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Higher and higher interest has been shown in the recent years to large scale spiking simulations
of cerebral neuronal networks, coming both from the presence of high performance computers and
increasing details in the experimental observations. In this context it is important to understand
how population dynamics are generated by the designed parameters of the networks, that is the
question addressed by mean field theories. Despite analytic solutions for the mean field dynamics has
already been proposed for current based neurons (CUBA), a complete analytic description has not
been achieved yet for more realistic neural properties, such as conductance based (COBA) network
of adaptive exponential neurons (AdEx). Here, we propose a novel principled approach to map a
COBA on a CUBA. Such approach provides a state-dependent approximation capable to reliably
predict the firing rate properties of an AdEx neuron with non-instantaneous COBA integration. We
also applied our theory to population dynamics, predicting the dynamical properties of the network
in very different regimes, such as asynchronous irregular (AI) and synchronous irregular (SI) (slow
oscillations, SO).

This results show that a state-dependent approximation can be successfully introduced in order
to take into account the subtle effects of COBA integration and to deal with a theory capable to
correctly predict the activity in regimes of alternating states like slow oscillations.

I. INTRODUCTION

Recent developments in recording techniques are shed-
ding light on the dynamics of cortical neural networks
in higher and higher spatio-temporal detail [1]. There
are different scientific ways to investigate and understand
such large amount of data. A first class of approaches are
top-down, aiming to use data as a constrain to build gen-
erative models capable to automatically reproduce statis-
tical features observed in experiments [2–5]. On the other
hand it is possible to interpret the experimental observed
behavior by mean of a bottom-up theoretical model. To
achieve this, different levels of description are possible,
ranging from single spiking neurons [6, 7] to population
model [8–15], from extremely detailed [8, 16–18] to more
coarse-grained models [19, 20].
While keeping the model as simple as possible, it has

been recently shown that some minimal requirements are
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necessary in order to reproduce a rich repertoire of dy-
namical features. In particular, a quite refined model
as the AdEx is necessary to describe a response on a
broad range of frequencies [21]. Moreover, voltage de-
pendent synapses have been largely shown to be a cru-
cial mechanism of neurons’ interaction [22, 23]. While
direct simulation of large ensembles of single neurons can
be performed, such an approach can be computationally
heavy and does not permit a straightforward understand-
ing of the system dynamics. A principled dimensional
reduction approach such as mean-field (MF) theories are
powerful and widespread tools, used to obtain a large
scale description of neuronal populations. One of the
first successful attempts was to provide a theory to de-
scribe leaky integrate and fire neurons with current based
input [14, 19, 24, 25], where the firing rate properties of
the neurons are described as a function of the statistics
of its input current through a Fokker-Planck formalism.
This approach was also successfully exploited to work out
asymptotic firing rates under mean-field approximation
incorporating synaptic filters [26, 27]. For relatively small
synaptic timescales this leads to an effective current-to-
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rate gain function equivalent to the one for instantaneous
synaptic transmission with a perturbative modulation of
the firing threshold.

The description of the asymptotic firing rates when
conductance-based inputs under mean-field approxima-
tion has also a long track of successful attempts [15, 28–
30]. However, neither current fluctuations nor synaptic
filters was taken into account simultaneously. In the same
framework, the dynamics beyond the asynchronous lin-
earizable state has been addressed by numerically inte-
grating the Fokker-Planck equation [31–33], while theo-
retical insights have been obtained only for specific quasi-
stationary conditions [15, 33].

However, taking into account these modelling features
all togheter in an excitatory-inhibitory network is ex-
tremely challenging. Only recently it has been proposed
a method based on a semi-analytic approach [34] that
can give satisfactory quantitative predictions also for net-
works with adaptation and slow wave activity [35]. Nev-
ertheless, this method is based on a fitting procedure for
the transfer function in regimes with relatively low ac-
tivity and low synchronization. Accordingly, it is still
far from a closed analytic solution that would be able
to describe different dynamical brain states. Steps to-
wards in this direction are not only a mere exercise of
elegance but permit a deeper understanding of the role
played by model features (e.g. voltage dependent inter-
actions) for the emerging dynamics. As we will describe
in this manuscript, thanks to such approach we found
out that neurons work in two main regimes as different
approximations can lead to two different analytic results.
In particular, each of the two approximation only work in
a specific dynamical condition, that can be either drift-
or fluctuation-driven. Moreover, in light of these results,
we propose here a principled state-dependent approxima-
tion. In other words we showed that the two approxima-
tions are valid in the two limits described above and that
they can be analytically merged. This allows to define
a current-to-rate gain function reliable also in regimes
where the dynamics is not strictly drift or fluctuation
driven.

One of the main novelties introduced here, is an effec-
tive current-to-rate gain function aiming at simplifying
the theoretical description of the dynamics of networks
composed of COBA neurons. This allowed us to make a
step further in terms of usability of the theory also for nu-
merical integration of the mean-field dynamics, compared
to the double-integral expression provided in [28, 30].

Our approach turns out to be rather effective for inves-
tigating the properties of neuronal populations dynam-
ics. In particular we considered a network composed of
excitatory and inhibitory neurons, namely the standard
minimal circuitry for cortical neuronal networks [36, 37].
The network parameters are set to reproduce two differ-
ent dynamical conditions that are biologically relevant,
i.e. asynchronous irregular and slow oscillating dynamics
[38]. We show that both of them are reliably described
by our mean-field model and that the state-dependent

approach is indispensable to achieve the quality of such
result.
Furthermore our approach is particularly convenient

to compare dynamical properties of CUBA and COBA
networks. In particular we investigated the effect of the
network integration of multiple incoming inputs. We
found, in accordance with [23] that COBA networks have
a stronger sub-linear suppression, which is important to
account for experimental observation. This is also an in-
teresting features in terms of computational capabilities
since the presence of COBA synapses plays an important
role for the ability of these networks to disambiguate two
stimuli.

II. RESULTS

A. Neuronal network model

We derive a state-dependent current-to-rate gain func-
tion for conductance based (COBA) AdEx type neurons,
whose dynamics evolves according to the following equa-
tions [7]:










dV (t)
dt = −V (t)−El

τm
+ ∆V

τm
e(

V (t)−θ

∆V ) + I(t,V (t))
C − W (t)

C

dW (t)
dt = −W (t)

τW
+ b

∑

k δ(t− tk) + a(V (t)− El)

,

(1)
where the synaptic input I is defined as

I(t, V (t)) =
∑

α

gα(t)(V (t)− Eα) , (2)

and where V (t) is the membrane potential of the neu-
ron and α = e, i defines the excitatory (e) and the in-
hibitory (i) input. The parameters of the neurons which
depends on the populations they belong to (excitatory
RS or inhibitory FS, see TABLE I) are τm the mem-
brane time constant, C the membrane capacitance, El

the reversal potential, θ the threshold, ∆V the exponen-
tial slope parameter, W the adaptation variable, a and
b are the adaptation parameters. gα are the synaptic
conductances, defined as

gα(t) =
∑

k

Θ(t− tk)Qαexp(−(t− tk)/τα) (3)

We define the spiking time of the neuron when the
membrane potential reaches the threshold Vspike = θ +
5∆V . tαk indicates the times of pre-synaptic spikes re-
ceived by the neuron from synapse type α with charac-
teristic time τα and its synaptic efficacy Qα.

B. Current-to-rate gain function

Under the assumption of quasi-instantaneous synaptic
transmission (negligible τα), for a neuron described by
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FIG. 1. Current-to-rate gain function for AdEx neu-
rons with conductance based input: (A) Sketch of a
AdEx neuron with current based input represented by a white
noise. (B) Current-to-rate gain function F(µ, σ) for AdEx
neuron receiving a white noise input with mean and vari-
ance (µ and σ, respectively). Theory and simulations (lines
and circles, respectively) are in remarkable agreement. (C)
Sketch of an AdEx neuron with conductance-based (COBA)
input. (D) Graphic presentation of the voltage dependence of
the conductance based input. (E) Firing rate of neuron with
COBA input as a function of the excitatory input and with
constant inhibitory one (circles). Two different theoretical
approximations (in red and blue).

the dynamical system of Eq. (1) it is possible to write a
Fokker-Planck equation describing the dynamics of the
probability density function (p.d.f.) for its membrane
potential V as

τm
∂p(V, t)

∂t
=

∂

∂V
[(f(V ) + µ)p(V, t)] +

σ2

2

∂2

∂2V
p(V, t) ,

(4)

where f(V ) = −(V (t) − El) + ∆V e(
V (t)−θ

∆V
) and suited

boundary conditions are taken into account [39], i.e. an
absorbing barrier at the spike emission threshold Vspike =
θ+k∆V (k is arbitrarily chosen to be 5, its value weakly
affects the spike timing) and that the probability current
(f(V ) + µ)p(V, t) + 1

2σ
2∂V p(V, t)

∣

∣

V =Vspike
is re-injected

in Vreset = −65 after a refractory period τarp = 5ms.

We assumed that the input I(t)
C is a white noise with in-

finitesimal mean µ and infinitesimal variance σ (Fig1.A).
This means that the firs line of Eq. (1) would be rewritten
as

dV (t) =

[

−V (t)− El

τm
+

∆V

τm
e(

V (t)−θ

∆V ) − W (t)

C

]

dt

+µdt+ σξ(t)
√
dt (5)

where ξ(t) is a Gaussian white noise. Under stationary
conditions, the firing rate of the neuron is given by the
flux of realizations (i.e., the probability current) crossing
the threshold Vspike [24]:

F(µ, σ) =
1

σ2

∫ θ+5∆V

−∞

dV

∫ θ+5∆V

max(V,Vr)

du

×e
−

1
τmσ2

∫
u

V
[f(v)+µτm]dv

. (6)

Such function, usually referred to as transfer function
(or current-to-rate gain function), provides an estimate
of neuronal firing rate which is in remarkable agreement
with the one measured from numerical integration of
Eq. (1) (Fig. 1B). Nevertheless, in the case of voltage de-
pendent synapses determining the infinitesimal moments
of the input current (mean µ and variance σ2) as a func-
tion of the input firing rate is not straightforward.
In particular when a conductance-based input is con-

sidered (Fig. 1C), the stochastic process describing the
input current has voltage-dependent infinitesimal mean
and variance due to the voltage-dependent nature of the
impact of the incoming spikes on the membrane potential
dynamics (Fig. 1D). In this framework, an explicit solu-
tion of the aforementioned Fokker-Planck equation has
not yet been worked out.

1. Moment Closure (MC) approximation

One of the major problems in modeling COBA neurons
is that the input current is voltage dependent and can be
written as

I(t) =
∑

α=e,i

[

ḡα(Eα − V̄ )− ḡαδV + δgαV̄ − δgαδV
]

.

(7)
where we wrote V and gα as their average value plus

their time-dependent variations (V = V̄ + δV and gα =
ḡα+δgα). A first naive approximation consists in replac-
ing the variable V by its average V̄ , such that the input
current I = ge(Ee − V̄ ) + gi(Ei − V̄ ) is now independent
from V . Under diffusion approximation (i.e. in the limit
of small gi and ge, and a large rate of incoming spikes),
the two infinitesimal moments µ and σ2 of I are:











µ = ḡe(Ee−V̄ )+ḡi(Ei−V̄ )
C

σ2 =
σ2
ge

(Ee−V̄ )2+σ2
gi

(Ei−V̄ )2

C2

(8)
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Since µ and σ can be written as a function of the firing
rate, it is possible to write the transfer function as

F(νe, νi) =
1

σ2

∫ θ+5∆V

−∞

dV

∫ θ+5∆V

max(V,Vr)

du

×e
−

1
τmσ2

∫
u

V
[f(v)+f1(v̄,ḡe,ḡi)]dv. (9)

This equation is the same as Eq. (6) where µ =
f1(v̄, ḡe, ḡi)/τm due to Eq. (8). Comparing this expres-
sion with numerical simulations of the single-neuron spik-
ing activity in Fig. 1E (red line), a good agreement is
mainly apparent under drift-driven regime (µ τm > θ).

2. Voltage-Dependent (VD) approximation

It is also possible to take into account the dependence
of the input current I(t) on the voltage [28, 30, 40, 41]
by writing it in the following way:

I(t) =
∑

α=e,i

[

ḡα(Eα − V̄ )− ḡαδV + δgαV̄ − δgαδV
]

≃
∑

α=e,i

[

ḡα(Eα − V̄ )− ḡαδV + δgαV̄
]

, (10)

. In the last step the term −∑

α δV δgα has been ne-
glected since δV is assumed to be of the same order
as δgα [30, 40], so δV gα ∼ O((δgα)

2). Under this ap-
proximation, the synaptic current can be then written
as a deterministic voltage-dependent part plus a stochas-
tic component which is independent from V . As we are
considering a quasi-instantaneous synaptic transmission
(τα ≃ 0), such stochastic source of current can still be
modeled by a Gaussian white noise [24] such that:

I = f1(V, ḡe, ḡi) + σξ(t) , (11)

where σ =

√

σ2
ge

(Ee−V̄ )2+σ2
gi

(Ei−V̄ )2

C2 , ξ(t) is a white noise

N (0, 1) and f1(V, ḡe, ḡi) = ḡe(EE − V ) + ḡi(EI − V ),
with ḡe, ḡi and σ2

ge , σ
2
gi the mean and the variance of the

synaptic conductances, respectively. In the case of input
spike trains with Poissonian statistics these infinitesimal
moments result to be [24, 42, 43]:







ḡα = ταQαKανα

σ2
gα =

ταQ2
αKανα
2

, (12)

where Kα is the number of synaptic contact each neuron
receives from the population α ∈ {e, i}.
As above, considering f1(V ) as an additional term to

f(V ), it is again possible to work out an analytic expres-
sion for the transfer function:

F(ḡe, ḡi, σ) =
1

σ2

∫ Vup

−∞

dV

∫ Vup

max(V,Vr)

du

×e
−

1
τmσ2

∫
u

V
(f(v)+f1(v,ḡe,ḡi))dv . (13)

The result of such approximation is shown in Fig. 1E
(blue line). We observe that this approximation gives
good theoretical prediction as far as the average mem-
brane potential of the neuron is sufficiently low (i.e. un-
der noise-dominated regime).

C. A mixed framework: State-dependent (SD)
approximation.

The two proposed approximations rely on different as-
sumptions of the composition of the input current I(t) to
the neurons, that turned out to be valid under different
dynamical regimes of the neuron. In this paragraph we
propose a mixed framework in order to have a continuous
transfer function, by introducing a new parameter that
allows to interpolate between the two regimes. This pa-
rameter is introduced not by an a posteriori fit, but by a

priori considerations on the input current.
Under drift-dominated regime (µ τm > θ), the spiking

times are mainly determined by the deterministic com-
ponent of the input and not by the stochastic one.
Accordingly, neglecting V fluctuations and replacing

it with its average value, is a good assumption and the
use of MC approximation is very satisfactory (Fig.1E left
side).
When µ τm < θ, i.e. under fluctuation-driven regime,

the neuron can only fire in presence of large-enough sub-
threshold fluctuations, as V̄ ≪ θ. Therefore, all the vari-
ability of V has to be taken into account, as sub-threshold
suppression appears when V is close to the θ. Under this
condition, VD approximation result to be the most effec-
tive (Fig. 1E-right), as the additional term −∑

α ḡαδV
in the current I(t) is taken into account. This term is
lacking in the MC approximation.
Starting from that, we unify these two expressions for

F by writing

I(t) =
∑

α=e,i

[

ḡα(Eα − V̄ ) + δgαV̄ − (1 − s)ḡαδV
]

,

(14)
where s is an arbitrary state-dependent parameter

which is 0 when V̄ ≪ θ and 1 when V̄ approaches θ
as

s =
1

1 + exp[− (V̄+σV −θ)
∆V ]

(15)

that is a sigmoid function with a very small width ∆V
(we chose this parameter since it represents the natural
scale of the absorbing barrier) to preserve the derivabil-
ity and smoothness of the current-to-rate gain function.
This is a key step to define an effective expression for
smoothly merging the two approximations (VD and MC)
when the regime transitions from fluctuation- to drift-
driven.
Finally we get the following current-to-rate gain func-

tion:
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F(νe, νi, s) =
1

σ2

∫ θ+5∆V

−∞

dV

∫ θ+5∆V

max(V,Vr)

du e
−

1
τmσ2

∫
u

V
[f(v)+f1(v̄,ḡe,ḡi)−(1−s) (ge+gi)(v−V̄ )/gl]dv. (16)
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amonds are CUBA simulations. Approximation 1 (red) and
2 (blue) fit almost exactly CUBA simulations with synaptic
filter and COBA simulations without synaptic filter.

This formulation is valid in absence of synaptic inte-
gration (τα = 0), but its firing rate estimation is rather
accurate even in presence of coloured input, as expected
according to [26], as shown in Fig. 2.

In order to check the effectiveness of Eq. (16), we com-
pared the F obtained with the MC and the VD approx-
imations, and with the state-dependent one, for varying
excitatory and inhibitory input firing rates (Fig. 3A). We
report the respective errors (difference between theory
and simulations, see Fig. 3B) showing that in our ap-
proach they are smaller and distributed in a narrower
region in the νe, νi plane.

We considered also the adaptation variable W (t) with
a relaxation time scale τW = 500 ms, and compared the
prediction with the simulations for the three models, ob-
serving an optimal estimation for the state-dependent
one (Fig. 3C).

D. Application: population dynamics

We applied our result for describing an effective mean
field dynamics for the canonically considered minimal
structure of a cortical network, namely two coupled
population of neurons, one excitatory (regular spiking,
RS) and one inhibitory (fast spiking, FS). RS neurons
also have a spike frequency adaptation mechanism (see
Fig.4A). The external input is provided by increasing the
excitatory firing rate in the input of both the population
by an amount of νext = 6Hz. Neuronal parameters are
specified in TABLE I. The probability of connection is
p = 0.25.
We define the MF dynamics for the average excitatory

and inhibitory firing rates of the network (respectivley νe
and νi) following the approach used in [44]























τe
dνe
dt = Fe(νe, νi,W )− νe + σeξe(t)

τi
dνi
dt = Fi(νe, νi)− νi + σiξi(t)

dW
dt = −W

τw
+ b νe − a(V̄e − El)

(17)

where we also considered the adaptation variable W .
The parameter b and a are the same as in eq.(1). τe and
τi are the same as the membrane potential time scales.
ξα are white normal noises, and σα are the extents of the
noise. V̄e = 〈V (t)〉e is the population average membrane
potential. This is evaluated by integrating its determin-
istic differential equation. The adaptation corresponds
to an additional term in the first infinitesimal moment,
so that we can define

µw = µ− W

C
. (18)

By changing the parameters, it is possible to set the
network in different dynamical states. The asynchronous
irregular (AI) is obtained by the parameters defined
above. The slow oscillations (SO) are achieved by multi-
plying the probability of connection between excitatory
neurons by a factor 1.15, increasing the excitatory adap-
tation strength to b = 0.02nA and decreasing the exter-
nal input to νext = 0.95Hz.
The different regimes can be studied by the means of

standard techniques used in dynamical systems theory,
e.g. null-clines representation (see Fig.4B). Each null-
cline represent the region where the derivative is zero for
a certain variable (respectively blue for νe and orange for
W ), and the intersection between them is a fixed point
that can be either stable or unstable. The green line rep-
resents the dynamics in the plane (νe,W ). This analysis
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estimated in simulations. (C) Theoretical predicted firing rate (solid line) and firing rate from simulations for COBA and
CUBA (respectively circles and diamonds) for the 3 theoretical models.

is performed for the different choices of parameters and
thus for the different dynamical conditions AI and SO.
In panel Fig.4C it is reported an example of the time-
course of the dynamics for the two regimes (green and
red respectively for νe and νi). We eventually reported
the average firing rate time-course for a network of spik-
ing neurons with the same choice of parameters as in the
previous analysis (Fig.4D), confirming that the predicted
dynamics turns out to match the spiking simulations.

E. Robustness of the prediction: need of a
state-dependent approach

We tested the robustness of the mean field dynamical
predictions by exploring for the network for different pa-
rameter values different the network parameters. First
we changed the the external input to the network in the
AI regime, observing the change in the stationary ex-
citatory (green) and inhibitory (red) firing rates of the
network (Fig. 5A). When only one of the two approx-
imation is considered (top and middle panel) the mis-
match between the theory (solid lines) and simulations

(circles:mean, bars:standard deviation) is relevant, while
the state-dependent approximation correctly reproduces
the network behavior (bottom panel).
On the other hand, in the SO regime we modulated

the adaptation b and analyzed the change in Up and
Down states duration (Fig. 5B-C). Again, the first two
approximations taken alone poorly predict the dynam-
ics observed in the spiking simulations (top and middle
panels), while such task was performed quite well in the
state-dependent approach (bottom panel).

F. Sub-linear stimuli suppression

One of the great advantage of our approach is the
possibility to investigate the effect of COBA vs CUBA
synapses for population dynamics. We can indeed use
the MC approximation for CUBA (the VD approxima-
tion is not necessary in this case) networks and the
SD approximation for COBA network and perform a
well defined comparison (see Fig.2). To test the role
of COBA synapses we consider a recently observed phe-
nomena measured in the visual cortex, that shows a clear
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FIG. 4. Mean field dynamics in a RS-FS network: (A) Sketch of the network structure. (B) Nullclines representation
of the dynamical system in the phase space for 2 different dynamical regimes (top: Asynchronous Irregular, bottom: Slow
oscillations). (blue and orange solid lines) Nullclines for the excitatory firing rate and the adaptation differential equation. The
green line represents the trajectory of the dynamics of excitatory firing rate in the phase-space. (C) Example of mean field
dynamics for the 2 different regimes (green and red represent excitatory and inhibitory firing rates respectively). (D) Average
firing rate dynamics of the spiking simulation.

TABLE I. Neuronal parameters defining the two populations RS-FS model.

θ (mV) τm (ms) C (nF) El (mV) ∆V (mV) τi (ms) Ei (mV) Qi (nS) b (nA) τW (s)
RS -50 20 0.2 -65 2.0 5 0 1 0.005 0.5
FS -50 20 0.2 -65 0.5 5 -80 5 0 0.5

sub-linear effect in population response to external stim-
uli [23]. The strength of such sub-linearity has been
shown to be important for the correct decoding of dif-
ferent stimuli [23]. In order to investigate the presence
of this phenomena in our model we emulate the exper-
imental paradigm by simply studying the non-linearity
of network response to the presentation of two consecu-
tive squared stimuli (νstimext (t) = ν1(t)+ν2(t) see Fig.6A).
This is obtained by providing an additional input νstimext (t)
to the external input νext provided to the network. We
then compared the mean field response to such stimu-
lus for an excitatory-inhibitory network with COBA and
CUBA input integration. In Fig.6B it is reported the
difference between the time-course of the excitatory fir-
ing rate minus the stationary firing rate of the network
(δνe(t) = νe(t)− ν̄e).
We compared the linear prediction of the response to

the summation of the 2 stimuli which is the sum of the
response to the 2 single stimuli (δνline = δν1e + δν2e ) to
the actual response to the sum of stimuli (δνe). In accor-

dance with experimental finding we find that the system
is sublinear (δνe− δνline < 0) for both COBA and CUBA
network (see Fig.6C ). Nevertheless, the intensity of the
suppression is higher in the COBA model, showing that,
in accordance to [23]. This is a non trivial effect in terms
of computational capabilities since the presence of COBA
synapses plays an important role for the ability of these
networks to disambiguate two stimuli.
We investigated such sub-linear summation effect for

different levels of the network’s level of activity which
is modulated by changing the external input νext before
the arrival of the two stimuli. In Fig.7A we reported
the average suppression 〈δνe − δνline 〉 as a function of
νext for COBA and CUBA networks (respectively pink
and purple) finding that it is always stronger for COBA
network and that such effect is intensified when νext is
low.
The suppression is related to the change in the mem-

brane pontential after the first impinging stimulus. In-
deed in Fig.7B it is reported the population averagemem-
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FIG. 5. State dependent approximation is required to correctly capture the dynamics. (A) Predicted stationary
excitatory and inhibitory firing rates (green and red lines) as a function of the amount of external noise, compared with spiking
simulations (circles). (B-C) Predicted Up and Down states durations (solid line) as a function of the adaptation strength b

compared with spiking simulations (dashed line).

brane potential of the COBA network before the first (at
time t1 in purple) and the second stimuli (at time t2 in
pink).

For definition the comparison is performed with a
CUBA with an excitatory synaptic efficacy proportional
to (Ee−V ∗) where V ∗ is the average membrane potential
in t1 (represented by the purple line in Fig.7B).

We then evaluate the current contribution for the sec-
ond stimulus (which is expressed by the equation Istim2 =
ge (Ee−V )) for COBA and CUBA networks (see Fig.7C).
For the CUBA network this contribution is unaffected by
the change of the membrane potential (purple line) while
for the COBA network the current is reduced by the in-
crease of V (pink line). Such effect accounts for the larger
suppression observed in the COBA network.

III. DISCUSSION

The mean field description of a large network of exci-
tatory and inhibitory spiking neurons has been tackled
analytically on relatively simple models, but often far
from biophysical reality [19, 20]. On the other hand,
anatomically sophisticated models [8, 16–18] are compu-
tationally consuming and very hard to be explored by
mean of theoretical frameworks.

We proposed a tradeoff between these two possibilities.
First we chose a neuron model which has an intermediate
mathematical complexity but also a high physiological
validity: the exponential integrate-and-fire neuron with
spike frequency adaptation. Second, we consider volt-
age dependent synapses (COBA) that so far made this
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e ), showing a stronger non linear suppression in the
COBA network.

problem difficult to be exactly solved.
To overcome the mathematical difficulty of solving a

Fokker-Planck equation with a voltage dependent noise,
describing a conductance based input, we proposed a
mapping on a CUBA model, which has a known solu-
tion [19]. However, we showed that this mapping has to
be state-dependent, since different approximations have
to be considered in different regimes. Indeed, in the
fluctuation-driven regime it is possible to use a stan-
dard approximation that basically maps the COBA on
a CUBA with rescaled membrane time scale [30].
Nevertheless, in the drift-driven regime this approxi-

mation is no longer providing a good description, and it
has been shown only to work in a relatively simple model
with instantaneous synapses and leaky integrate and fire
neuron. Our analysis reported that this is no longer valid
when a synaptic integration is considered since this that
creates a strong interaction between conductances and
membrane potential. Nevertheless a different suitable ap-
proximation can be performed neglecting the fluctuations
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FIG. 7. Suppression of stimuli summation: parameter
exploration. (top) Average summation suppression for dif-
ferent values of νext (the external current before the income of
the stimulus) for COBA and CUBA networks. (center) The
membrane potential of the COBA network before the first
(at time t1) and the second stimuli (at time t2). (bottom)
Current contribution of the second stimulus for COBA and
CUBA networks. For the CUBA network this contribution is
the same as the first stimulus’ one, since it is not modulated
by the change of membrane potential. While for the COBA
network the current is reduced by the increase in membrane
potential.

of the membrane potential, obtaining again an effective
CUBA model where the variable the membrane potential
V is frozen and replaced by a stochastic process with the
same statistical moments. An analytic merge of the two
approaches provides a good prediction of the firing rate
in the whole phase space.

Making approximations is a natural way to simplify
a problem and understand more easily the underlying
mechanisms. Our approach, since it relies on two differ-
ent approximations, points out that the relevant aspects
producing the observed dynamics are state-dependent. It
allows to understand in which condition a single approxi-
mation works and when it doesn’t, improving an intuitive
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understanding of the system.

Since neurons in cortical populations notoriously go
across both noise and drift dominated regimes [45–47],
to define a population mean field dynamics requires to
take into account a unified framework like the one we
propose. To support this statement we have shown that
when a single approximations have been considered the
quality of predictions was extremely poor.

A unique transfer function reliable in various dynami-
cal conditions is particularly relevant also because differ-
ent population may be in different regimes or the same
population can change regime across time, as in the case
of slow oscillations.

We showed that our method is robust and flexible
and successfully describes different population dynam-
ical regimes, such as asynchronous irregular state and
slow oscillations.

Our approach suggests a general method to perform a
state-dependent mapping of neurons with COBA input
on to CUBA input even with different types of neuron
such as QIF and LIF.

Our model could be interpreted as an attempt to do a
step forward to the development of analytic but still rich
and realistic theories that allow to describe experimen-
tally observed phenomenons [22].

We remark that we did not investigate the fast-
responses of the network as described by other theoretical
efforts [48]. Considering only first-order ODE implies a
limitation in describing very high-frequencies, however
we focused on the out-of-equilibrium dynamics induced
by spike-frequency adaptation, thus a dynamics unfold-
ing on relatively long time scales. To include a delayed
and filtered version of the firing rate (such as the one
due to synaptic filtering) to induce resonant frequencies

( in the gamma range, for instance) will be the subject
of future studies.
We propose that the model can be naturally extended

to more complicated structures, such as the thalamo-
cortical loop and network with spatial extension. This
would permit to test our model on experimental data
recording the activity of populations of neurons over
space where it may provide a mechanistic understand-
ing of the emerging dynamics based on neurons voltage
based interactions.
A semi-analytic approach was proposed recently [34,

35] which relies on a fitting of the transfer function to
numerical simulations. This approach yields mean field
models of COBA neurons with good quantitative predic-
tions. The main advantage provided by this ’orthogonal’
approach is to be potentially applicable to any neuronal
model and to experimental data. On the other side, as
being a semianalytic fit, it does not permit the same un-
derstanding of the dynamical mechanisms underlying the
neurons response function as a principled approach like
it does the one here proposed. More detailed comparison
of the two approaches is the object of future directions
and the knowledge derived from these two different ap-
proaches will help to make important steps forward to-
wards an unified theory of mean field models of COBA
neurons.
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