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probabilistic modeling to estimate 
jellyfish ecophysiological properties 
and size distributions
Simon Ramondenc 1*, Damien eveillard  2, Lionel Guidi  1,3, fabien Lombard1 & 
Benoît Delahaye 2

While Ocean modeling has made significant advances over the last decade, its complex biological 
component is still oversimplified. In particular, modeling organisms in the ocean system must integrate 
parameters to fit both physiological and ecological behaviors that are together very difficult to 
determine. Such difficulty occurs for modeling Pelagia noctiluca. This jellyfish has a high abundance in 
the Mediterranean Sea and could contribute to several biogeochemical processes. However, gelatinous 
zooplanktons remain poorly represented in biogeochemical models because uncertainties about their 
ecophysiology limit our understanding of their potential role and impact. To overcome this issue, we 
propose, for the first time, the use of the Statistical Model Checking Engine (SMCE), a probability-
based computational framework that considers a set of parameters as a whole. Contrary to standard 
parameter inference techniques, SMCE identifies sets of parameters that fit both laboratory-culturing 
observations and in situ patterns while considering uncertainties. Doing so, we estimated the best 
parameter sets of the ecophysiological model that represents the jellyfish growth and degrowth 
in laboratory conditions as well as its size. Behind this application, SMCE remains a computational 
framework that supports the projection of a model with uncertainties in broader contexts such as 
biogeochemical processes to drive future studies.

The ocean acts as a buffer against global warming1. However, understanding all processes and fluxes that lead 
to carbon sequestration is very complex and acts at multiple scales, from genes to ecosystems via physiological 
processes2,3. In particular, the ecosystem community structure and composition, from large organisms to molec-
ular descriptions, is essential when studying biogeochemical processes and their variability2. In that community, 
gelatinous zooplanktons are still poorly represented compared to other groups4 such as silicifiers, calcifiers, or 
crustacean. In particular, their role in biogeochemical processes is still debated mainly due to the lack of informa-
tion on the fate of the gelatinous biomass, even-though several recent studies support their inclusion in ecosystem 
models5–7. While there is no evidence that their abundances are globally increasing8, one observes their impact on 
carbon fluxes9–11 and the structuration of the trophic food webs12–14. Modeling the ecosystem structure to better 
represent biogeochemical processes in the ocean is, therefore, of primary importance. However, due to scaling 
issues and lack of holistic information on the plankton community, marine ecosystems are still very simplified 
compared to their terrestrial counterparts15. Today, the new generation of Ocean Biogeochemical Models called 
Dynamic Green Ocean Models allows resolving the biological complexity of marine ecosystems better thanks to 
the inclusion of multiple plankton functional types15. Similarly, trait-based modeling uses functional traits such 
as body size, shape, with a particular emphasis on trade-off to represent the ecosystem functioning16,17. Overall, 
general plankton compartments such as macrozooplankton or microphytoplankton summarize ecosystems in 
order to facilitate the parameterization of non-linear parameters. Nonetheless, such parameters remain difficult 
to determine because of their multi-scale implication, from physiology to ecosystems.

One of the main challenges in ecological modeling consists of acknowledging the whole biological complexity 
while remaining computationally tractable. To handle both opposite constraints, one advocates that a formal 
selection of the modeled species is a reliable solution18. The sensitivity of a model to one parameter might depend 
on the value of other parameters. In this setting, analyzing the sensitivity of the model to single parameters in 
isolation is not satisfying. Moreover, standard sensitivity analyses do not consider the number of simulations that 

1Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-
Mer, France. 2Université de Nantes, CNRS, LS2N, F-44322, Nantes, France. 3University of Hawaii, Department of 
Oceanography, Honolulu, HI, 96822, USA. *email: Simon.Ramondenc@obs-vlfr.fr

open

https://doi.org/10.1038/s41598-020-62357-5
https://orcid.org/0000-0002-0275-2754
http://orcid.org/0000-0002-8162-7360
http://orcid.org/0000-0002-6669-5744
https://orcid.org/0000-0002-9104-4361
mailto:Simon.Ramondenc@obs-vlfr.fr


2Scientific RepoRtS |         (2020) 10:6074  | https://doi.org/10.1038/s41598-020-62357-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

are needed to obtain accurate results19. Following previous applications in engineering, the use of the Statistical 
Model Checking Engine (SMCE) overcomes this weakness by bringing formal confidence (trust) in the results 
while enhancing the range of sensitivity analysis towards considering global dependencies between parameters. 
First, instead of fixing parameter values to their mean observed values and performing sensitivity analysis of one 
parameter at a time, SMCE embeds uncertainty on parameter values inside the proposed models by assigning a 
probabilistic distribution to each parameter value (i.e., uniform distribution per default). SMCE performs model 
simulations by picking parameter values within their attached distributions (i.e., by considering the variances of 
parameters) and executing standard simulations. Thus, following several simulations, which implies considering 
several and distinct parameter choices, the SMCE performs a generalization of standard sensitivity analyses, not 
by analyzing the sensitivity of a single average simulation but rather by analyzing all feasible simulations and pro-
posing general statistics of the whole; i.e., accurate statistical guarantees to perform predictive simulations while 
taking into account experimental uncertainties20. Overall, considering a predictive goal at both physiological and 
ecosystem levels, the SMCE produces a global set of parameter values that guarantees that the model matches 
experimental observations despite slight parameter variations.

In the Mediterranean Sea, Pelagia noctiluca is the most abundant scyphozoan species21. This holoplanktonic 
species is present all year long and has been observed without interruption since 199422. Mostly present offshore, 
P. noctiluca reaches coastal waters thanks to wind events or sea currents variations23,24. Moreover, this species 
can realize nycthemeral migrations between 0 and 300–500 m deep. The development of the jellyfish P. noctiluca 
from oocyte to adult is strongly related to temperature and environmental food conditions25–30. It is a non-specific 
predator21 that responds rapidly to changes in the biotic and abiotic environment31,32. Indeed, like most of the 
scyphozoan species, P. noctiluca has been known to shrink its body mass when prey concentration becomes 
limiting33–37.

Because P. noctiluca is a multi-scale player (i.e., strong interaction from microbial communities to high trophic 
level), estimating its model parameters is difficult. The goal of this paper is to apply the SMCE to infer the param-
eters of an ecophysiological model and discuss the putative importance of a jellyfish in marine ecosystems and 
biogeochemical processes in the Mediterranean Sea. According to our knowledge, the SMCE approach was never 
used before in this context. To this purpose, we (i) build an ecophysiological model for P. noctiluca to describe the 
fundamental physiological processes that are involved in carbon fluxes, (ii) infer the model’s parameters using the 
SMCE and (iii) discuss the potential contribution of P. noctiluca egestion to POC fluxes despite missing knowl-
edge. The benefits of the SMCE consist not only in performing an accurate parameter estimation on several scales 
(from laboratory physiological experiments to in situ biomass distribution) simultaneously but also in emphasiz-
ing correlations between parameters of its ecophysiological model through automatic analysis. Here P. noctiluca 
is used as a scaling-up example of how one can apply state of the art verification methods in computer sciences to 
better estimate parameters of an ecophysiological model.

Results
Conceptual model. To reproduce the jellyfish growth and degrowth in captivity and wild conditions, an eco-
physiological model was built based on seven physiological processes (predation, ingestion, assimilation, respira-
tion, excretion, reproduction, egestion) and constrained by 17 parameters (see Fig. 1 for illustration and methods 
for details). Eleven parameters (pmax, bp, t10p, Ro, br, t10r, α, β, are, bre, We; Table 1) were defined by previous experi-
mental data whereas six unknown parameters (kp, amax, ka, cre, spn, ce; Table 1) were inferred using SMCE. During 
the simulations, the jellyfish carbon mass (CM) prediction was constrained by two forcing variables: temperature 
and zooplanktonic biomass. In controlled conditions, the temperature was fixed at 18 °C following Lilley, et al.38 
whereas prey concentration was null or estimated from a prey concentration range (Flab; Table 1) in degrowth and 
growth experiments, respectively. In the in situ conditions, these variables were obtained by an annual climatol-
ogy of sea surface temperature and zooplankton concentration from 2011 to 2015 in the bay of Villefranche-sur-
Mer, France.

Implementation of the statistical model checking engine. The SMCE is a new mathematical 
approach based on probability (). The core of this method consists of a combination of the Monte Carlo 
method39 and the Sequential Probability Ratio Test (SPRT)40. Implemented within a computational framework, 
the SMCE allows simulating models or programs with uncertainties (Fig. 2). In particular, the SMCE allows a 
modeler to search for the optimal parameter values concerning experimental data. Initially, the modeler assigns 
a virtual search vector, with upper bounds, lower bounds, and resolution chosen according to prior knowledge, to 
each unknown parameter (step.1 in Fig. 2; Table 1). This vector allows defining a global search domain for optimal 
parameter values as the Cartesian product of the individual search vectors of all unknown parameters. 
Consequently, the size of the search space, as well as the computing time, increases proportionally following the 
width and the resolution of the individual vectors of each unknown parameter (i.e., the size range of values sub-
jects to investigation). In addition, instead of considering exact parameter values for each sample in the search 
space, SMCE will take into account uncertainty by using standard deviations around a sample before measuring 
its adequation to experimental datasets. Briefly, the essence of the SMCE is as follows: for each set of parameter 
values Param chosen from the sample space, a pseudo standard deviation (std) is used to create a new interval 
[Param – std: Param + std] (step.2 in Fig. 2), yielding a probabilistic model (i.e., a model where the parameter 
values are chosen according to a uniform distribution on their intervals). The size of this deviation is chosen 
according to prior knowledge of the variability of each unknown parameter.

With such a probabilistic model, one can define a probability measure on the outputs of its simulations. 
Ideally, the score obtained by SMCE should reflect the probability measure of the set of outputs that best match 
experimental datasets. Unfortunately, computing the exact measure (written ) is very costly. Therefore, the 
SMCE resorts to statistical analysis in order to compute an estimation of . In order to do so, the SMCE performs 
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many simulations of the model according to the chosen parameter set. At each simulation, random values of the 
parameters are chosen from their interval, which takes into account variability, and implemented in the model 
before running it (step.3 in Fig. 2). Model outputs are then compared to observations before running the SMCE 
to inform the latter whether the predictions were correct or not (i.e., True or False) (step.4 in Fig. 2). From those 
random simulations, the Monte Carlo technique allows computing a value Θ which is an estimation of the meas-
ure of , with a degree of precision ε that depends on the chosen number of simulations and represents the ade-
quation of the obtained prediction concerning the given data (step.5a in Fig. 2). As a consequence, obtaining an 
estimation Θ of the measure  ensures that  lies in the interval [Θ − ε; Θ + ε]41.

In order to spare computing time, the Monte Carlo technique has been combined with the SPRT method. This 
approach allows stopping the estimation of  (hopefully before all the simulations have been performed) if the 
simulations that have already been performed ensure that this probability cannot be greater than a threshold (γ) 
(step.5b in Fig. 2). When all the necessary simulations have been performed, the SMCE either returns the estima-
tion Θ of  if it is high enough or a statement that  is below the threshold otherwise. Such estimation is per-
formed for each set of parameter values from the search space (step.6 in Fig. 2). The estimated measures of all sets 
of parameter values are finally compared, which allows identifying the set of parameter values that gives the best 
prediction for the experimental data.

To summarize, the SMCE estimates the probability  for each set of parameter values (before adding the 
pseudo std) thanks to the Monte Carlo or SPRT approach by comparing individual simulations of the model with 
our experimental data. One accomplished such a comparison via a “tunnel” selection based on the standard devi-
ations of our experimental datasets. Considering a tunnel as the range of acceptable model outputs, a simulation 
of a model for a given set of parameter values is “correct” if the outputs of this simulation fit inside the tunnels (see 
step.4 in Fig. 2 for illustrations).

Calibration of the ecophysiological model. The use of SMCE allows defining vectors of optimal parame-
ter values (i.e., central values for the distributions of each parameter) within the parameter space. While originally 
designed as a deterministic model with a mechanistic description of the biological processes, SMCE provides an 
estimation of a set of vectors of optimal parameter values that transforms the model into a probabilistic one (i.e., 
parameter values are described as a distribution of values). The set of vectors could change if one considers the 
field and/or laboratory conditions (see the color-filled zones in Fig. 3 for illustration).

The best parameters set selected in controlled condition corresponds to a spawning frequency of 0.7 days 
(spn = 0.7 ± 0.05), a maximum fraction of assimilated food of 80% (amax = 0.8 ± 0.05), a half-saturation assim-
ilation and predation constants of 5.10−5 (ka = 5.10−5 ± 5.10−6) and 1.9.10−4 (kp = 1.9.10−4 ± 1.10−5) gC.L−1 

Figure 1. Conceptual diagram and equations used in the Pelagia noctiluca ecophysiological model. Arrows 
between compartments represent the biological carbon transfer following the ecophysiological processes. 
Symbols and units of the different variables are described in Table. S1. The red and green colors represent all 
parameters deduced from the literature dataset and Statistical Model Checking Engine (SMCE) respectively.
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respectively, a very low excretion rate (ce = 0 ± 0.025), a carbon cost for mucus production equal to 2.7 times the 
carbon-cost of eggs production (cre = 2.7 ± 0.05) and a prey concentration around 9.10−6 gC.L−1 (Fig. 3a). The 
representation of 50 random simulations from the best parameter set highlights that the ecophysiological model 
correctly represents the jellyfish growth and degrowth in laboratory conditions (Fig. 4). In starved conditions, 
the model shows that the jellyfish bell diameter decreases exponentially due to carbon losses via respiration, 
excretion, and reproduction (Fig. 4a). At the beginning of the degrowth experiment, respiration, excretion, and 
reproduction are responsible respectively of 47%, <1% and 53% of the total organic carbon loss, compared to 
62%, <1% and 38% at the end of simulations. However, the model slightly underestimates the biomass losses 
(~11% compared to the average of the measurements). In contrast, in feeding conditions (Fig. 4b), jellyfishes 
grow exponentially throughout the somatic phase, reaching saturation when sexually mature though prey con-
centration stays constant in the environment. This equilibrium suggests that the amount of organic carbon gained 
by predation is equal to losses promoted by excretion, egestion, and respiration. Thus, along with other marine 
species, P. noctiluca growth can be represented by a sigmoid curve.

In the in situ conditions, the 2011–2015 annual climatology of temperature and zooplankton biomass in the 
northwestern Mediterranean Sea (Fig. 5a) showed significant seasonal variations. In winter, both sea surface tem-
perature (SST) and zooplankton biomass are low (13 °C, and 1.10−6 gC.L−1, respectively). In early spring, heating 
of the water column leads to a stratification allowing phytoplankton growth which, in turn, generates an increase 
of zooplanktonic biomass (5-6.10−6 gC.L−1). During summer, the zooplankton biomass decreases to 1.10−6 
gC.L−1 while the SST increases to 22 °C, before decreasing below 18 °C in autumn. According to our observations 
(n = 1734), the size of P. noctiluca ranges between 2.1 and 21 cm throughout the year and is strongly related to 
environmental conditions. Three phases characterize P. noctiluca growth: (i) a slow growth in winter and early 
spring, (ii) an exponential growth as soon as the temperature and food availability increase in mid-spring, and 
(iii) a degrowth phase during summer and autumn associated to massive gametes emission35,36,42,43 and respira-
tion, which is not compensated by feeding on the scarce food available.

Compared to laboratory conditions, the best parameter set selected corresponds to spawning frequency of 0.8 
(spn = 0.8 ± 0.05), a maximum of assimilated food around 100% (amax = 1.0 ± 0.05), a half-saturation constant 
assimilation and predation near 4.10−5 (ka = 4.10−5 ± 5.10−6) and 1.9.10−4 (kp = 1.9.10−4 ± 1.10−5) gC.L−1 respec-
tively, an excretion rate close to 0% of the respiration rate (ce = 0 ± 0.025) and mucus production equal to 2.5 
time the carbon-cost of eggs production (cre = 2.5 ± 0.05). The representation of 50 random simulations from the 
best parameter set shows a good agreement between adult size observations and simulations (Fig. 5b). However, 
an unusual event at 100th Julian day could not be captured by the simulations and by any parameter sets. This 
mismatch occurs during the early spring season when observations of jellyfish are difficult because of sea state 
conditions. In addition, these abiotic perturbations can also impact the vertical distribution of the jellyfish leading 
to potentially biased observations. Interestingly, Milisenda et al.44 showed the occurrence of different cohorts in 

Ecophysiological process Parameters Values Units Description

Predation (P)

pmax 0.1399 gC.ind−1.d-1 Theoretical predation rate of 1 g CM individual at 0 °C 
and with unlimited food; log(C) = b.log(B) + a (adapted 
from Acuna, et al.66)bp 0.8856 dimensionless

kp

[3 × 10−5: 
2 × 10−5: 
2 × 10−4]

gC.L−1 Half saturation coefficient for predation (this study)

Respiration (R)
Ro 2.80 μmolO2.d−1 Theoretical respiration rate of 1 g WM individual at 0 °C 

(adapted from Lilley, et al.34)

br 0.934 dimensionless Allometric exponent for the effect of individual mass on 
respiration rate (adapted from Lilley, et al.34)

Reproduction (Re)

are 0.07 dimensionless Allometric exponent for the production of eggs (adapted 
from Lilley, et al.34)bre 4.66 dimensionless

We 1.52 × 10−6 gC.eggs−1 Eggs carbon mass34

cre [1: 0.1: 3] dimensionless Proportion of mucus production during spawn (this 
study)

spn [0.4: 0.1: 1] d−1 Spawning rate (this study)

Assimilation (A)

amax [0.5: 0.1: 1] dimensionless Maximal assimilation rate (this study)

ka

[1.5 × 10−5: 
0.5 × 10−5: 
5 × 10−5]

gC.L−1 Half saturation coefficient for assimilation (this study)

Excretion (Ex) ce [0: 0.2: 2] dimensionless Proportion of excretion production (this study)

Conversion factor

β 447 × 10−3 J.μmolO2
−1 Coefficient to convert from oxygen units to energy 

units67,74

α 2.28  × 10−5 gC.J−1 Coefficient to convert from energy units to carbon units67

t10 1.066 dimensionless
Tenth root of the Q10 coefficient which describes by 
how much as a rate changes with a 10 °C increase in 
temperature (adapted from Lilley, et al.34)

Food concentration Flab

[0.7  × 10−5: 
0.1 × 10−5: 
1.2 × 10−5]

gC.L−1 Prey concentration in laboratory condition (this study)

Table 1. Values, symbols, description and units of the different parameters used in the model.
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Figure 2. The activity diagram of the SMCE used to find the best combination of values for the unknown 
parameters in the ecophysiological model.

Figure 3. Vectors of the central points of the optimal parameter distributions for the growth rates measured 
in the laboratory (a), in situ conditions (b) and according to both (c). Color areas represent upper and 
lower bounds of the central points for the 50 best vectors of optimal parameter distributions. For each 
parameterization condition, the best vector is depicted by red lines.
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the Messina Strait throughout the year. Compared to the size measurements carried out in this study, all obser-
vations captured mainly the size distribution of the highest cohort (adult) except in April where the observations 
were similar to the intermediate cohort. This result suggests that simulations do not overestimate and reproduce 
correctly adult size distribution while the April observations could be biased by a younger cohort.

Finally, satisfying both laboratory and in situ conditions, we do not introduce more variability on each individ-
ual parameter but found a compromise for the best parameter set for both conditions (Fig. 3c). Here, the goal of 
SMCE is to identify a set of parameters that matches all observations (laboratory experiments and in situ obser-
vations). In this context, the errors are the sum of errors from laboratory and in situ conditions. Special attention 
has been given to the time resolution in order not to advantage of one condition compared to the other.

Discussion
In the last few years, computer sciences promoted the use of the SMCE method for verifying large software mod-
els that are out of reach of standard verification methods. Its purpose is to analyze a software model in order to 
prove (or disprove) that it satisfies desirable properties. Although marginally applied to non-software systems 
(e.g., aeronautics45 or gene regulatory networks46), its use has always required extensive computational skills (i.e., 

Figure 4. Comparison between the results of the laboratory experiments and the outputs of the 
ecophysiological model, based on fifty random simulations within the best parameters combinations defined 
by the SMCE. Subpanels show degrowth and growth simulation in (a) starved and (b) feeding conditions 
respectively.

Figure 5. Comparison of jellyfish size variations between in situ observations and outputs of the model, based 
on fifty random simulations within the best parameters combinations defined by the SMCE. Subpanels show: (a) 
the annual sea surface temperature (blue) and annual zooplankton biomass (black) climatologies (from August 
2011 to December 2015) that were used as model inputs; and (b) the jellyfish size variation obtained from in situ 
observations (dots) and model simulations (red lines). The blue color represents the tunnel of confidence for 
our SMCE decision.
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7Scientific RepoRtS |         (2020) 10:6074  | https://doi.org/10.1038/s41598-020-62357-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

use of dedicated modeling languages). Here we propose (i) to apply SMCE to biological models per se with no 
pervasive modification and (ii) to reach parameter estimation expectations while (iii) allowing a gain of global 
knowledge on the models besides the verification of predefined properties. While other efficient methods exist 
for parameter estimation47, such as MCMC48 or others that consider uncertainties49, SMCE brings several novel 
aspects that cannot be obtained through existing methods. In particular, SMCE, while being inherently proba-
bilistic, can be applied to models originally designed as deterministic ones by using distributions on parameter 
values. While deterministic models tend to represent the behavior of an average system, their probabilistic version 
allows representing the whole community instead. Thus, probabilistic models take into account the inherent vari-
ability of parameter values that inevitably emerges when extracting a trait parameter value from experiments that, 
by essence, consider a community of individuals rather than a single individual. Aside from these experimental 
uncertainties, the use of probabilistic models also allows taking into account uncertainties that arise from incom-
plete knowledge such as those produced by incomplete mechanistic descriptions in the model, or ambiguities 
about initial conditions50.

While standard methods, such as MCMC parameterization techniques, are highly efficient, their purpose 
remains to find one vector of optimal values within the parameter space. Aside from the fact that the resulting 
parameterized models will remain mainly deterministic, these methods also do not benefit from an extensive 
analysis of the parameter space. On the contrary, SMCE uses such an analysis to bring additional insights. Indeed, 
SMCE provides an estimation of a set of vectors of optimal parameter values (again, central values for the distri-
butions of each parameter) that could change if one considers in situ or laboratory conditions (see the color-filled 
zones in Fig. 3 for illustration). Each vector of optimal parameter values is certified, and Fig. 3 presents one of 
them in red for the sake of illustration. However, we advocate herein to consider the whole set of certified vectors 
to learn dependencies between parameters, as pictured in the correlogram Fig. 6, that are usually out of reach 
of standard sensitivity analysis. The benefits of this analysis are multiple. By embedding uncertainties with the 
models, one can (i) link parameters that concern different biological scales within the same model analysis, and 
(ii) identify independent parameters that are insights for reducing the complexity of models during their design.

For the sake of model validation, the best parameter values found by the SMCE are comparable to the ones 
that have been found previously, therefore confirming those isolated observations. Concerning reproduction 
processes, the spawning behavior of P. noctiluca has been widely studied26,29,34,51 showing that all sexually mature 
organisms spawned daily until their death. This gamete emission occurs 3 hours after the start of the light and 
for 30 minutes. However, this behavior could also be the result of laboratory conditions. Our new model param-
eterized with SMCE suggested that an almost daily spawning frequency is optimal for error minimization both 
in the laboratory and field conditions. Spawning activation was mostly discussed for the species P. noctiluca, but 
spawning among scyphozoans seems to be related to environmental stress such as light variations34,52–55 tem-
perature56, and food availability26,56. Our model supposed that mucus production during spawning represented 
respectively 67.5%, 62.5%, and 67.5% of total spawn in the laboratory, in situ, and both conditions compared to 
literature, which estimated at 52%34. Our modeling results confirm that scyphozoan produced massive amounts 
of eggs daily to promote growth population and survival57.

Figure 6. Correlogram representing Spearman’s correlation rank between input variable (Flab) and parameters 
(kp, amax, ka, ce, cre, spn), output variables obtained by the SMCE (Match, Score growth, Score in situ), and the 
contribution of POC exported due to jellyfish (Median export). Color scale and circle size indicate the strengths 
of the correlation.
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To our knowledge, no experiment investigates the DOC excreted by P. noctiluca. Our simulations estimated 
an excretion rate close to 0 in all conditions. In comparison, two different studies measured excretion rates for 
Mnemiopsis leidyi (Ctenophora) ranging between 0.4 and 61.6 μmolC.gDW−1.h−1 58 or 0.18 and 0.86 μmolC.
gDW−1.h−1 59 with temperature ranges of 18–27 °C and 10–24 °C, respectively. Chrysaora quinquecirrha and 
Aurelia aurita scyphomedusae, which are closer to P. noctiluca from a phylogenetic point of view, released high 
quantities of DOC with estimates spanning 1.3–46.4 μmolC.gDW−1.h−1 58 and 1.2–6.7 μmolC.gDW−1.h−1 60 in 
temperature ranges of 14–27 °C and 16–20 °C, respectively. Most of the time, jellyfish release a large amount of 
highly labile DOC, which can be easily metabolized by bacterioplankton with uptake rates two or six times that 
bulk of DOM10. Moreover, the authors showed that specific bacterial groups in the water column successfully 
used this matter and suggested that jellyfish promote fundamental transformation in the biogeochemical func-
tioning and microbial loops.

In addition to rejecting specific parameter sets, we used the SMCE approach to evaluate the entire structure of 
models. The limits of the ecophysiological model used in this study were highlighted by the assimilation efficiency 
and excretion rate, which tend toward the extreme values (100% and 0% respectively) in both conditions simulta-
neously. Even if amax values were unrealistic for in situ and both conditions simulations, it reached 80% in labora-
tory experiments. Moreover, the relationship between “Score in situ” and “Score growth” with amax parameter had 
opposite correlations (Fig. 6), which means that to reduce simulation errors in the laboratory (in situ) condition, 
the assimilation efficiency values need to be lowest (highest). Here, the SMCE output analysis raises the common 
problem of modeling between parameterization in the field and controlled conditions.

Regarding the excretion rate, the SMCE results showed that the variability of size measurements during the 
degrowth experiments did not allow to constrain it, which was also confirmed by the correlogram where ce does 
not affect laboratory score but seems to be the most influential parameters for the field conditions. To conclude, 
the correlogram showed that a good “Match” mostly depends on the growth in laboratory conditions, which itself 
largely depends on the laboratory prey concentration. These results suggest that, in addition to ce and amax, the 
vector of the laboratory prey concentration tested and adapted following publication42 need to be estimated more 
precisely in the future experiments.

The present ecophysiological model provides carbon fluxes for predation, ingestion, assimilation, respiration, 
excretion, reproduction, and the egestion of P. noctiluca. Combining the modeled egestion with P. noctiluca abun-
dances in the North-West Mediterranean Sea and estimated remineralization, and sinking rates of their produced 
mucus could enable estimating their contribution to carbon export in the region in the future (Eq. 9). For exam-
ple, considering that in 2013, P. noctiluca abundances ranged from 0 to 3.45 ind.m−2 with a median of 0.018 ind.
m−2 (1st and 3rd quartiles: 0.003 and 0.1 ind.m−2 respectively; n = 1,371). We could estimate an average mucus 
export at 200 m depth between 3.10−3 and 0.2 mgC.m−2.d−1 in October and April, respectively. In comparison 
with the total carbon export at DYFAMED station61 (ranging from 1.53 mgC.m−2.d−1 in July to 14.01 and 13.55 
mgC.m−2.d−1 in February and April, respectively), this suggested that the contribution of P. noctiluca (%POCjelly) 
at 200 m in the region could range from 0.01% to 2.31% in October and August respectively, while in summer 
this contribution could vary between 0% and 288%, with a median value of 1.01% (first and third quartile: 0.15% 
and 5.6% respectively; Fig. 7). While this example shows the potential of the common use of the ecophysiological 
model and experiments to estimate the jellyfish contribution for carbon fluxes, it still major pitfalls that advocate 
for further modelings. The current model does not consider mortality and jelly falls, which could all impact 
fluxes estimates. Also, local POCjelly predictions are compared to the monthly climatology of total POC fluxes 
obtained at the DYFAMED station61, which is the only time series available for this region. The Supplementary 
Information thoroughly discusses these hypotheses and potential impacts (section Model uncertainties and puta-
tive refinements).

This probabilistic modeling, initially designed as a determinist model, could suggest a weak impact of P. noc-
tiluca on carbon fluxes, but the high biomass and prevalence of this species make it an excellent candidate for the 
jelly-POM concept11. Indeed, similarly to what has been found for Thaliacea62–64, the relatively high abundances and 
predation rates of scyphozoans can impact planktonic communities locally65, which therefore needs to be integrated 
into pelagic ecosystems modeling studies. Also, carcass decomposition coupled with excessive jellyfish excretion, 
can increase dissolved inorganic carbon concentration in the water column, and thus promotes the microbial food 
web10. Overall, this modeling exercise allows us to scale up from physiological properties, to test for potential bioge-
ochemical implications, integrating laboratories, and in situ observations of the jellyfish P. noctiluca.

Methods
Conceptual model. To understand the role played by jellyfish for carbon cycling, it is essential to trace each 
physiological process where carbon is implicated. An ecophysiological 0-D model was built based on three forcing 
variables, which are temperature (T), food concentration (F) and initial jellyfish carbon mass (CM). The growth 
(G; gC.d−1) of any organism depends on the balance between the quantity of assimilated preys (A) and losses due 
to respiration (R; gC.d−1), excretion (Ex; gC.d−1) and reproduction (Re; gC.d−1). After ingestion (I; gC.d−1), unas-
similated predated preys are considered as egestion (Eg; gC.d−1). In this way, the scope of growth and Eg could be 
expressed respectively by equations Eq. 1 and Eq. 2 below. Each variable was determined separately.

G A R Ex Re( ) (1)∆ = − + +

Eg I A (2)= −
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To estimate the assimilation rate, an estimation of ingested prey itself subject to the predation rate (P) and prey 
concentration (F) is necessary. The total amount of predated food is a function of an allometric relationship that 
depends on individual carbon mass (CM), temperature (T; °C) and food concentration, as follows:

= + . . .( )P F k p CM t1/ (3)p max
bp T

10

where pmax is the maximum net feeding rate, t10 the tenth root of the Q10 which describes by how much rate 
changes with a 10 °C increase, and bp is the regression coefficient. The parameters pmax, bp, and t10p were calibrated 
following the relationships between carbon weight and clearance rate defined for 8 different jellyfish species by 
Acuna, et al.66 (Fig. S1). Michaelis-Menten kinetics were performed in the predation equation, with a half con-
stant saturation of feeding rate (kp). However, the parameters pmax and kp are interconnected. To minimize the 
time needed for the new parameterization approach, we assumed that the most laboratory observations66 corre-
sponds to food saturating condition (i.e., two times higher than the maximum food concentration recorded in the 
in situ condition; Fsat = 0.00012 gC.L−1) accordingly to which the relationship between pmax and kp were identified, 
such as pmax = 0.1399.(1 + kp/Fsat).

In this model, the ingestion rate is expressed by the simple product between prey concentration and predation 
rate, as follows:

I P F (4)= .

Figure 7. Spatiotemporal variability of the percentage of POC exported at 200 m depth due to the scyphozoan 
egestion in the Ligurian Sea, according to the ecophysiological model and compared to the total POC measured 
at the DYFAMED station in Ramondenc, et al.61. The red and black numbers represent the mean of POC 
percentage exported at 200 m depth and the number of observations respectively.
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However, the assimilation rate is different than the ingestion one and the model assumes that the fraction 
of food ingested and effectively assimilated decreases with increasing zooplankton concentration following a 
Holling type II Michaelis-Menten relationship:

= . − . +A I a F F k(1 /( )) (5)max a

where amax is the maximum fraction of assimilated food and ka is the half-saturation constant for assimilation.
To estimate the organic carbon losses due to the jellyfish metabolism, we considered four main processes: 

respiration, excretion, reproduction, and egestion rate. Many authors investigated jellyfish respiration rates34,66 
but we choose to adapt the approach of Lilley, et al.34, which performed an allometric equation on P. noctiluca 
species such as:

= . .R R CM t (6)o
Tbr

10

where Ro is the theoretical respiration rate for 1 g CM individual at 0 °C, br is the allometric exponent for the 
effect of individual mass on respiration rate and t10 is the tenth root of the Q10 coefficient. To convert oxygen to 
energy units and then energy units to carbon units, two parameters α (J. μmolO2

−1 67;) and β (gC.J−1 36;), were 
used respectively. The parameters Ro, br, and t10r were calibrated according to log-log relationship between carbon 
weight and respiration rate obtained by Lilley, et al.34 (Fig. S2).

Jellyfish excretion has been largely studied10,58. DOC concentration from excretion activity was considered to 
scale with respiration rates, which is representative of the overall metabolic rates, as follows:

= .Ex R c (7)e

with ce being the scalar factor.
Concerning the reproduction, when P. noctiluca is sexually mature, each individual spawning releases hun-

dreds of eggs bound into mucus. In our model, eggs production was estimated thanks to the power-law relation-
ship developed by Lilley, et al.34 (Fig. S3) and two additional parameters cre and spn, that characterize mucus (as 
the proportion of eggs carbon) and spawning frequency (spawn per day) respectively following the equation 
Eq. 8:

= . . . .Re a CM W c spn( ) (8)re
bre

e re

where are and bre are coefficient parameters and We is the egg carbon mass38. Sexual maturity allowing egg produc-
tion was attained when jellyfish size reached 4 cm29.

To estimate the contribution of POCjelly to the carbon pump, the sinking speed (w; m.d−1) and the reminerali-
zation rate (k; %.d−1) were implemented in our model after estimation by laboratory experiments. The amount of 
carbon sequestered by jellyfish at a given depth was then modeled as follows:

C Eg w k (9)seq = . .

In order to adapt the equations found in literature and switch easily between morphometric units, the model 
uses two conversions developed by Lilley, et al.34. Thus, the jellyfish carbon mass represents 0.36% of the wet mass. 
Moreover, the wet jellyfish mass and carbon mass follow an allometric law with the size of P. noctiluca, such as:

WM 0 075 BD and CM 0 26 BD2 993 3 017= . . = . .. .

with BD, WM, and CM representing respectively the bell diameter over lappets (cm), wet mass (g) and carbon 
mass (mg).

Model execution and observation data. To correctly represent growth and degrowth of P. noctiluca, 
model outputs were compared to our laboratory and in situ measurements as well as those carried out by Lilley, 
et al.38. According to Lilley, et al.34, degrowth and growth experiments were carried out in a room maintained at 
18 °C. Regarding food concentration, no prey was used in degrowth experiments whereas jellyfish were fed ad 
libitum during growth measurements. Facing important uncertainties that represent the term “ad libitum”, a food 
concentration vector specific to laboratory condition was tested with the SMCE approach (Flab, see Table 1).

An annual climatology based on weekly measurements of sea surface temperature and zooplankton concen-
trations, recorded from plankton imaging, were calculated for the 2011–2015 period. Zooplankton biomass was 
estimated in carbon units by converting zooplankton biovolume to biomass following the linear model of Alcaraz, 
et al.68, which was developed for the northwestern Mediterranean Sea. As previously mentioned, P. noctiluca 
undergoes nycthemeral migrations from the surface towards the bathypelagic69. This behavior was integrated by 
calculating ecophysiological rates for both sea surface temperature and bathypelagic temperature (i.e., 13 °C in 
the Mediterranean Sea). Then, the average of each ecophysiological rate at time t was computed to represent the 
average daily rates.

SMCE processing. We ran 500 simulations for each parameter set which gave a 5% estimation precision and 
an error rate of 1% on the probability that the parameter set is correct (i.e., qualified as Match). The experiment 
was performed on a 64 cores CPU, 512 Go Ram, 13 To HDD computer, and ran for 8 080 minutes (i.e., 6 days). In 
the end, the SMCE returned all parameter sets that presented a Match greater than 70%. Additional characteristics 
were also returned, such as the average number of simulations that were found outside the confidence interval 
defined from data observation (Score), and the distance to the interval (Dist) together, for laboratory and in situ 
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conditions. The ecophysiological model implementation is available at https://gitlab.univ-nantes.fr/delahaye-b/
Pelagia-Noctiluca.

Abundance and biomass estimation. The Ligurian Sea is an area in the northwestern Mediterranean 
Sea that presents its own cyclonic circulation70. Indeed, two different Modified Atlantic Waters (MAW) are mixed 
around Corsica and formed the “Northern current”. This strong flow progresses anticlockwise eastward along the 
Italian and French coasts. The Northern current exhibits specific physical and biological conditions and splits the 
basin into three different hydrographic zones: (i) the peripheral zone, (ii) the frontal zone and (iii) the offshore 
central zone. Our study monitored the distribution of P. noctiluca from 2012 to 201571 with a quantitative method. 
Briefly, thanks to the French ship (www.alchimie-mediterranee.fr/, Alchimie), each cruise was carried out at 
night from Villefranche-sur-Mer (43°41′N, 7°18′E) to Calvi (42°34′N, 8°45′E). During this transect, only adult P. 
noctiluca were recognized and counted every 10 minutes. The jellyfish biomass was estimated thanks to the wet 
mass from sampled adult individuals.

Sinking and remineralization rate experiments. Adult P. noctiluca were collected at the surface with 
a dip net (1 mm mesh size) close to the frontal zone. Each individual jellyfish was placed in an 8 L plastic bucket 
filled with filtered (100 μm) in situ seawater. Few hours were necessary for the gelatinous organisms to egest their 
gut content in the form of digestive mucus. The excreted particulate matter was individually incubated in sealed 
vials of 33.4, 67.9 or 136.5 mL filled with filtered (0.2 μm) seawater to determine the remineralization rate. Each 
vial contained small optodes foil glued inside their glass wall72. Optodes excited by light pulses emit a fluorescence 
pulse in response that depends on the oxygen concentration of the solution (quenching). The phase delay of the 
light response provides oxygen saturation rates for the incubator. This system (optical electrodes Presens ©), is a 
non-intrusive and precise method (precision: 0.4% of O2 air saturation) but it is sensitive to temperature and pres-
sure. For this reason, it is necessary to calibrate each vial under controlled conditions before experimental meas-
urements (need to re-calibrated every 2 months). In parallel, other vials were prepared without particles to obtain 
the control condition. Average respiration from control measurements was subtracted to experimental measure-
ments with gelatinous mucus. All incubations (n = 33) ranged between 9–20 h. At the end of the experiment, each 
particle of mucus was frozen at −60 °C for CHN analysis. The degradation rate of organic matter was calculated 
thanks to a linear regression based on the decrease of O2 in time. Thanks to the final amount and degradation 
rate, both carbon content at the initial time and remineralized can be estimated. In another way, sinking speed 
rate experiments were conducted in the laboratory. The mucus remineralization rate was estimated at 0.034 d−1  
function to the CO2 consumption measurements (Table S1).

All other individual digestive mucus was used to estimate particles sinking speed, inspired by the previous 
study73. One by one, each particle (n = 19) was placed in the first centimeters of a large graduated plastic bucket, 
which was 38 cm tall and 30 cm in diameter, full with filtered in situ seawater (0.2 μm) in order to conserve iden-
tical water density. The time taken by the particles to reach between 15 and 20 cm was used to estimate the sedi-
mentation rate. The sinking rate of the mucus produced by P. noctiluca ranges between 384 m.d−1 and 1329 m.d−1  
with a median equal to 751 m.d−1 (Table S2). The sinking rates were positively correlated with the mucus size 
(r2 = 0.6, p < 0.05) and showed similar properties to marine snow. Finally, based on these two estimates, a mucus 
sinking between 0 and 200 m is expected to lose 1% of its carbon weight.
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