinates enclosure. This process allows
taking advantage of both models, without relying on a thresh-
olded multi-model that would switch between the two models.
Finally, emptiness of the intersection indicates the two models
are inconsistent so the pose and assembly mode were not
tracked correctly. This means that either one of the models has
not been written correctly, or that measurement and parameter
uncertainty was not set in a reliable fashion, which will be the
subject of section III-C2.

We use this DI to enclose the pose coordinates between the
time-steps tk−1 and tk: Using initial domains [x]k−1 3 x(tk−1)
and [ẋ]k−1 3 ẋ(tk−1) and parameter domains [qa]k−1,k 3 qa(t),
[q̇a]k−1,k 3 q̇a(t), [q̈a]k−1,k 3 q̈a(t) and [τττ]k−1,k 3 τττ(t) for all
t ∈ [tk−1, tk], the aim is to use the DI (28) to compute do-
mains [x]k−1,k 3 x(t), [ẋ]k−1,k 3 ẋ(t) and [ẍ]k−1,k 3 ẍ(t) for all

6

t ∈ [tk−1, tk]. Such trajectories of differential inclusions cannot
be enclosed by usual interval methods dedicated to ODEs,
which rely on automatic differentiation of the ODE, while
DI cannot be differentiated. Up to our knowledge, the only
attempt to enclose DI trajectories is [44], but it is dedicated
to the longtime simulation of differential inclusion with small
uncertainties and the crude enclosure step needed here is not
actually provided. We propose Algorithm 1 in Appendix B,
which relies on rigorously bounded first order Taylor series
given in Theorem 1 to enclose DI trajectories. In addition
to compute the between-time-step crude enclosure [x]k−1,k, a
tighter crude enclosure [xC]k for the pose coordinate x(tk) is
computed, which is used in the next subsection.

2) At-time-step contraction of pose and velocity enclosures:
The crude enclosure [xC]k of the pose coordinates computed
using the DI (28) contains the true pose coordinate x(tk).
Therefore, the pose coordinate x(tk) satisfies

x(tk) ∈ [xC]k, (29)
∃qa ∈ [qa]k,∃ξξξ ∈ [ξξξ], f(x(tk),qa,ξξξ) = 0, (30)

where (30) is the LCE (1). This is a square system of equations
with variables x(tk) and uncertain parameters qa. Provided
that both the variable domain [xC]k and the parameter domain
[q]k are small enough, this system can be solved efficiently
by standard contracting techniques borrowed to numerical
constraint programming. In particular, the joint coordinates
measurement [qa]k is expected to be very accurate, and pro-
vided that [xC]k is accurate enough to contain only one solution
of the direct kinematic problem for each qa ∈ [qa]k, solving the
constraint problem (29) and (30) allows reducing the domain
[xC]k to a new domain [x]k. The computed domain [x]k is a
sharp enclosure of the pose coordinates corresponding to the
measured joint coordinates [qa]k, independently of both the
uncertainties of the DI and the pessimism of the trajectory en-
closing algorithm. Velocity crude enclosure [ẋC]k is sharpened
in a similar fashion using the following constraints:

ẋ(tk) ∈ [ẋC]k, (31)
∃qa ∈ [qa]k,∃q̇a ∈ [q̇a]k,∃ξξξ ∈ [ξξξ],

A(x(tk),qa,ξξξ) ẋ(tk)+B(x(tk),qa,ξξξ) q̇a = 0, (32)

where (32) is the FKM1 (6). Solving the problem (31) and (32)
allows reducing the domain [ẋC]k to a new domain denoted
[ẋ]k.

C. Overall reliability of the algorithm

1) Expected behavior of the algorithm: As explained previ-
ously, the DI (28) contains overestimated uncertainties, and the
long-term enclosures [x]k−1,k and [ẋ]k−1,k of its solutions by
an interval algorithm shall diverge. Preventing the enclosures
to diverge relies on the contraction performed by solving
the problem (29)-(32) using joint coordinates measurements
[qa]k and joint velocities measurement [q̇a]k. Far from Type 2
singularities, the contraction process is efficient and can com-
pensate the divergence of the DI enclosure. However, this
contraction process becomes inoperative in the vicinity of
Type 2 singularities since FKM1 is badly conditioned. As

a consequence, the computed enclosures [x]k, [ẋ]k will result
only in the DI enclosing algorithm and will diverge during the
Type 2 singularity crossing. When the robot leaves this area,
two cases arise:

• The enclosures [x]k, relying only on the DI during the
singularity crossing, have not diverged too much, so that
numerical constraint techniques can solve (29) and (30)
efficiently when leaving the vicinity of Type 2 singu-
larities. In this case, the tracking algorithm succeeds in
tracking the pose during the singularity crossing, and will
continue tracking the pose correctly.

• The enclosures [x]k have diverged too much and nu-
merical constraint techniques cannot solve (29) and (30)
efficiently. Then the enclosure will keep growing even
when leaving the vicinity of the Type 2 singularities and
their width will quickly grow to infinity hence the failure
of the pose tracking algorithm.

Therefore, the success of the pose tracking algorithm is
expected to depend on the time spent in the vicinity of the
singularity, and therefore on the velocity of the platform during
the singularity crossing. This is verified experimentally in
Section V.

2) Errors on models and measurements: Both the kinematic
model and the dynamic model are used in the algorithm.
Enclosures must be given on kinematic parameters ξξξ and
dynamic parameters ψψψ , taking into account both uncertainties
on real parameters values and uncertainties due to unmodeled
phenomena. Also, in order to enclose trajectories of the DI,
enclosures of qa, q̇a, q̈a and τττ between two time steps are
needed.

Interval methods for kinematic calibration have been in-
vestigated [36], [45] and give reliable enclosures [ξξξ] of the
kinematic parameters. In the context of singularity crossing,
it is important to use near-singularity configurations in the
process. This ensures that the kinematic model to be used
is also valid around the singularity, where clearances usually
have an impact on positioning.

Instead of searching for an enclosure of the dynamic pa-
rameters ψψψ , which seems unreliable and difficult to validate
as evidenced by [46], a global uncertainty εεετττ on the value
of τττ is used, which also accounts for unmodeled phenomena.
The choice of the bound [εεετττ] of this uncertainty is heuristic
and based on the expert’s knowledge of robot dynamics. It is
typically a percentage of the maximal admissible torque τmax.
Its impact will be assessed experimentally in Section V.

For most encoders, an error bound is available for the
measure at time steps: qa(tk) is bounded to belong to qak +
[εεεq] =: [qa]k, where qak is the output of the encoder at time-
step k. Enclosures of qa, q̇a and q̈a between two time steps are
not readily available. Computing such meaningful enclosures
from the measurements [qa]k relies on the hypothesis that
the signal qa(t) is correctly sampled, i.e., that the sampling
frequency is sensibly higher than the signal bandwidth. Under
this hypothesis, one can use

qa(t) ∈�([qa]k−1∪ [qa]k) (33)

7

where � is the interval hull operator. Finite differences provide
meaningful domains for the between-time-step joint velocity
and acceleration:

q̇a(t) ∈ [qa]k+1− [qa]k−1

2ts
=

qak+1−qak−1

2ts
+[εεεdq],(34)

q̈a(t) ∈ [qa]k+1−2[qa]k +[qa]k−1

t2
s

=
qak+1−2qak +qak−1

t2
s

+[εεεddq], (35)

with [εεεdq] =
2[εεεq]

2ts
and [εεεddq] =

4[εεεq]
t2
s

. By the mean-value
theorem, these intervals actually contain at least one value of
the joint velocity and acceleration. Under the correct sampling
hypothesis, they shall be domain for the between-time-steps
quantities.

The sampling frequency, the controller frequency and the
pose-tracking algorithm frequency may differ. In particular,
for a fixed encoder precision [εεεq], a too high sampling
frequency makes the finite difference errors [εεεdq] and [εεεddq]
too large. By reducing the pose-tracking algorithm frequency,
under the constraint that it remains sensibly larger than the
bandwidth of q(t), one will decrease the finite difference
errors. Furthermore, such a reduced pose-tracking frequency
allows computing these finite differences on a sliding window,
hence providing a more reliable enclosure of the between-
time-step joint velocity and acceleration.

3) Success and failure of the algorithm: As discussed
previously, enclosures of the pose coordinates may either
converge or diverge after crossing the singularity locus. The
divergence of the enclosures indicates that the pose could not
be tracked correctly and therefore that the robot task should
be halted. If error bounds on the dynamical model and the
between-time-step joint coordinates are under-estimated then
the pose tracking algorithm may identify an inconsistency and
return an empty set for the pose enclosure. In this situation,
error bounds may be increased, or the robot task halted.

Most importantly, the algorithm should not result in a false
positive tracking, where the enclosures converge to a wrong
assembly mode. Such a false positive output would imply
that error bounds have been under-estimated. However, under-
estimated errors and a wrong assembly mode shall make the
dynamical and kinematic models, which are merged in the
DI (28), inconsistent hence leading to an empty-set evaluation
of the DI and to the failure of the algorithm. The situation
where under-estimated errors make the DI (28) compatible
with a wrong assembly mode but incompatible with the correct
assembly mode, which is the only situation that would lead to
a false positive tracking, cannot happen if the dynamic model
has been correctly designed.

IV. DEFINITION OF THE BENCHMARK: PLANAR FIVE-BAR
MECHANISM

To carry out simulations and experiments, the case of a five-
bar planar parallel mechanism is used. Its workspace is struck
by Type 2 singularities. The robot used is the DexTAR, which
is manufactured by the company Mecademic. The design of
the robot, which is optimal in regards to reachable workspace
and nonsingular assembly mode change, is described in [4].

A1

q1+δ1

A2

q2+δ2

B1

B2

E(x, y)

`11

`12
`22

`21

d

X

Y

O

Fig. 2. DexTAR geometry

TABLE I
GEOMETRICAL PARAMETERS VALUES

ξi unit [ξi] nominal
`11 mm [89.902,90.068] 90
`21 mm [89.921,90.091] 90
`12 mm [90.019,90.201] 90
`22 mm [89.899,90.059] 90
d mm [117.956,118.192] 118
δ1 rad [-0.004,0.004] 0
δ2 rad [-0.004,0.004] 0

A. Robot Kinematic Analysis

The geometry of the robot is described in Fig. 2, alongside
with a picture of the DexTAR. The two motors are located
at points A1 and A2, with active joint inputs qa = (q1 q2)

T .
Seven geometrical parameters are taken into account to model
the geometry, that is five bar lengths `11, `12, `21, `22, d and
two angular offsets δ1, δ2 added for the needs of kinematic
calibration. Those seven parameters are grouped in the vector
ξξξ . The output is the pose x = (xy)T of the end-effector E.

The system of loop-closure equations (36) is f(x,qa) =
(f1 f2)

T , where for i = 1,2:

fi = (x± d
2
− `i1 cos(qi))

2 +(y− `i1 sin(qi))
2− `2

i2 = 0. (36)

Matrices A and B to be used in FKM1, FKM2 and DDM
can be formally expressed using the relations

A =

(
∂ f
∂x

)
and B =

(
∂ f

∂qa

)
. (37)

The DexTAR is calibrated using a laser tracker. 50 optimal
calibration poses were chosen using the adapted DETMAX
algorithm described in [47]. Using a least-square routine [48],
an estimate ξ̂i of each geometric parameter is computed, as
well as associated standard deviation σ̂i assuming that the
measurement noise is white.

For every parameter ξi, the interval [ξi] = [ξ̂i−5σ̂i; ξ̂i+5σ̂i]
was consequently set. It was remarked by Daney [36] that
using an interval FK solver allows for verification of the
intervals [ξi]. If the loop-closure equations (36) are verified,
the solver never returns an empty set, thus bracketings on
kinematic parameters are correct. We checked that it was never
the case (in singular configurations especially), what accounts
for validation of the parameters presented in Table I.

8

TABLE II
DYNAMIC PARAMETERS VALUES

ψi unit apparent value
zz11 kg·m2 1.34·10−2

zz21 kg·m2 1.42·10−2

mp kg 5.24·10−1

fs11 N·m 5.34·10−1

fs21 N·m 5.55·10−1

o f f11 N·m 5.19·10−2

o f f21 N·m 5.48·10−2

B. Robot Dynamic Analysis

Contrary to kinematic analysis where a full model was used
to describe the robot, we seek a simplified version of the DDM,
but known to capture the main features of the dynamics. For
the DexTAR, only seven parameters can be identified [49],
forming the vector ψψψ whose components are:
• zz11 and zz21, apparent lumped inertias of proximal ele-

ments around axes (A1,~Z) and (A2,~Z) respectively
• mp, apparent lumped mass of the end-effector at point E
• fs11, fs21, apparent coefficients of Coulomb friction in the

active joints
• o f f11 and o f f21, apparent offset terms on motor torques

Consequently, the IDM (11) of the robot can be written as
given in [50]:

τττ = ZZq̈a +Fssign(q̇a)+Off+mpJT ẍ (38)

with ZZ = diag(zz11,zz21), Fs = diag(fs11, fs21) and Off =
diag(o f f11,o f f21). Multiplying by JT

inv = −B−1A and rear-
ranging the terms gives the expression to be used for the DDM
(23), which is well-defined in Type 2 singularities:

ẍ =
1

mp
JT

inv(τττ−ZZq̈a−Fssign(q̇a)−Off) (39)

The values of the parameters ψψψ are given in Table II. It is
interesting to notice that computation of passive joint values,
velocities or accelerations is not needed.

To translate this identified model into a certified one, the
approach presented in section III-C2 is used with a global
uncertainty εεετττ set via trial-and-error is added to the input
torque τττ .

C. Trajectory Generation and Control

As the goal is to perform Type 2 singularity crossing,
dedicated algorithms for trajectory generation and control are
needed. It was shown that the IDM does not degenerate in
Type 2 singularities if the following criterion is respected:
the wrench exerted on the end-effector must be reciprocal to
the direction of the uncontrolled motion of the end-effector
[17]. This constraint was integrated in a dedicated trajectory
generator [19].

Since the computation of torque setpoints is the problem
around Type 2 singularity, a multi-model Computed Torque
Control scheme has been proposed by Pagis [19]. It uses
the full IDM away from Type 2 singularities but a modified,
nondegenerating version of the IDM near them, in order to
ensure the criterion is respected. This control scheme proved

reliable, but as said in the introduction, the tracking errors
can lead to crossing failure on particular trajectories. Further
improvements to this control scheme can be found in [51],
[52].

Without notable modification, it is implemented on our
DexTAR through a Matlab/Simulink development environment
and a Quanser Q-PID board.

D. Setting up Uncertainties and Intervals

The subject of this section is finding numerical values for
the different uncertainties that are used to create the intervals
needed by the tracking algorithm. Uncertainties on geometrical
parameters ξξξ were already given in section IV-A.

The initial guesses on pose and velocity are not problematic
as long as the motion starts in a configuration that is not
near singularities. The homing process of the DexTAR allows
setting initial guesses for pose and velocity enclosures rig-
orously. Expected homing pose is x0 = (0.09 0.068) (m) with
null velocity. Intervals [x]0 = [0.08,0.10]× [0.06,0.08] (m) and
[ẋ]0 = [−0.1,0.1]× [−0.1,0.1] (m/s) are set consequently.

To obtain a very fine sampling, which benefits to the
differential inclusion procedure, sample time ts is set to 4 ms.
The cutoff frequency of the controller is f1=15.9 Hz, which is
an order of magnitude smaller than the sample rate (250 Hz).
This should allow us to use the hull union approximation
between two time steps, as explained in Section III-C2.

Joint values are measured using optical encoders with
34,000 counts per revolution on the DexTAR, which means
that [εεεq] can be set accordingly to [− 2π

34000 ,
2π

34000]
2 (rad).

Using formulas given in section III-C2, the uncertainty
on joint velocity amounts to [εεεdq] ⊂ [−9.2 · 10−2,9.2 · 10−2]2

(rad/s), while those on acceleration measurement are [εεεddq]⊂
[−46.2,46.2]2 (rad/s2), which is still an order of magnitude
smaller than the acceleration itself. Thus this way of comput-
ing the uncertainty is relevant for acceleration measurements.

Overall, εεετττ is tricky to determine formally. As a
workaround, we propose to test several values for this un-
certainty that amount to a percentage of the maximal torque
τmax = ±8 Nm. The maximal relative error on torque com-
putation in the identification process is typically 15% of the
torque amplitude attained during the identification trajectory,
but maximal torque values are never reached during this
process.

V. EXPERIMENTS ON DEXTAR ROBOT

To analyze the output and the behavior of the algorithm,
experiments need to be carried out on DexTAR robot. The
purpose is not only to check if it succeeds in detecting
assembly mode change, but also to prove that the method we
used to set uncertainties is viable, while keeping the compu-
tations reliable. All algorithms are implemented in C++ using
Filib++ for low-level computations and IBEX for contractor
programming [53].

A. Behaviour of the Algorithm

The first experiment is carried out on the robot and consists
in analyzing a case of successful detection. The desired

9

Fig. 3. Drawing of the enclosures on end-effector pose along a crossing
trajectory. The blue curve is the locus of Type 2 singularities.

trajectory consists in crossing the singularity locus at the
desired point xs = (0,84.4)T (mm), with an angle of 60 deg
to it and with desired velocity ẋs = (0.390,0.675)T (m/s). It
has been remarked that such a trajectory usually never fails
in changing the assembly mode, since crossing velocity and
angle are good. Of course, measurement is performed on a
trajectory that effectively changes the assembly mode. As a
first attempt, uncertainty εεετττ is set to ±10% of τmax.

Resulting boxes on end-effector pose are represented on
Fig. 3, evolving from top to bottom. It can be seen that
their size is quite small far from the singularities, and grows
afterwards. During the crossing, some boxes fall in both
assembly modes, showing that the algorithm can only yield its
result on assembly mode detection with a delay. Eventually,
boxes shrink and belong to only one side of the singularity,
translating the fact that the final assembly mode is known.

Width of pose and velocity boxes during the crossing phase
can be seen on Fig. 4. Enclosures on both x and ẋ are growing
near the singularity, then shrinking happens suddenly. Growth
of intervals was expected since contractors should work poorly
in this zone.

Efficiency of the contraction phase is the subject of Fig. 5.
We propose to measure it as the relative difference in box
width before and after contraction. While some gains can be
obtained on the precision of [x] near the singularity, the Gauss-
Seidel method used to contract [ẋ] is of no use since the FKM1
is not well defined. For pose boxes, a peak efficiency is reached
shortly after the crossing, corresponding to brutal contraction
of the enclosures. It results in a better definition of the FKM1,
allowing efficient velocity contraction again.

B. Uncertainties and Operating Range

While being successful, results obtained in last section are
not fully reliable since it cannot be stated if the error on
dynamic modeling did truly belong to uncertainty εεετττ . Sadly,

Fig. 4. Pose and velocity intervals width

Fig. 5. Contraction efficiency along the crossing trajectory

we have no means to verify this statement, and can only see the
influence of the values set for uncertainties. We would also like
to run the algorithm on different trajectories. Consequently, we
introduce two parameters characterizing the desired velocity
at singularity: its norm vsing and its angle with the singularity
locus α (see Fig. 6). For each trajectory, the algorithm is run
with varying uncertainty levels on τττ from 1% to 30%. When
recording the trajectories, all proved to change efficiently the
assembly mode of the robot.

Results are presented in Table III. A checkmark () denotes
a success in final assembly mode detection, a cross (×) denotes
a failure caused by diverging enclosures and an empty sign
(/0) denotes a failure due to empty set computation. These
cases have been discussed in section III-C3. It can be seen that
slow crossings tend to result in detection failure, while higher
velocities tend to be successfully detected. The explanation is
that higher desired velocities make up for sharper enclosures
which eventually exclude the parasite solution, while slower
trajectories remain in the neighborhood of singularities where

10

α
vsing

Fig. 6. Crossing trajectory parametrization

TABLE III
ALGORITHM OPERATING RANGE

vsing=0.584 m/s

ετ 1% 2% 5% 10% 15% 20% 25% 30%
α (deg)

30 × × × × × × × ×
45 × × × × × × × ×
60 X X × × × × × ×
75 X X X X × × × ×
90 X X X X × × × ×
105 X X X X × × × ×
120 X X × × × × × ×
135 × × × × × × × ×
150 × × × × × × × ×

vsing=0.779 m/s

ετ 1% 2% 5% 10% 15% 20% 25% 30%
α (deg)

30 × × × × × × × ×
45 × × × × × × × ×
60 X X X X × × × ×
75 X X X X X X X ×
90 X X X X X X X X
105 X X X X X X X ×
120 X X X X × × × ×
135 X × × × × × × ×
150 × × × × × × × ×

vsing=0.974 m/s

ετ 1% 2% 5% 10% 15% 20% 25% 30%
α (deg)

30 ∅ ∅ ∅ × × × × ×
45 ∅ ∅ X × × × × ×
60 X X X X X X X X
75 ∅ ∅ X X X X X X
90 ∅ ∅ X X X X X X
105 ∅ ∅ X X X X X X
120 ∅ X X X X X X X
135 X X X × × × × ×
150 X × × × × × × ×

contraction is inefficient.
Compared to former works [24], the operating range was

drastically increased in terms of crossing velocity. Trajectories
down to 0.6 m/s can now be successfully detected, while the
limit was 1.2 m/s for the former algorithm.

In addition to this, it can be seen that trajectories that are
normal to the singularity locus are easy to detect, while those
with an angle α closer to 0 or 180 deg are almost never

detected. In the latter case, the pose of the robot is nearing the
singularity for a long time and the algorithm cannot contract
boxes, eventually failing to detect the change in assembly
mode.

It seems that high velocity and orthogonality to the singu-
larity locus are the key components of a successful crossing,
but it should be tested (at least in simulation) on other types of
robots to be proven. The DexTAR has only 2-dof in translation,
and it is not clear what would happen with a robot that can
achieve rotations of the end-effector.

In terms of uncertainty management, the results obtained
for the trajectory with highest crossing speed contain some
cases of empty set evaluations (/0). As the velocity is higher,
the possibility of empty boxes appears for small uncertainties,
showing that values of εεετττ inferior to 10% do not account
correctly for unmodeled dynamic effects. Such values should
be avoided because they do not ensure the reliability of the
algorithm.

C. Trying to Create False Positives

It has been observed experimentally that when the robot
does not cross the singularity, it appears to bounce on it.
It can happen if the trajectories are slow, too close from
singularities or if tracking errors are too high. Such a failure to
cross the singularity can be reproduced by skewing computed
torque values so that they do not respect the non-degeneracy
criterion for singularity crossing [17]. The desired trajectory
consists in crossing the singularity locus at the desired point
xs = (0,84.4)T (mm), with an angle αsing = 75 deg and a
velocity vsing = 0.58 m/s. As expected, the robot fails to change
its assembly mode.

The recorded trajectory is fed to the algorithm with uncer-
tainty εεετττ kept to ±10% of τmax. It can be seen on Fig. 7
that pose enclosures expand in both directions before an
interruption is cast by the differential inclusion solver. Hence,
the result is good since the actual FK solution is enclosed.
No false positive is generated. Repeating the experiment on
several other trajectories (not reported in this paper), we never
achieved to get a false positive.

Overall, results tend to prove the reliability of the proposed
algorithm. The conditions to get a successful detection were
highlighted. A supplementary experiment with multiple singu-
larity crossings is shown in a video attached with this paper.

VI. CONCLUSION AND PERSPECTIVES

Parallel robots suffer from a lack of reconfigurability and
a reduced operational workspace. Among proposed solutions
to this problem, crossing Type 2 singularities seems general
and versatile. However, this method to change assembly mode
needs to gain reliability to be used in an industrial context.

In order to know what the current assembly mode of a
parallel robot is, a reliable algorithm based on robot kinematics
and dynamics is proposed. Reliability is ensured through
the use of interval arithmetic. This could be achieved by
finding a new formula for the acceleration of the robot’s end-
effector which holds even in Type 2 singularities. The formula

11

Fig. 7. Drawing of the enclosures on end-effector pose along a bouncing
trajectory. The blue curve is the locus of Type 2 singularities.

was successfully used in the proposed solver for differential
inclusions, that is a contribution of this paper too.

Experiments were carried on a 2-dof planar parallel robot
named DexTAR, which is capable of changing its assembly
mode thanks to specific motion generator and control scheme.
They proved the reliability of the algorithm and showed which
type of trajectories favor detection of singularity crossing. A
persistent limit is the absence of a method for computing
bounds on dynamic model uncertainties, though a trivial
solution consists in choosing voluntarily pessimistic bounds.

An interesting future work would be to use such an al-
gorithm during motion generation rather than task execution.
This would allow to create a reliable trajectory planner that
ensures successful assembly mode change.

APPENDIX A
NON-SINGULAR DIRECT DYNAMIC MODEL

In order to get a fully operational algorithm, we want to
check that the proposed DDM (23) gives thinner enclosures
on end-effector acceleration than other formulas such as (10),
as stated in section II-B.

For this purpose, the equation (39) is tested in two cases
for the five-bar mechanism presented in section IV:

1) as proposed in the paper, so that it needs joint acceler-
ation values. It is thus named DDM-acc

2) where joint acceleration is substituted thanks to second-
order inverse kinematic model, so that joint acceleration
values are not needed. It is then named DDM-vel.

As described in section III-C, computing sharp end-effector
acceleration enclosures is crucial for the success of the
differential inclusion procedure, more so that the algorithm
cannot rely on local solvers to sharpen enclosures in Type 2
singularity. In consequence, the preciseness of both DDM
formulations has to be compared in the context of singularity,
where end-effector pose and velocity intervals show their
maximal width (see Fig. 4).

TABLE IV
END-EFFECTOR ACCELERATION COMPUTATION

max of width([ẍ])
case width([x]) width([ẋ]) DDM-acc DDM-vel

mm m/s m/s2

tight 1 0.1 36.82 27.08
loose 10 0.8 56.38 1420.24

maximal 50 4.5 361.4 ∞

Based on data gathered from former paper [24], enclosures
on end-effector acceleration are computed in three cases: when
pose and velocity intervals are tight, then loosen up, then reach
their maximal width.

From Table IV, it can be noticed that DDM-vel gives sharp
results when input bracketings on x and ẋ are tight, but
poor results when those enclosures have loosened up. The
overestimation brought by multiple occurrences of the wide
intervals [x] and [ẋ] in DDM-vel results in acceleration values
growing towards infinity, forcing a failure of the differential
inclusion procedure around Type 2 singularities. In contrast,
DDM-acc is slightly less accurate far from singularities, but
crucially more precise near them. This allows to conclude that
DDM-acc, which was introduced formerly, is needed for the
success of the presented algorithm. This also means that a
measurement of joint acceleration is needed for the algorithm
to operate.

APPENDIX B
DIFFERENTIAL INCLUSION FLOW ENCLOSURE

We consider a second order differential inclusion (DI)

ẍ(t) ∈ [F](x(t), ẋ(t)), (40)

where [F] : Rn ×Rn → IRn, and interval vector enclosures
of the initial position [x0] ∈ IRn and velocity [ẋ0] ∈ IRn. A
solution of the DI for a duration h > 0 is a twice differentiable
function x : [0,h] → Rn that satisfies (40) for all t ∈ [0,h].
A solution of the corresponding initial value problem (IVP)
is a solution of the DI that furthermore satisfies x(0) ∈ [x0],
ẋ(0) ∈ [ẋ0]. The aim of this section is to provide an algorithm
that computes interval vector enclosures [xh], [ẋh] ∈ IRn of all
IVP solutions position and velocity at time h.

A. Guessed and updated enclosures

We now furthermore consider interval vectors [xG], [ẋG] ∈
IRn, which are guessed enclosures for the time period [0,h],
and define the following updated interval vectors

[xU] := [x0]+ [0,h][ẋ0]+
[0,h]2

2 [FG] (41)

[ẋU] := [ẋ0]+ [0,h][FG], (42)

where [FG] = [F]([xG], [ẋG]). The following theorem provides
sufficient conditions for the IVP solution to actually belong to
guessed and updated enclosures.

Theorem 1. The following three statements hold:
1) Every IVP solution that belongs to the guessed enclo-

sures also belongs to the updated enclosure.

12

2) If the updated enclosures are subsets of the interior of
the guessed enclosure then every IVP solution belong to
updated enclosures.

3) Every IVP solution that belongs to the updated enclo-
sures also satisfies

x(h) ∈ [x0]+h[ẋ0]+
h2

2 [F
U] (43)

ẋ(h) ∈ [ẋ0]+h[FU], (44)

where [FU] = [F]([xU], [ẋU]).

Remark 1. Statement 2 proves that updated enclosures enclose
the trajectories provided that they are strictly included inside
the guessed enclosures. These enclosures are rough in general,
and Statement 3 provides sharper enclosures for time h.

Proof. We prove a slightly stronger statement than State-
ment 1: Given an arbitrary t∗ ∈ [0,h], we prove that every
IVP solution that belong to the guessed enclosures for the
time interval [0, t∗] also belongs to the updated enclosures for
this time period. Statement 1 follows with t∗ = h. Considering
an arbitrary IVP solution x(t) and both its first order Taylor
expansion as well as the zeroth order Taylor expansion of ẋ(t),
with the integral form of the remainder, one obtains

x(t∗) ∈ x(0)+ t∗ ẋ(0)+
∫ t∗

ξ=0
(t∗−ξ)ẍ(ξ)dξ (45)

⊆ x(0)+ t∗ ẋ(0)+
∫ t∗

ξ=0
(t∗−ξ)[FG]dξ (46)

ẋ(t∗) ∈ ẋ(0)+
∫ t∗

ξ=0
ẍ(ξ)dξ , (47)

⊆ ẋ(0)+
∫ t∗

ξ=0
[FG]dξ , (48)

where the hypothesis that ẍ(ξ)∈ [F](x(ξ), ẋ(ξ))⊆ [FG] for all
ξ ∈ [0, t∗] is used. Constant lower and upper bounds [FG] can
be moved out of the integral. One eventually obtains x(t∗) ∈
[xU] and ẋ(t∗) ∈ [ẋU] noting that

∫ t∗
ξ=0(t − ξ)dξ = 1

2 t∗2 and∫ t∗
ξ=0 dξ = t∗, and replacing t∗ by its enclosure [0,h].

We prove Statement 2 by contradiction. Suppose that there
exists an IVP solution x(t) such that either x(t) leaves [xG]
or ẋ(t) leaves [ẋG]. Obviously [x0]⊆ [xU]⊆ int[xG] and [ẋ0]⊆
[ẋU] ⊆ int[ẋG], so there exists t∗ ∈]0,h[such that x(t) ∈ [xG]
and ẋ(t)∈ [ẋG] holds for all t ∈ [0, t∗] and either x(t∗) is on the
boundary of [xG] or ẋ(t∗) is on the boundary of [ẋG] (roughly
speaking, t∗ is the time just before x(t) or ẋ(t) first leaves
the guessed enclosures). However, we proved above that for
the time period [0, t∗] this trajectory is included in the updated
enclosure, which are supposed to be included in the interior
of the guessed enclosure, a contradiction.

For Statement 3, we use the Taylor expansions with the
Lagrange form of the remainder for each component of x(t):

xi(h) ∈ xi(0)+h ẋi(0)+ h2

2 Fi(x(ξi), ẋ(ξi)) (49)
ẋi(h) ∈ ẋ(0)+hFi(x(ξ ′i), ẋ(ξ

′
i)), (50)

with ξi,ξ
′
i ∈ [0,h]. Since by hypothesis x(t) ∈ [xU] and ẋ(t) ∈

[ẋU] for all t ∈ [0,h], we have both Fi(x(ξi), ẋ(ξi)) ∈ [FU
i] and

Fi(x(ξ ′i), ẋ(ξ ′i)) ∈ [FU
i], which proves Statement 3.

Algorithm 1: Enclosure of the trajectories of a second
order differential inclusion. Typical values for parameters
are kmax = 10, δ = 1.1 and ε = 10−10.
Input: [F] : Rn×Rn→ IRn; [x0], [ẋ0] ∈ IRn; h > 0;

1 [xG]← [x0]; [ẋG]← [ẋ0]; k← 1; success← false;
2 repeat
3 if not success then
4 [xG]←mid[xG]+δ ([xG]−mid[xG])+ ε[−1,1];
5 [ẋG]←mid[ẋG]+δ ([ẋG]−mid[ẋG])+ ε[−1,1];
6 end
7 [xU]← (41); [ẋU]← (42);
8 if [xU]⊆ int[xG] and [ẋU]⊆ int[ẋG] then

success← true;
9 [xG]← [xU]; [ẋG]← [ẋU];

10 k← k+1;
11 until k > kmax;
12 if success then return (43) and (44);
13 else return false ;

B. Enclosing algorithm

The following algorithm implements Theorem 1 in a similar
way as in the case of the interval simulation of ODEs. It
is provided here for the sake of completeness. It returns the
enclosures of position and velocity at time h in case of success,
or false in case of failure.

Line 4 and Line 5 perform a static inflation of the enclo-
sures. This static inflation is necessary to obtain the strict con-
traction, but slightly degrades the enclosures, and is therefore
not applied anymore once the strict inclusion is observed. The
rest of the algorithm iteratively applies Theorem 1 until the
maximum number of iterations is reached.

REFERENCES

[1] C. Gosselin and J. Angeles, “Singularity analysis of closed loop kine-
matic chains,” IEEE Transactions on Robotics and Automation, vol. 6,
no. 3, pp. 281–290, 1990.

[2] M. Conconi and M. Carricato, “A New Assessment of Singularities of
Parallel Kinematic Chains,” IEEE Transactions on Robotics, vol. 25,
no. 4, pp. 3–12, 2009.

[3] D. Chablat and P. Wenger, “Working modes and aspects in fully parallel
manipulators,” in Proceedings. 1998 IEEE International Conference on
Robotics and Automation, vol. 3, May 1998, pp. 1964–1969.

[4] A. Figielski, I. A. Bonev, and P. Bigras, “Towards development of a
2-DOF planar parallel robot with optimal workspace use,” in IEEE
International Conference on Systems, Man and Cybernetics, November
2007, pp. 1562–1566.

[5] G. Gogu, “Structural synthesis of fully-isotropic translational parallel
robots via theory of linear transformations,” European Journal of Me-
chanics, A/Solids, vol. 23, no. 6, pp. 1021–1039, 2004.

[6] M. Carricato, “Singularity-free fully-isotropic translational parallel ma-
nipulators,” Ph.D. dissertation, 2001.

[7] J.-P. Merlet, “Redundant parallel manipulators,” Laboratory Robotics
and Automation, vol. 8, no. 1, pp. 17–24, 1996.

[8] A. Müller, “Redundant actuation of parallel manipulators,” Parallel
Manipulators, towards new applications., no. April, 2008.

[9] V. Arakelian, S. Briot, and V. Glazunov, “Increase of singularity-free
zones in the workspace of parallel manipulators using mechanisms of
variable structure,” Mechanism and Machine Theory, vol. 43, no. 9, pp.
1129–1140, 2008.

[10] N. Rakotomanga, D. Chablat, and S. Caro, “Kinetostatic performance
of a planar parallel mechanism with variable actuation,” Advances in
Robot Kinematics: Analysis and Design, pp. 311–320, 2008.

13

[11] P. R. McAree and R. W. Daniel, “An Explanation of Never-Special
Assembly Changing Motions for 3-3 Parallel Manipulators,” The In-
ternational Journal of Robotics Research, vol. 18, no. 6, pp. 556–574,
1999.

[12] M. Zein, P. Wenger, and D. Chablat, “Singular Curves in the Joint Space
and Cusp Points of 3-RPR Parallel Manipulators,” Robotica, vol. 25,
no. 6, pp. 717–724, 2007.

[13] F. Bourbonnais, P. Bigras, and I. A. Bonev, “Minimum-time trajec-
tory planning and control of a pick-and-place five-bar parallel robot,”
IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 740–749,
2015.

[14] D. N. Nenchev, S. Bhattacharya, and M. Uchiyama, “Dynamic
Analysis of Parallel Manipulators under the Singularity-Consistent
Parameterization,” Robotica, vol. 15, no. 4, pp. 375–384, 1997.

[15] J. Hesselbach, M. Helm, and S. Soetebier, “Connecting assembly
modes for workspace enlargement,” Advances in Robot Kinematics, pp.
347–356, 2002.

[16] C. K. Kevin Jui and Q. Sun, “Path Tracking of Parallel Manipulators
in the Presence of Force Singularity,” Journal of Dynamic Systems,
Measurement, and Control, vol. 127, no. 4, p. 550, 2005.

[17] S. Briot and V. Arakelian, “Optimal Force Generation in Parallel
Manipulators for Passing through the Singular Positions,” The
International Journal of Robotics Research, vol. 27, no. 8, pp.
967–983, 2008.

[18] S. K. Ider, “Inverse dynamics of parallel manipulators in the presence
of drive singularities,” Mechanism and Machine Theory, vol. 40, no. 1,
pp. 33–34, 2005.

[19] G. Pagis, N. Bouton, S. Briot, and P. Martinet, “Enlarging parallel robot
workspace through Type-2 singularity crossing,” Control Engineering
Practice, vol. 39, pp. 1–11, 2015.

[20] R. Vertechy and V. Parenti-Castelli, “Robust, fast and accurate solution
of the direct position analysis of parallel manipulators by using extra-
sensors,” in Parallel Manipulators, towards new applications., 2008, pp.
133–154.

[21] H. Saafi, M. A. Laribi, and S. Zeghloul, “Forward kinematic model
improvement of a spherical parallel manipulator using an extra sensor,”
Mechanism and Machine Theory, vol. 91, pp. 102–119, 2015.

[22] R. Dahmouche, N. Andreff, Y. Mezouar, and P. Martinet, “Efficient high-
speed vision-based computed torque control of the orthoglide parallel
robot,” in Proc of the IEEE International Conference on Robotics and
Automation, 2010, pp. 644–649.

[23] J. P. Merlet, “Solving the Forward Kinematics of a Gough-Type
Parallel Manipulator with Interval Analysis,” The International Journal
of Robotics Research, vol. 23, no. 3, pp. 221–235, 2004.

[24] A. Koessler, A. Goldsztejn, S. Briot, and N. Bouton, “Certified Detection
of Parallel Robot Assembly Mode under Type 2 Singularity Crossing
Trajectories,” in IEEE International Conference on Robotics and Au-
tomation, 2017, pp. 6073–6079.

[25] J.-P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag
Berlin Heidelberg, 1984.

[26] J.-P. Merlet, Parallel Robots (2nd Ed.), G. M. L. Gladwell, Ed. Dor-
drecht Springer, 2006.

[27] S. Briot and W. Khalil, Dynamics of Parallel Robots: from Rigid Bodies
to Flexible Elements, M. Ceccarelli, Ed. Dordrecht Springer, 2015.

[28] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,
Springer, Ed. Springer, 2001.

[29] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. Society for Industrial and Applied Mathematics, 2009.

[30] F. Le Bars, A. Bertholom, S. Jan, and L. Jaulin, “Interval SLAM for
underwater robots. A new experiment,” in IFAC Proceedings Volumes
(IFAC-PapersOnline), 2010, pp. 42–47.

[31] L. Jaulin, “Path planning using intervals and graphs,” Reliable
Computing, vol. 7, no. 1, pp. 1–15, 2001.

[32] B. Martin, A. Goldsztejn, C. Jermann, and L. Granvilliers, “Certified
Parallelotope Continuation for One-Manifolds,” SIAM Journal On Nu-
merical Analysis, vol. 51, no. 6, pp. 3373–3401, 2013.

[33] J. Vehı́, I. Ferrer, and M. Á. Sainz, “a Survey of Applications of
Interval Analysis To Robust Control,” in IFAC Proceedings Volumes,
vol. 35, no. 1, 2002, pp. 389–400.

[34] L. Jaulin and F. Le Bars, “An Interval Approach for Stability Analysis;
Application to Sailboat Robotics,” IEEE Transactions on Robotics,
vol. 29, no. 1, pp. 282–287, 2013.

[35] L. Jaulin and E. Walter, “Set inversion via interval analysis for nonlinear
bounded-error estimation,” Automatica, vol. 29, no. 4, pp. 1053–1064,
1993.

[36] D. Daney, “Interval methods for certification of the kinematic calibration
of parallel robots,” in IEEE Int. Conf. on Robotics and Automation,
April 2004, pp. 1913–1918.

[37] M. R. Pac and D. O. Popa, “Interval analysis for robot precision
evaluation,” in Proceedings - IEEE International Conference on Robotics
and Automation, 2012, pp. 1087–1092.

[38] M. Tannous, S. Caro, and A. Goldsztejn, “Sensitivity analysis of parallel
manipulators using an interval linearization method,” Mechanism and
Machine Theory, vol. 71, pp. 93–114, 2014.

[39] A. Goldsztejn, S. Caro, and G. Chabert, “A three-step methodology for
dimensional tolerance synthesis of parallel manipulators,” Mechanism
and Machine Theory, vol. 105, pp. 213–234, 2015.

[40] D. Oetomo, D. Daney, B. Shirinzadeh, and J.-P. Merlet, “An Interval-
Based Method for Workspace Analysis of Planar Flexure-Jointed
Mechanism,” Journal of Mechanical Design, vol. 131, no. 1, pp. 1–14,
2009.

[41] S. Caro, D. Chablat, A. Goldsztejn, D. Ishii, and C. Jermann, “A
branch and prune algorithm for the computation of generalized aspects
of parallel robots,” Artificial Intelligence, vol. 211, no. 1, pp. 34–50,
2014.

[42] F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget, “Revising
hull and box consistency,” in Proc. of the 16th Int. Conf. on Logic
Programming, 1999, pp. 230–244.

[43] I. Araya, G. Trombettoni, and B. Neveu, “A contractor based on convex
interval Taylor,” in Integration of AI and OR Techniques in Contraint
Programming for Combinatorial Optimzation Problems, 2012, pp. 1–16.

[44] T. Kapela and P. Zgliczyński, “A Lohner-type algorithm for control
systems and ordinary differential inclusions,” Discrete and Continuous
Dynamical Systems - Series B, vol. 11, no. 2, pp. 365–385, 2008.

[45] D. Daney, N. Andreff, G. Chabert, and Y. Papegay, “Interval method
for calibration of parallel robots: Vision-based experiments,” Mechanism
and Machine Theory, vol. 41, no. 8, pp. 929–944, 2006.

[46] P. Poignet, N. Ramdani, and O. Andres Vivas, “Robust Estimation of
Parallel Robot Dynamic Parameters with Interval Analysis,” in IEEE
Conference on Decision and Control, 2003, pp. 6503–6508.

[47] A. Joubair and I. A. Bonev, “Comparison of the efficiency of five
observability indices for robot calibration,” Mechanism and Machine
Theory, vol. 70, pp. 254–265, 2013.

[48] W. Khalil and E. Dombre, Modélisation, identification et commande des
robots. Hermès Science, 1999.

[49] M. Gautier and S. Briot, “Global Identification of Joint Drive Gains and
Dynamic Parameters of Parallel Robots,” Multibody System Dynamics,
vol. 33, no. 1, pp. 3–26, 2013.

[50] S. Briot, N. Bouton, and P. Bigras, “Controlling parallel robots during
singular assembly mode changing,” in International Conference on
Multibody System Dynamics, 2016, pp. 116–128.

[51] D. Six, S. Briot, A. Chriette, and P. Martinet, “A Controller Avoiding
Dynamic Model Degeneracy of Parallel Robots During Singularity
Crossing,” Journal of Mechanisms and Robotics, vol. 9, no. 5, pp. 1–8,
2017.

[52] A. Koessler, N. Bouton, S. Briot, B. C. Bouzgarrou, and Y. Mezouar,
“Linear Adaptive Computed Torque Control for Singularity Crossing of
Parallel Robots,” in 22nd CISM IFToMM Symposium on Robot Design,
Dynamics and Control, 2018 (Accepted), pp. 1–8.

[53] G. Chabert and L. Jaulin, “Contractor programming,” Artificial Intelli-
gence, vol. 173, no. 11, pp. 1079–1100, 2009.

Adrien Koessler recieved his engineer degree from
Institut Français de Mécanique Avancée and his
masters degree in robotics from Université Blaise
Pascal, Clermont-Ferrand, France in 2015. He also
recieved his Ph.D. in Engineering Science from
Université Clermont Auvergne, France in 2018. He
is currently postdoctoral fellow in FactoLab, Institut
Pascal.

His research interests include kinematic and dy-
namic modeling of robots, as well as control law
synthesis.

14

Alexandre Goldsztejn received his engineer degree
from the Institut Supérieur d’Electronique et du
Numérique, Lille, France, in 2001, and his Ph.D.
in Computer Science from the University of Nice-
Sophia Antipolis in 2005. He has spent one year
as a postdoctoral fellow in the University of Central
Arkansas and the University of California Irvine. He
is full time CNRS researcher since 2007.

His research interests include interval analysis and
its application to constraint satisfaction, nonlinear
global optimization, robotics and control.

Sébastien Briot received the B.S. and M.S. de-
grees in Mechanical Engineering in 2004 from the
National Institute of Applied Sciences (INSA) of
Rennes (France). Then, he began a PhD thesis,
under the supervision of Prof. Vigen Arakelian, at
the INSA of Rennes and received the PhD degree
in 2007. He worked at the Ecole de Technologie
Suprieure of Montreal (Canada) with Prof. Ilian
Bonev as a postdoctorate fellow in 2008. Since 2009,
he is a full-time CNRS researcher at the LS2N (ex-
IRCCyN Lab.) in Nantes (France). Since 2017, he

is the head of the ARMEN research team at LS2N.
His research fields concern the design optimization of robots and the

analysis of their dynamic performance. He also studies the impact of sensor-
based controllers on the robot performance. He is the author of 40 referred
journal papers, 2 books and 3 inventions.

Dr. Briot received the Award of the Best Ph.D. Thesis in Robotics from
the French CNRS for year 2007. In 2011, he received two other awards: the
Award for the Best Young Researcher from the French Region Bretagne and
the Award for the Best Young Researcher from the French Section of the
American Society of Mechanical Engineering (SF-ASME).

Nicolas Bouton received his engineer degree from
Institut Français de Mécanique Avancée, Clermont-
Ferrand, France in 2006. He also received his mas-
ters degree in robotics from Université Blaise Pascal,
Clermont-Ferrand, France in 2006 and his Ph.D. in
Engineering Sciences and Mechatronics from Unier-
sité Blaise Pascal of Clermont-Ferrand in 2009. He is
associate professor at SIGMA Clermont since 2010.

His research interests include automatic, non-
linear control theory, advanced control law algo-
rithms and observability and their applications to

robotics, mechatronics, machines and systems.

