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INTRODUCTION

Recent developments in recording techniques are shedding light on the dynamics of cortical neural networks in higher and higher spatio-temporal detail [1]. There are different scientific ways to investigate and understand such large amount of data. A first class of approaches are top-down, aiming to use data as a constrain to build generative models capable to automatically reproduce statistical features observed in experiments [2][3][4][5]. On the other hand it is possible to interpret the experimental observed behavior by mean of a bottom-up theoretical model. To achieve this, different levels of description are possible, ranging from single spiking neurons [6,7] to population model [8][9][10][11][12][13][14][15], from extremely detailed [8,[16][17][18] to more coarse-grained models [19,20].

While keeping the model as simple as possible, it has been recently shown that some minimal requirements are * cristiano.capone@roma1.infn.it necessary in order to reproduce a rich repertoire of dynamical features. In particular, a quite refined model as the AdEx is necessary to describe a response on a broad range of frequencies [21]. Moreover, voltage dependent synapses have been largely shown to be a crucial mechanism of neurons' interaction [22,23]. While direct simulation of large ensembles of single neurons can be performed, such an approach can be computationally heavy and does not permit a straightforward understanding of the system dynamics. A principled dimensional reduction approach such as mean-field (MF) theories are powerful and widespread tools, used to obtain a large scale description of neuronal populations. One of the first successful attempts was to provide a theory to describe leaky integrate and fire neurons with current based input [14,19,[START_REF] Tuckwell | Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories[END_REF][START_REF] Gigante | [END_REF], where the firing rate properties of the neurons are described as a function of the statistics of its input current through a Fokker-Planck formalism. This approach was also successfully exploited to work out asymptotic firing rates under mean-field approximation incorporating synaptic filters [26,27]. For relatively small synaptic timescales this leads to an effective current-to-rate gain function equivalent to the one for instantaneous synaptic transmission with a perturbative modulation of the firing threshold.

The description of the asymptotic firing rates when conductance-based inputs under mean-field approximation has also a long track of successful attempts [15,[START_REF] Johannesma | Neural Networks[END_REF][START_REF] Burkitt | [END_REF][30]. However, neither current fluctuations nor synaptic filters was taken into account simultaneously. In the same framework, the dynamics beyond the asynchronous linearizable state has been addressed by numerically integrating the Fokker-Planck equation [31][32][33], while theoretical insights have been obtained only for specific quasistationary conditions [15,33].

However, taking into account these modelling features all togheter in an excitatory-inhibitory network is extremely challenging. Only recently it has been proposed a method based on a semi-analytic approach [34] that can give satisfactory quantitative predictions also for networks with adaptation and slow wave activity [35]. Nevertheless, this method is based on a fitting procedure for the transfer function in regimes with relatively low activity and low synchronization. Accordingly, it is still far from a closed analytic solution that would be able to describe different dynamical brain states. Steps towards in this direction are not only a mere exercise of elegance but permit a deeper understanding of the role played by model features (e.g. voltage dependent interactions) for the emerging dynamics. As we will describe in this manuscript, thanks to such approach we found out that neurons work in two main regimes as different approximations can lead to two different analytic results. In particular, each of the two approximation only work in a specific dynamical condition, that can be either driftor fluctuation-driven. Moreover, in light of these results, we propose here a principled state-dependent approximation. In other words we showed that the two approximations are valid in the two limits described above and that they can be analytically merged. This allows to define a current-to-rate gain function reliable also in regimes where the dynamics is not strictly drift or fluctuation driven.

One of the main novelties introduced here, is an effective current-to-rate gain function aiming at simplifying the theoretical description of the dynamics of networks composed of COBA neurons. This allowed us to make a step further in terms of usability of the theory also for numerical integration of the mean-field dynamics, compared to the double-integral expression provided in [START_REF] Johannesma | Neural Networks[END_REF]30].

Our approach turns out to be rather effective for investigating the properties of neuronal populations dynamics. In particular we considered a network composed of excitatory and inhibitory neurons, namely the standard minimal circuitry for cortical neuronal networks [36,37]. The network parameters are set to reproduce two different dynamical conditions that are biologically relevant, i.e. asynchronous irregular and slow oscillating dynamics [38]. We show that both of them are reliably described by our mean-field model and that the state-dependent approach is indispensable to achieve the quality of such result.

Furthermore our approach is particularly convenient to compare dynamical properties of CUBA and COBA networks. In particular we investigated the effect of the network integration of multiple incoming inputs. We found, in accordance with [23] that COBA networks have a stronger sub-linear suppression, which is important to account for experimental observation. This is also an interesting features in terms of computational capabilities since the presence of COBA synapses plays an important role for the ability of these networks to disambiguate two stimuli.

II. RESULTS

A. Neuronal network model

We derive a state-dependent current-to-rate gain function for conductance based (COBA) AdEx type neurons, whose dynamics evolves according to the following equations [7]:

     dV (t) dt = -V (t)-E l τm + ∆V τm e ( V (t)-θ ∆V ) + I(t,V (t)) C -W (t) C dW (t) dt = -W (t) τW + b k δ(t -t k ) + a(V (t) -E l ) , (1) 
where the synaptic input I is defined as

I(t, V (t)) = α g α (t)(V (t) -E α ) , (2) 
and where V (t) is the membrane potential of the neuron and α = e, i defines the excitatory (e) and the inhibitory (i) input. The parameters of the neurons which depends on the populations they belong to (excitatory RS or inhibitory FS, see TABLE I) are τ m the membrane time constant, C the membrane capacitance, E l the reversal potential, θ the threshold, ∆V the exponential slope parameter, W the adaptation variable, a and b are the adaptation parameters. g α are the synaptic conductances, defined as

g α (t) = k Θ(t -t k ) Q α exp(-(t -t k )/τ α ) (3) 
We define the spiking time of the neuron when the membrane potential reaches the threshold V spike = θ + 5∆V . t α k indicates the times of pre-synaptic spikes received by the neuron from synapse type α with characteristic time τ α and its synaptic efficacy Q α .

B. Current-to-rate gain function

Under the assumption of quasi-instantaneous synaptic transmission (negligible τ α ), for a neuron described by the dynamical system of Eq. (1) it is possible to write a Fokker-Planck equation describing the dynamics of the probability density function (p.d.f.) for its membrane potential V as

I(t) = g e [E e -V(t)]+g i [E i -V(t)] V(mV) neuron I(t) I(t) = μ + σ ξ(t)
τ m ∂p(V, t) ∂t = ∂ ∂V [(f (V ) + µ)p(V, t)] + σ 2 2 ∂ 2 ∂ 2 V p(V, t) , ( 4 
) where f (V ) = -(V (t) -E l ) + ∆V e ( V (t)-θ ∆V
) and suited boundary conditions are taken into account [39], i.e. an absorbing barrier at the spike emission threshold V spike = θ + k∆V (k is arbitrarily chosen to be 5, its value weakly affects the spike timing) and that the probability current

(f (V ) + µ)p(V, t) + 1 2 σ 2 ∂ V p(V, t) V =V spike is re-injected in V reset = -65 after a refractory period τ arp = 5ms.
We assumed that the input I(t) C is a white noise with infinitesimal mean µ and infinitesimal variance σ (Fig1.A). This means that the firs line of Eq. ( 1) would be rewritten as

dV (t) = - V (t) -E l τ m + ∆V τ m e ( V (t)-θ ∆V ) - W (t) C dt +µdt + σξ(t) √ dt (5) 
where ξ(t) is a Gaussian white noise. Under stationary conditions, the firing rate of the neuron is given by the flux of realizations (i.e., the probability current) crossing the threshold V spike [START_REF] Tuckwell | Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories[END_REF]:

F (µ, σ) = 1 σ 2 θ+5∆V -∞ dV θ+5∆V max(V,Vr) du ×e -1 τmσ 2 u V [f (v)+µτm]dv . ( 6 
)
Such function, usually referred to as transfer function (or current-to-rate gain function), provides an estimate of neuronal firing rate which is in remarkable agreement with the one measured from numerical integration of Eq. ( 1) (Fig. 1B). Nevertheless, in the case of voltage dependent synapses determining the infinitesimal moments of the input current (mean µ and variance σ 2 ) as a function of the input firing rate is not straightforward.

In particular when a conductance-based input is considered (Fig. 1C), the stochastic process describing the input current has voltage-dependent infinitesimal mean and variance due to the voltage-dependent nature of the impact of the incoming spikes on the membrane potential dynamics (Fig. 1D). In this framework, an explicit solution of the aforementioned Fokker-Planck equation has not yet been worked out.

Moment Closure (MC) approximation

One of the major problems in modeling COBA neurons is that the input current is voltage dependent and can be written as

I(t) = α=e,i ḡα (E α -V ) -ḡα δV + δg α V -δg α δV . (7)
where we wrote V and g α as their average value plus their time-dependent variations (V = V + δV and g α = ḡα + δg α ). A first naive approximation consists in replacing the variable V by its average V , such that the input current I = g e (E e -V ) + g i (E i -V ) is now independent from V . Under diffusion approximation (i.e. in the limit of small g i and g e , and a large rate of incoming spikes), the two infinitesimal moments µ and σ 2 of I are:

     µ = ḡe(Ee-V )+ḡi(Ei-V ) C σ 2 = σ 2 ge (Ee-V ) 2 +σ 2 g i (Ei-V ) 2 C 2 (8)
Since µ and σ can be written as a function of the firing rate, it is possible to write the transfer function as

F (ν e , ν i ) = 1 σ 2 θ+5∆V -∞ dV θ+5∆V max(V,Vr) du ×e -1 τm σ 2 u V [f (v)+f1(v,ḡe,ḡi)]dv . ( 9 
)
This equation is the same as Eq. ( 6) where µ = f 1 (v, ḡe , ḡi )/τ m due to Eq. ( 8). Comparing this expression with numerical simulations of the single-neuron spiking activity in Fig. 1E (red line), a good agreement is mainly apparent under drift-driven regime (µ τ m > θ).

Voltage-Dependent (VD) approximation

It is also possible to take into account the dependence of the input current I(t) on the voltage [START_REF] Johannesma | Neural Networks[END_REF]30,40,41] by writing it in the following way:

I(t) = α=e,i ḡα (E α -V ) -ḡα δV + δg α V -δg α δV ≃ α=e,i ḡα (E α -V ) -ḡα δV + δg α V , (10) 
. In the last step the termα δV δg α has been neglected since δV is assumed to be of the same order as δg α [30,40], so δV g α ∼ O((δg α ) 2 ). Under this approximation, the synaptic current can be then written as a deterministic voltage-dependent part plus a stochastic component which is independent from V . As we are considering a quasi-instantaneous synaptic transmission (τ α ≃ 0), such stochastic source of current can still be modeled by a Gaussian white noise [START_REF] Tuckwell | Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories[END_REF] such that:

I = f 1 (V, ḡe , ḡi ) + σξ(t) , (11) 
where σ =

σ 2 ge (Ee-V ) 2 +σ 2 g i (Ei-V ) 2 C 2 , ξ(t) is a white noise N (0, 1) and f 1 (V, ḡe , ḡi ) = ḡe (E E -V ) + ḡi (E I -V ),
with ḡe , ḡi and σ 2 ge , σ 2 gi the mean and the variance of the synaptic conductances, respectively. In the case of input spike trains with Poissonian statistics these infinitesimal moments result to be [START_REF] Tuckwell | Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories[END_REF]42,[START_REF] Amit | Cerebral cortex[END_REF]:

   ḡα = τ α Q α K α ν α σ 2 gα = ταQ 2 α Kανα 2 , ( 12 
)
where K α is the number of synaptic contact each neuron receives from the population α ∈ {e, i}.

As above, considering f 1 (V ) as an additional term to f (V ), it is again possible to work out an analytic expression for the transfer function:

F (ḡ e , ḡi , σ) = 1 σ 2 Vup -∞ dV Vup max(V,Vr) du ×e -1 τmσ 2 u V (f (v)+f1(v,ḡe,ḡi))dv . ( 13 
)
The result of such approximation is shown in Fig. 1E (blue line). We observe that this approximation gives good theoretical prediction as far as the average membrane potential of the neuron is sufficiently low (i.e. under noise-dominated regime).

C. A mixed framework: State-dependent (SD) approximation.

The two proposed approximations rely on different assumptions of the composition of the input current I(t) to the neurons, that turned out to be valid under different dynamical regimes of the neuron. In this paragraph we propose a mixed framework in order to have a continuous transfer function, by introducing a new parameter that allows to interpolate between the two regimes. This parameter is introduced not by an a posteriori fit, but by a priori considerations on the input current.

Under drift-dominated regime (µ τ m > θ), the spiking times are mainly determined by the deterministic component of the input and not by the stochastic one.

Accordingly, neglecting V fluctuations and replacing it with its average value, is a good assumption and the use of MC approximation is very satisfactory (Fig. 1E left side).

When µ τ m < θ, i.e. under fluctuation-driven regime, the neuron can only fire in presence of large-enough subthreshold fluctuations, as V ≪ θ. Therefore, all the variability of V has to be taken into account, as sub-threshold suppression appears when V is close to the θ. Under this condition, VD approximation result to be the most effective (Fig. 1E-right), as the additional termα ḡα δV in the current I(t) is taken into account. This term is lacking in the MC approximation.

Starting from that, we unify these two expressions for F by writing

I(t) = α=e,i ḡα (E α -V ) + δg α V -(1 -s)ḡ α δV , ( 14 
)
where s is an arbitrary state-dependent parameter which is 0 when V ≪ θ and 1 when V approaches θ as

s = 1 1 + exp[-( V +σV -θ) ∆V ] (15) 
that is a sigmoid function with a very small width ∆V (we chose this parameter since it represents the natural scale of the absorbing barrier) to preserve the derivability and smoothness of the current-to-rate gain function. This is a key step to define an effective expression for smoothly merging the two approximations (VD and MC) when the regime transitions from fluctuation-to driftdriven.

Finally we get the following current-to-rate gain function:

F (ν e , ν i , s) = 1 σ 2 θ+5∆V -∞ dV θ+5∆V max(V,Vr) du e -1 τm σ 2 u V [f (v)+f1(v,ḡe,ḡi)-(1-s) (ge+gi)(v-V )/g l ]dv . (16) 
B τ e = 10ms This formulation is valid in absence of synaptic integration (τ α = 0), but its firing rate estimation is rather accurate even in presence of coloured input, as expected according to [26], as shown in Fig. 2.

F(ν e ) ( 
In order to check the effectiveness of Eq. ( 16), we compared the F obtained with the MC and the VD approximations, and with the state-dependent one, for varying excitatory and inhibitory input firing rates (Fig. 3A). We report the respective errors (difference between theory and simulations, see Fig. 3B) showing that in our approach they are smaller and distributed in a narrower region in the ν e , ν i plane.

We considered also the adaptation variable W (t) with a relaxation time scale τ W = 500 ms, and compared the prediction with the simulations for the three models, observing an optimal estimation for the state-dependent one (Fig. 3C).

D. Application: population dynamics

We applied our result for describing an effective mean field dynamics for the canonically considered minimal structure of a cortical network, namely two coupled population of neurons, one excitatory (regular spiking, RS) and one inhibitory (fast spiking, FS). RS neurons also have a spike frequency adaptation mechanism (see Fig. 4A). The external input is provided by increasing the excitatory firing rate in the input of both the population by an amount of ν ext = 6Hz. Neuronal parameters are specified in TABLE I. The probability of connection is p = 0.25.

We define the MF dynamics for the average excitatory and inhibitory firing rates of the network (respectivley ν e and ν i ) following the approach used in [START_REF] Boustani | [END_REF] 

          
τ i dνi dt = F i (ν e , ν i ) -ν i + σ i ξ i (t) dW dt = -W τw + b ν e -a( Ve -E l ) ( 17 
)
where we also considered the adaptation variable W . The parameter b and a are the same as in eq.( 1). τ e and τ i are the same as the membrane potential time scales. ξ α are white normal noises, and σ α are the extents of the noise. Ve = V (t) e is the population average membrane potential. This is evaluated by integrating its deterministic differential equation. The adaptation corresponds to an additional term in the first infinitesimal moment, so that we can define

µ w = µ - W C . (18) 
By changing the parameters, it is possible to set the network in different dynamical states. The asynchronous irregular (AI) is obtained by the parameters defined above. The slow oscillations (SO) are achieved by multiplying the probability of connection between excitatory neurons by a factor 1.15, increasing the excitatory adaptation strength to b = 0.02nA and decreasing the external input to ν ext = 0.95Hz.

The different regimes can be studied by the means of standard techniques used in dynamical systems theory, e.g. null-clines representation (see Fig. 4B). Each nullcline represent the region where the derivative is zero for a certain variable (respectively blue for ν e and orange for W ), and the intersection between them is a fixed point that can be either stable or unstable. The green line represents the dynamics in the plane (ν e , W ). This analysis is performed for the different choices of parameters and thus for the different dynamical conditions AI and SO. In panel Fig. 4C it is reported an example of the timecourse of the dynamics for the two regimes (green and red respectively for ν e and ν i ). We eventually reported the average firing rate time-course for a network of spiking neurons with the same choice of parameters as in the previous analysis (Fig. 4D), confirming that the predicted dynamics turns out to match the spiking simulations.

E. Robustness of the prediction: need of a state-dependent approach

We tested the robustness of the mean field dynamical predictions by exploring for the network for different parameter values different the network parameters. First we changed the the external input to the network in the AI regime, observing the change in the stationary excitatory (green) and inhibitory (red) firing rates of the network (Fig. 5A). When only one of the two approximation is considered (top and middle panel) the mismatch between the theory (solid lines) and simulations (circles:mean, bars:standard deviation) is relevant, while the state-dependent approximation correctly reproduces the network behavior (bottom panel).

On the other hand, in the SO regime we modulated the adaptation b and analyzed the change in Up and Down states duration (Fig. 5B-C). Again, the first two approximations taken alone poorly predict the dynamics observed in the spiking simulations (top and middle panels), while such task was performed quite well in the state-dependent approach (bottom panel).

F. Sub-linear stimuli suppression

One of the great advantage of our approach is the possibility to investigate the effect of COBA vs CUBA synapses for population dynamics. We can indeed use the MC approximation for CUBA (the VD approximation is not necessary in this case) networks and the SD approximation for COBA network and perform a well defined comparison (see Fig. 2). To test the role of COBA synapses we consider a recently observed phenomena measured in the visual cortex, that shows a clear sub-linear effect in population response to external stimuli [23]. The strength of such sub-linearity has been shown to be important for the correct decoding of different stimuli [23]. In order to investigate the presence of this phenomena in our model we emulate the experimental paradigm by simply studying the non-linearity of network response to the presentation of two consecutive squared stimuli (ν stim ext (t) = ν 1 (t) + ν 2 (t) see Fig. 6A). This is obtained by providing an additional input ν stim ext (t) to the external input ν ext provided to the network. We then compared the mean field response to such stimulus for an excitatory-inhibitory network with COBA and CUBA input integration. In Fig. 6B it is reported the difference between the time-course of the excitatory firing rate minus the stationary firing rate of the network (δν e (t) = ν e (t)νe ).

We compared the linear prediction of the response to the summation of the 2 stimuli which is the sum of the response to the 2 single stimuli (δν lin e = δν 1 e + δν 2 e ) to the actual response to the sum of stimuli (δν e ). In accor-dance with experimental finding we find that the system is sublinear (δν eδν lin e < 0) for both COBA and CUBA network (see Fig. 6C ). Nevertheless, the intensity of the suppression is higher in the COBA model, showing that, in accordance to [23]. This is a non trivial effect in terms of computational capabilities since the presence of COBA synapses plays an important role for the ability of these networks to disambiguate two stimuli.

We investigated such sub-linear summation effect for different levels of the network's level of activity which is modulated by changing the external input ν ext before the arrival of the two stimuli. In Fig. 7A we reported the average suppression δν eδν lin e as a function of ν ext for COBA and CUBA networks (respectively pink and purple) finding that it is always stronger for COBA network and that such effect is intensified when ν ext is low.

The suppression is related to the change in the membrane pontential after the first impinging stimulus. Indeed in Fig. 7B it is reported the population average mem- brane potential of the COBA network before the first (at time t 1 in purple) and the second stimuli (at time t 2 in pink).

For definition the comparison is performed with a CUBA with an excitatory synaptic efficacy proportional to (E e -V * ) where V * is the average membrane potential in t 1 (represented by the purple line in Fig. 7B).

We then evaluate the current contribution for the second stimulus (which is expressed by the equation I stim 2 = g e (E e -V )) for COBA and CUBA networks (see Fig. 7C). For the CUBA network this contribution is unaffected by the change of the membrane potential (purple line) while for the COBA network the current is reduced by the increase of V (pink line). Such effect accounts for the larger suppression observed in the COBA network.

III. DISCUSSION

The mean field description of a large network of excitatory and inhibitory spiking neurons has been tackled analytically on relatively simple models, but often far from biophysical reality [19,20]. On the other hand, anatomically sophisticated models [8,[16][17][18] are computationally consuming and very hard to be explored by mean of theoretical frameworks.

We proposed a tradeoff between these two possibilities. First we chose a neuron model which has an intermediate mathematical complexity but also a high physiological validity: the exponential integrate-and-fire neuron with spike frequency adaptation. Second, we consider voltage dependent synapses (COBA) that so far made this problem difficult to be exactly solved.

To overcome the mathematical difficulty of solving a Fokker-Planck equation with a voltage dependent noise, describing a conductance based input, we proposed a mapping on a CUBA model, which has a known solution [19]. However, we showed that this mapping has to be state-dependent, since different approximations have to be considered in different regimes. Indeed, in the fluctuation-driven regime it is possible to use a standard approximation that basically maps the COBA on a CUBA with rescaled membrane time scale [30].

Nevertheless, in the drift-driven regime this approximation is no longer providing a good description, and it has been shown only to work in a relatively simple model with instantaneous synapses and leaky integrate and fire neuron. Our analysis reported that this is no longer valid when a synaptic integration is considered since this that creates a strong interaction between conductances and membrane potential. Nevertheless a different suitable approximation can be performed neglecting the fluctuations of the membrane potential, obtaining again an effective CUBA model where the variable the membrane potential V is frozen and replaced by a stochastic process with the same statistical moments. An analytic merge of the two approaches provides a good prediction of the firing rate in the whole phase space.

Making approximations is a natural way to simplify a problem and understand more easily the underlying mechanisms. Our approach, since it relies on two different approximations, points out that the relevant aspects producing the observed dynamics are state-dependent. It allows to understand in which condition a single approximation works and when it doesn't, improving an intuitive understanding of the system.

Since neurons in cortical populations notoriously go across both noise and drift dominated regimes [45][46][START_REF] Destexhe | Sleep and anesthesia[END_REF], to define a population mean field dynamics requires to take into account a unified framework like the one we propose. To support this statement we have shown that when a single approximations have been considered the quality of predictions was extremely poor.

A unique transfer function reliable in various dynamical conditions is particularly relevant also because different population may be in different regimes or the same population can change regime across time, as in the case of slow oscillations.

We showed that our method is robust and flexible and successfully describes different population dynamical regimes, such as asynchronous irregular state and slow oscillations.

Our approach suggests a general method to perform a state-dependent mapping of neurons with COBA input on to CUBA input even with different types of neuron such as QIF and LIF.

Our model could be interpreted as an attempt to do a step forward to the development of analytic but still rich and realistic theories that allow to describe experimentally observed phenomenons [22].

We remark that we did not investigate the fastresponses of the network as described by other theoretical efforts [START_REF] Ledoux | [END_REF]. Considering only first-order ODE implies a limitation in describing very high-frequencies, however we focused on the out-of-equilibrium dynamics induced by spike-frequency adaptation, thus a dynamics unfolding on relatively long time scales. To include a delayed and filtered version of the firing rate (such as the one due to synaptic filtering) to induce resonant frequencies ( in the gamma range, for instance) will be the subject of future studies.

We propose that the model can be naturally extended to more complicated structures, such as the thalamocortical loop and network with spatial extension. This would permit to test our model on experimental data recording the activity of populations of neurons over space where it may provide a mechanistic understanding of the emerging dynamics based on neurons voltage based interactions.

A semi-analytic approach was proposed recently [34,35] which relies on a fitting of the transfer function to numerical simulations. This approach yields mean field models of COBA neurons with good quantitative predictions. The main advantage provided by this 'orthogonal' approach is to be potentially applicable to any neuronal model and to experimental data. On the other side, as being a semianalytic fit, it does not permit the same understanding of the dynamical mechanisms underlying the neurons response function as a principled approach like it does the one here proposed. More detailed comparison of the two approaches is the object of future directions and the knowledge derived from these two different approaches will help to make important steps forward towards an unified theory of mean field models of COBA neurons.

FIG. 1 .

 1 FIG. 1. Current-to-rate gain function for AdEx neurons with conductance based input: (A) Sketch of a AdEx neuron with current based input represented by a white noise. (B) Current-to-rate gain function F(µ, σ) for AdEx neuron receiving a white noise input with mean and variance (µ and σ, respectively). Theory and simulations (lines and circles, respectively) are in remarkable agreement. (C) Sketch of an AdEx neuron with conductance-based (COBA) input. (D) Graphic presentation of the voltage dependence of the conductance based input. (E) Firing rate of neuron with COBA input as a function of the excitatory input and with constant inhibitory one (circles). Two different theoretical approximations (in red and blue).

FIG. 2 .

 2 FIG. 2. Different scales of synaptic integration. Comparison between two different scales of synaptic integration 5ms (A) and 1ms(B). Circles and crosses are COBA simulations respectively with and without synaptic filter. The diamonds are CUBA simulations. Approximation 1 (red) and 2 (blue) fit almost exactly CUBA simulations with synaptic filter and COBA simulations without synaptic filter.

  τ e dνe dt = F e (ν e , ν i , W )ν e + σ e ξ e (t)

FFIG. 3 .

 3 FIG. 3. State dependent mean field approximation. (A) Theoretical predicted firing rate (color-coded) for the approximation 1, approximation 2 and the matched model. (B) Difference between the three theoretical models and the firing rate estimated in simulations. (C) Theoretical predicted firing rate (solid line) and firing rate from simulations for COBA and CUBA (respectively circles and diamonds) for the 3 theoretical models.

FIG. 4 .

 4 FIG. 4. Mean field dynamics in a RS-FS network: (A) Sketch of the network structure. (B) Nullclines representation of the dynamical system in the phase space for 2 different dynamical regimes (top: Asynchronous Irregular, bottom: Slow oscillations). (blue and orange solid lines) Nullclines for the excitatory firing rate and the adaptation differential equation. The green line represents the trajectory of the dynamics of excitatory firing rate in the phase-space. (C) Example of mean field dynamics for the 2 different regimes (green and red represent excitatory and inhibitory firing rates respectively). (D) Average firing rate dynamics of the spiking simulation.

FIG. 5 .

 5 FIG. 5. State dependent approximation is required to correctly capture the dynamics. (A) Predicted stationary excitatory and inhibitory firing rates (green and red lines) as a function of the amount of external noise, compared with spiking simulations (circles). (B-C) Predicted Up and Down states durations (solid line) as a function of the adaptation strength b compared with spiking simulations (dashed line).

FIG. 6 .

 6 FIG. 6. Suppression of stimuli summation. A Input stimulus. B Response δνe to input stimuli for a COBA and a CUBA network of neurons (pink and purple respectively) B Response to the input stimuli minus the linear prediction (δνe -δν lin e ), showing a stronger non linear suppression in the COBA network.

FIG. 7 .

 7 FIG. 7. Suppression of stimuli summation: parameter exploration. (top) Average summation suppression for different values of νext (the external current before the income of the stimulus) for COBA and CUBA networks. (center) The membrane potential of the COBA network before the first (at time t1) and the second stimuli (at time t2). (bottom)Current contribution of the second stimulus for COBA and CUBA networks. For the CUBA network this contribution is the same as the first stimulus' one, since it is not modulated by the change of membrane potential. While for the COBA network the current is reduced by the increase in membrane potential.

TABLE I .

 I Neuronal parameters defining the two populations RS-FS model.

		θ (mV)	τm (ms)	C (nF)	E l (mV)	∆V (mV)	τi (ms)	Ei (mV)	Qi (nS)	b (nA)	τW (s)
	RS	-50	20	0.2	-65	2.0	5	0	1	0.005	0.5
	FS	-50	20	0.2	-65	0.5	5	-80	5	0	0.5
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