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Error estimates for finite differences
approximations of the total variation
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April 8, 2020

We present a convergence rate analysis of the Rudin-Osher-Fatemi (ROF)
denoising problem for two different discretizations of the total variation. The
first discretization is the well-known isotropic total variation that suffers from
a blurring effect in a special diagonal direction. We prove that in the setting
corresponding to this direction, the discrete ROF energy converges to the
continuous one in O(h2/3). The second total variation is based on Raviart-
Thomas fields and achieves a O(h) convergence rate for the same quantity
under some standard hypotheses.
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1 Introduction

Since its introduction by Rudin, Osher and Fatemi in [15] the use of total variation as a
regularizer for denoising and inverse problems has proven to be effective in removing noise
while preserving sharp edges. In the continuous setting, the denoising model consists in
solving the “ROF” problem:

u = arg min
u∈BV ∩L2(Ω)

1

2λ
||u− g||2L2 + TV(u) =: E(u) (1)

where Ω = [0, 1] × [0, 1] is the domain of our noisy image g (for which we will suppose
g ∈ L∞(Ω) as well as g ∈ BV (Ω) when needed) and λ > 0 is a regularizing parameter.
Here TV stands for the continuous total variation given by TV(u) =

∫
Ω |∇u| when u is

regular, and with |.| denoting the euclidean norm in R2.
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To be more precise, we consider both Neumann and Dirichlet boundary conditions to
this setting. This will result in two different variants of (1): in the Neumann setting

uN = arg min
u∈BV ∩L2(Ω)

1

2λ
||u− g||2L2 + TVN (u) =: EN (u) where (2)

TVN (u) = sup

{
−
∫

Ω
u divφ ; φ ∈ C1

c (Ω,R2) s.t. || |φ| ||∞ ≤ 1

}
where C1

c (Ω,R2) is the space of continuously differentiable and compactly supported
fields from Ω to R2, and || |φ| ||∞ = supx∈Ω |φ(x)|. In the Dirichlet setting, we add the
constraint that u = b on ∂Ω for some b ∈ BV ∩ L∞(∂Ω) (naturally, one usually takes
b = g|∂Ω), and replace TVN by

TV(u) = sup

{
−
∫

Ω
u divφ+

∫
∂Ω
u 〈φ|~n〉 ; φ ∈ C1(Ω,R2) s.t. || |φ| ||∞ ≤ 1

}
where ~n denotes the outer normal unit vector. Equivalently, we formulate the Dirichet
problem as:

uD = arg min
u∈BV ∩L2(Ω)

1

2λ
||u− g||2L2 + TVD(u) =: ED(u) where (3)

TVD(u) = sup

{
−
∫

Ω
u divφ+

∫
∂Ω
b 〈φ|~n〉 ; φ ∈ C1(Ω,R2) s.t. || |φ| ||∞ ≤ 1

}
In the following, we will denote for B ∈ {N,D} the optimal value of the continuous

problems EB = EB(uB). When no subscript (N or D) is used, it means our statement
is valid under both boundary conditions.

In practice, Ω is discretized into N × N square pixels of size h = 1/N , namely Ω =
∪1≤i,j≤NCi,j with Ci,j = [(i − 1)h, ih] × [(j − 1)h, jh]. Images are now elements of
P0 = {u : Ω → R s.t. ∀1 ≤ i, j ≤ N, ∃ui,j ∈ R s.t. u = ui,j in Ci,j}. One introduces
the projection of the continuous image gh = ΠP0(g) given by (gh)C = 1

h2

∫
C g for every

square pixel C, and the discrete counterpart of (1) is the following:

uh = arg min
uh∈P0

1

2λ
||uh − gh||2L2 + TVh(uh) =: Eh(uh) (4)

where TVh is some discretization of the total variation defined on P0. In the Dirichlet
setting, TVh can involve the discretization bh of b given by (bh)e = 1

h

∫
e b for every

boundary edge e. This article deals with the study of the convergence rate of E
h

:=
Eh(uh) towards E for two different discretizations TVh.

A widely used choice for TVh is the so called “isotropic” total variation which dis-
cretizes the expression TV(u) =

∫
Ω |∇u| using a finite difference operator D. It is given

by

TVh
i (uh) = h

∑
1≤i,j≤N

|(Duh)i,j | where (Duh)i,j =

(
uhi+1,j − uhi,j
uhi,j+1 − uhi,j

)
(5)
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(with either uhN+1,j = bh
N+ 1

2
,j
, uhi,N+1 = bh

i,N+ 1
2

in the Dirichlet boundary conditions

or uhN+1,j − uhN,j = uhi,N+1 − uhi,N = 0 in the Neumann boundary conditions). The term
“isotropic” refers to the behavior of this functional as the mesh size h tends to zero.
One can indeed show (see [8] where this is proven for a more complicated TV) that the
functional u 7→ TVh

i (uh) if u = uh ∈ P0, +∞ otherwise Γ−converges to TV, so that the
minimizers uh converge (for instance in L2) to u, the minimizer of (1). This convergence
leads to saying that TVh

i inherits of the isotropy of TV for denoising problems such
as ROF. We recall below the standard example of this isotropy of the continuous total
variation: the denoising of the characteristic of a half plane in the Dirichlet setting.

Given a direction ν ∈ R2 with |ν| = 1, take g = gν defined by gν(x) = 1 if 〈x|ν〉 ≥ a and
gν(x) = 0 otherwise where a is some fixed real number (for instance a = 〈(1/2, 1/2)|ν〉).
Then, problem (3) with boundary condition b = gν |∂Ω has solution uD = gν , no matter

the orientation of ν. This comes from the following important fact1:

Claim. Fix ν ∈ R2 with |ν| = 1. When using the boundary condition b = gν |∂Ω, the
value of TVD(gν) is reached for φ ≡ ν so that TVD(gν) =

∫
∂Ω gν〈ν|~n〉.

Our claim is indeed a direct consequence: if u ∈ BV ∩L2(Ω) is such that u|∂Ω = gν |∂Ω,
taking the admissible field φ ≡ ν gives

TVD(u) ≥
∫
∂Ω
gν〈ν|~n〉 = TVD(gν)

and the result follows.
However, this convergence result does not guarantee the isotropy of the discrete

isotropic TV itself. In fact TVh
i (ghν ) can be quite far from the length of the contin-

uous line TV(gν). What is worse is that the value of TVh
i (ghν ) actually depends on the

orientation of ν. The case of the 45◦ diagonal is eloquent: as noted for instance in [7],
the choice of the finite difference operator D induces a difference of roughly 40% between
the main diagonal, that is ν = 1√

2
(1, 1) and its flipped version that is ν = 1√

2
(−1, 1):

0

1 1

0

Figure 1: On the left image TVh
i ' N

√
2 while on the right TVh

i ' 2N

This differentiation breaks the istropy of TVh
i for a fixed h > 0 leading to artefacts

depending on the direction in denoising problems such as the denoising of a circle: the

1Which just follows from −
∫

Ω
gνdivφ+

∫
∂Ω
gν〈φ|~n〉 =

∫
{x s.t. 〈x|ν〉=a}〈ν|φ〉
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edges oriented along the more penalized diagonal are blurred (see Figure 2). Going back
to the case g = gν , even if one always has uh → gν , the speed of this convergence may
vary with ν. We take again the example of the two mirror diagonals for which denoising
with TVh

i for different step sizes h are shown Figure 2. One notices that the denoising
is achieved correctly for the 135◦ diagonal (which we will now call consequently the
“good” diagonal) whereas one needs to take h very small before obtaining a sharp looking
discontinuity with the other diagonal (the “bad” one).

Figure 2: Denoising with TVh
i : noisy and denoised circle with Neumann b.c., good (2nd

col.) and bad (3rd col.) diagonals with Dirichlet b.c. and N = 10, 20, 50, 100.

The main purpose of this article is to study the error made by the isotropic total varia-
tion in the “bad” diagonal denoising problem. To this end, we estimate the convergence
of the optimal discrete energy of problem (4) towards the optimal continuous energy in
(1). Up to a slight change of the domain (Ω = Ωper that we will define later), we show
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that it is of order O(h2/3). More precisely we will prove the following theorem:

Theorem 1. On an appropriate domain Ω = Ωper we have:

1. For ν = 1√
2
(−1, 1) the denoising is exact, meaning that uh = ΠP0(u).

2. For ν = 1√
2
(1, 1), ∃ h, c, c′ > 0 depending only on λ such that

∀h ≤ h, ch2/3 ≤ Eh − E ≤ c′h2/3

These rates ought to be compared with results obtained by Lucier and co-authors in

[12] and [16]. In [12] the authors give a bound of type |Eh − E| ≤ c
√
h (as well as

||uh − u||2 ≤ c
√
h) for a so called central-difference discretization of the ROF model

meaning that they use the following discrete total variation TVh = TVh
c with

TVh
c (uh) = h

∑
i,j

√√√√(uhi+1,j − uhi−1,j

2

)2

+

(
uhi,j+1 − uhi,j−1

2

)2

In [16], errors in h
α
α+1 are given, where α is the Lipschitz order of g, and the discrete total

variation at stake is an average of the four possible isotropic total variations obtained
by the finite difference approximations of the gradient: forward/forward (which is TVh

i ),
forward/backward, backward/forward and backward/backward.

The second part of this paper is also to be compared with these rates. We establish

in our context the convergence rate (valid under some hypothesis) |Eh − E| ≤ ch for
another discrete total variation TVh = TVh

RT . A similar error is obtained in [7] (see also
[2]) for a non-conforming P1 finite-elements based approximation of the total variation.
The idea behind the TVh

RT total variation is to gain isotropy in the discretization of
the continuous TV by allowing any direction ν to be an admissible discrete field φ. We
propose to mimic the dual definition of the continuous total variation in the Dirichlet
setting TVD using Raviart-Thomas fields (RT0) [14] which are piecewise affine fields
including the constant fields (precise definitions will be given later) and define for either
continuous or discrete function and boundary term u, b:

TVh
RT,D(u) = sup

{
−
∫

Ω
u divφ +

∫
∂Ω
b〈φ|~n〉; φ ∈ RT0 s.t. || |φ| ||∞ ≤ 1

}
(6)

The fact that ν ∈ RT0 allows one to do as above to show that this total variation is
isotropic in the sense that when taking b = gν one has u = gν for any ν in the following
ROF model (mixing a discrete TV term to a continuous L2 term):

u = arg min
u∈BV ∩L2(Ω)
u|∂Ω=gν |∂Ω

1

2λ
||u− gν ||2L2 + TVh

RT,D(u)
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In the discrete setting, we finally define our problem as:

uh = arg min
uh∈P0

1

2λ
||uh − ghν ||22 + TVh

RT (uh)

where TVh
RT stands for TVh

RT,D given by (6) in the Dirichlet setting, and is replaced by

TVh
RT,N (uh) = sup

{
−
∫

Ω
uh divφ, φ ∈ RT00 s.t. || |φ| ||∞ ≤ 1

}
in the Neumann setting where we enforce the RT0 fields to vanish on the boundary
obtaining the RT00 fields.

This total variation performs well on the denoising problem.
The paper is organised as follows: Sections 2,3 and 4 are devoted to TVh

i denoising and
prove theorem 1. Section 5 presents the Raviart-Thomas total variation and gives the
O(h) convergence rate for this setting. The last section presents the implementation of
the algorithms, and shows numerical results comparing on test images the total variations
TVh

i ,TVh
RT and a state-of-the-art variant initially proposed in [11], and analysed and

implemented by Condat [9] which seems to perform better, but for which we do not have
error bounds up to now (nor even consistency, although this is addressed in a work in
progress).

2 Reduction to a 1D TV denoising problem

To study the orientation dependent error of the isotropic TV, we introduce the following
experiment. Placing ourselves in a well-chosen periodic domain Ω = Ωper, we reduce the
2D TVh

i denoising problem in the case of a diagonal image g = gν with ν = 1√
2
(−1, 1)

to a 1D problem. In the following, we will denote respectively TV and tv the 2D and
1D total variations. The first point of theorem 1, which is the case ν = 1√

2
(1, 1), will be

quickly obtained. We next present some general results about the case ν = 1√
2
(−1, 1)

that will be useful to prove the second point of theorem 1 in the following sections.

2.1 The domain Ωper

We actually do not consider the ROF model (4) on a square domain, but on a periodic
strip oriented along the diagonal at stake, see the drawing below in which each square
pixel is of size h = 1/N and where the (green) doted lines are to be identified. For
ν = 1√

2
(−1, 1), we now work with a variable uhi,j defined for (i, j) ∈ Z2 such that

−N ≤ i− j ≤ N ; 0 ≤ i+ j ≤ D and satisfying uhi+D,j+D = uhi,j for any (i, j). Making

the change of variables n = i − j ; d = b i+j2 c, one checks that our domain can be
represented by

Ωper = {(n, d), −N ≤ n ≤ N, d ∈ Z/DZ}

Our source term gh : Ωper → R is given by gh(n, d) = 1 for n > 0, gh(n, d) = 0 for n < 0
and gh(0, d) = 1/2, for all d ∈ Z/DZ.
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n = −N

n = −1

n = 0

n = 1

n = N − 1

n = Nh

h gh = 1
2

gh = 0

gh = 1

2
√

2Nh

√
2Dh

d = D

d ∈ Z/DZ

Figure 3: Setting for the lower error bound estimate.

Then the problem (4) is to solve

uh = arg min
uh:Ωper→R

h2

2λ

∑
(n,d)∈Ωper

|uh(n, d)− gh(n, d)|2 + TVh
i (u) := Eh(uh)

where TVh
i stands for the isotropic TV on this particular domain. If n = i− j and d =

b i+j2 c so that uh(n, d) codes for the value of uhi,j , then one finds that uhi+1,j (respectively

uhi,j+1) is represented by uh(n+ 1, d′) (respectively uh(n− 1, d′)) with d′ = d for n even
and d′ = d + 1 for n odd. Following (5), this leads to the following expression of the
isotropic total variation:

TVh
i (uh) = h

∑
d∈Z/DZ
n even

∣∣∣∣(uh(n+ 1, d)− uh(n, d)
uh(n− 1, d)− uh(n, d)

)∣∣∣∣+ h
∑

d∈Z/DZ
n odd

∣∣∣∣(uh(n+ 1, d+ 1)− uh(n, d)
uh(n− 1, d+ 1)− uh(n, d)

)∣∣∣∣
We will first study the case of Dirichlet boundary conditions meaning that we impose

(both on the definition of TVh
i and on the optimization problem) that for all d ∈ Z/DZ:

uh(N + 1, d) = uh(N, d) = gh(N, d) = 1 ; uh(−N − 1, d) = uh(−N, d) = gh(−N, d) = 0

Later on we will deduce from the Dirichlet setting the same rate for the Neumann
boundary conditions:

uh(N + 1, d) = uh(N, d) ; uh(−N − 1, d) = uh(−N, d)

The benefit of this periodic setting is to reduce the problem from 2D to 1D as at
the optimum one has uh(n, d) = uh(n, d′) for all n and d, d′ ∈ Z/DZ. Indeed, as all
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the terms in the objective are invariant when changing d to d + 1, the shifted image
ũh : (n, d) 7→ uh(n, d+ 1) has the same energy Eh, hence ũh = uh by uniqueness of the
optimizer.

We keep the letter u for this now 1D variable, and divide our energy by a factor
√

2Dh
which is the width of our 2D domain. The problem then rewrites as:

uh = arg min
uh∈R2N+1

s.t. BC

Eh(uh) :=
h

2
√

2λ
||uh − gh||22 + tvhi (uh) (7)

where we defined
||uh − gh||22 =

N∑
n=−N

(uhn − ghn)2

tvhi (uh) =
1√
2

N∑
n=−N

√
(uhn+1 − uhn)2 + (uhn − uhn−1)2

with ghn = 0 for n < 0, ghn = 1 for n > 0 and gh0 = 1/2 and where BC stands for the
following boundary conditions:{

uhN+1 = uhN = 1 and uh−N−1 = uh−N = 0 for Dirichlet

uhN+1 = uhN and uh−N−1 = uh−N for Neumann

This problem is therefore a 1D signal denoising relying on a biased 1D total variation
1√
2

∑
n

√
(uhn+1 − uhn)2 + (uhn − uhn−1)2. This bias is responsible for the bad behavior of

TVh
i on this diagonal.

As a comparison, with the other diagonal, we define similarly Ωper to be oriented
along this diagonal. One can check that this leads to a 1D denoising with the classical
1D discrete total variation tvh(uh) =

∑
n |uhn+1 − uhn|. As a consequence, the denoising

is exact: uh = gh. Indeed, the problem (in the Dirichlet setting) is to minimize ||uh −
gh||2 + ctvh(uh) for some constant c > 0 and under the constraint that uhN+1 = uhN = 1

and uh−N = 0. This constraint gives tvh(uh) ≥
∣∣∣∑N

n=−N u
h
n+1 − uhn

∣∣∣ = 1 = tvh(gh), hence

we obtain the first point of our main theorem 1.

2.2 Solution of the continuous limit problem

In this section we investigate the continuous 1D denoising problem obtained when passing
to the limit h→ 0 in problem (7). Assuming uh is the discretization of a smooth function
u defined on [−1, 1], we write:

Eh(uh) =
1

N
√

2

N∑
n=−N

1

2λ
(u(nh)− ghn)2

+

√(
u(nh+ h)− u(nh)

h

)2

+

(
u(nh)− u(nh− h)

h

)2
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and we see that this converges as h→ 0 to

E(u) =

∫ 1

−1

1

2
√

2λ
(u− g)2 + |u′| (8)

with
∫ 1
−1 |u

′| =: tv(u) being the continuous 1D total variation. It is easily shown that

(8) is also the Gamma-limit of the discrete problem, so that the minimizers uh of (7)
will converge to the minimizer of (8).

For the Dirichlet setting, we enforce the constraint u = g at the boundary of the
domain i.e. u(−1) = 0 and u(1) = 1. In that situation, for any admissible u we have:∫ 1

−1
|u′| ≥

∣∣∣∣∫ 1

−1
u′
∣∣∣∣ = |u(1)− u(−1)| = 1 =

∫ 1

−1
|g′|

which directly shows that the energy (8) is minimal for u = g with value ED = 1.
In the Neumann setting however, no boundary condition is required. To find the

solution, one can write the optimality conditions given by duality theory (see [4]):

tv(u) = −
∫ 1

−1
uz′ and

1√
2λ

(u− g)− z′ = 0

for some function z such that |z| ≤ 1 and z(−1) = z(1) = 0. If these equations are met
for some couple (u, z) then u is optimal in problem (8). We search for u of the form
u = ua for some a ∈ R with ua(x) = a if x ∈ (−1, 0) and ua(x) = 1−a if x ∈ (0, 1). This
leads to taking z(x) = a√

2λ
(x+1) if x ∈ (−1, 0) and z(x) = a√

2λ
(1−x) if x ∈ (0, 1). Then

one must try to fulfill the equations tv(ua) = −
∫ 1
−1 ua z

′ that is |1− 2a| = 1√
2λ
a(1− 2a)

and |z| ≤ 1 that is |a| ≤
√

2λ. These two equations on a always give rise to a unique

solution: if λ ≤ λ∗ :=
√

2
4 then ua is optimal with a = aopt :=

√
2λ and the minimal

energy is E
≤
N := 1 −

√
2λ. If λ > λ∗ then ua is optimal with a = 1

2 and the minimal

energy is E
>
N := 1

4
√

2λ
. In the following, we will see that in the case λ > λ∗ the discrete

problem is exact (uh ≡ 1
2), therefore we will always place ourselves in the case λ ≤ λ∗,

and we denote EN := E
≤
N = 1−

√
2λ.

2.3 Form of the solution

Before turning to the proof of the O(h2/3) bounds, we make some general remarks on
the form of the solution of (7):

Proposition 1. The solution uh of problem (7) (either with Dirichlet or Neumann
boundary conditions) satisfies:

1. ∀n, uh−n = 1− uhn, in particular uh0 = 1
2 .

2. ∀n > 0, 1 ≥ uhn ≥ 1
2 , hence ∀n < 0, 0 ≤ uhn ≤ 1

2 .
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3. uh is non-decreasing: ∀n, uhn+1 ≥ uhn.

Proof. For the first point, the symmetry of gh and tvhi yields that ũhn = 1−uh−n satisfies
Eh(ũh) = Eh(uh). By uniqueness of the minimizer, ũh = uh.
For the second point, the truncated variable ûhn = max(ghn,min(uhn,

1
2)) satisfies |ûhn −

gn| ≤ |uhn − ghn| and |ûhn+1 − ûhn| ≤ |uhn+1 − uhn| for any n, hence Eh(ûh) ≤ Eh(uh) and
uh = ûh.
For the third point, consider the staircase version of uh given by: ǔhn = max{uhk , 0 ≤
k ≤ n} if n > 0, ǔh0 = 1

2 and ǔhn = min{uhk , n ≤ k ≤ 0} if n < 0. As uhn ∈ [0, 1]
we have |ǔhn − ghn| ≤ |uhn − ghn|, and again |ǔhn+1 − ǔhn| ≤ |uhn+1 − uhn| for any n, hence
Eh(ǔh) ≤ Eh(uh) and uh = ǔh.

Proposition 2. We denote λ∗ =
√

2
4 . The solution uh of problem (7) is such that:

1. With Dirichlet boundary conditions, uh1 >
1
2 for any λ.

2. With Neumann boundary conditions, uh ≡ 1
2 for any λ ≥ λ∗ and uh1 >

1
2 for any

λ < λ∗h for some λ∗h such that |λ∗h − λ∗| ≤ ch1/3 for some constant c > 0. In
particular, for any λ < λ∗ one has uh1 >

1
2 for h small enough.

Proof. For u ∈ R2N+1 satisfying the three properties of Proposition 1 and such that
u1 = 1

2 , we define k ∈ {1, ..., N} such that u−1 = u0 = ... = uk = 1
2 and uk+1 >

1
2 .

Suppose first that k ≤ N − 2 then the energy of u can be written

Eh(u) =
h

2
√

2λ
(uk − 1)2 +

1√
2
|uk − 1

2 |+
1√
2

√
(uk+1 − uk)2 + (uk − 1

2)2

+
1√
2

√
(uk+2 − uk+1)2 + (uk+1 − uk)2 +R(u)

where R(u) does not depend on uk. As uk+1 >
1
2 , we have the following derivatives or

subgradients:

∂

∂uk

(√
(uk+1 − uk)2 + (uk − 1

2)2

)
|uk= 1

2

=

 (uk − uk+1) + (uk − 1
2)√

(uk+1 − uk)2 + (uk − 1
2)2


|uk= 1

2

= −1

∂

∂uk

(√
(uk+2 − uk+1)2 + (uk+1 − uk)2

)
|uk= 1

2

=
1
2 − uk+1√

(1
2 − uk+1)2 + (uk+2 − uk+1)2

=d < 0

∂

∂uk

(
(uk − 1)2

)
|uk=

1
2

= −1 and
∂

∂uk

(
|uk − 1

2 |
)
|uk= 1

2
= [−1, 1]

Finally ∂Eh

∂uk |uk= 1
2

= − h
2
√

2λ
+ 1√

2
[−1, 1] − 1√

2
(1 − d) ⊂ R−∗ so that 0 6∈ ∂Eh

∂uk |uk= 1
2

hence

u is not optimal. For k = N − 1 the same reasoning is correct in the Dirichlet setting
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noting that uk+2 = 1 whereas in the Neumann setting it is changed to

Eh(u) =
h

2
√

2λ
(uk − 1)2 +

1√
2
|uk − 1

2 |

+
1√
2

√
(uk+1 − uk)2 + (uk − 1

2)2 +
1√
2
|uk+1 − uk|+R(u)

for which one computes ∂Eh

∂uk |uk= 1
2

= − h
2
√

2λ
+ 1√

2
[−1, 1] − 2√

2
⊂ R−∗ and gets the same

conclusion. This concludes the proof in the Dirichlet setting as in this case k < N .
In the Neumann setting, the case k = N corresponds to our alternative uh ≡ 1

2 so
that we only have to exhibit an admissible uh such that Eh(uh) < E(1

2) to prove that
uh1 >

1
2 . We postpone this construction to Section 3.3 where, provided that λ < λ∗, we

will explicitly build a uh such that Eh(uh) ≤ 1− λ
√

2 + ch2/3 for some constant c > 0.

In comparison the energy of the constant uh ≡ 1
2 is Eh(1

2) = h
2
√

2λ
× 2N × (1

2)2 =
√

2
8λ .

The conclusion comes from studying when 1− λ
√

2 + ch2/3 <
√

2
8λ .

Finally, suppose now that λ ≥ λ∗, we want to prove that uh ≡ 1
2 . For any u ∈ R2N+1

satisfying the three properties of Proposition 1, denoting a = u−N ∈ [0, 1
2 ] we form

the following estimate. On one hand, as u is non-decreasing, the L2 term ||u − gh||2 is
bounded below by ||ua− gh||2 where uan = a for n < 0, ua0 = 1

2 and uan = 1− a for n > 0.

On the other hand, we write that
√

(un − un+1)2 + (un − un−1)2 ≥
√

2|un+1 − un−1| =√
2(un+1 − un−1). We obtain:

Eh(u) ≥ h

2
√

2λ
× 2Na2 +

1

2

(
uN+1 + uN − u−N−1 − u−N

)
=

√
2

2λ
a2 + 1− 2a

As λ ≥ λ∗ =
√

2
4 , minimizing this quantity over a ∈ [0, 1

2 ] leads to taking a = 1
2 , and we

get Eh(u) ≥
√

2
8λ = Eh(1

2), hence uh ≡ 1
2 .

3 Upper bound for the primal energy

In this section we prove the upper bound of the point 2 of theorem 1, that is: ∃h, c > 0
such that

∀h ≤ h, Eh − E ≤ ch2/3

We first focus on the Dirichlet case and later on will present the modifications needed
for Neumann boundary conditions. As no reference to the continuous problem will
appear in this section (except from its value E) we drop the exponent h and denote the
variables uh, gh simply by u, g ∈ R2N+1. Recall that the primal problem in the Dirichlet

11



setting is:

u = arg min
(un)−2N≤n≤2N
u2N+1=u2N=1

u−2N−1=u−2N=0

h

2
√

2λ
||u− g||22 + tvhi (u) := Eh(u)

with tvhi (u) =
1√
2

2N∑
n=−2N

√
(un+1 − un)2 + (un − un−1)2

and where gn = 0 for n < 0, gn = 1 for n > 0 and g0 = 1/2. The limit continuous
energy is E = ED = 1. In the following we build an admissible u of a particular form to
establish an upper bound estimate of the type

E
h ≤ Eh(u) ≤ E + chθ,

for some 0 < θ < 1.

3.1 General construction

The idea is to take a function u such that u− g has a compact support of vanishing size
but containing a number of points going to infinity. This is achieved by taking un, for
−N ≤ n ≤ N , of the form (remember that N = 1

h):

un = f

(
n

Nα

)
with Nα = dh−αe and 0 < α < 1

where f is some continuous function increasing from f(x) = 0 for x ≤ −1 to f(x) = 1
for x ≥ 1. We also suppose in all what follows that f satisfies f(−x) = 1− f(x) for any
x ∈ R to fulfill the conclusions of Proposition 1.

As u = g is constant for |n| ≥ Nα, one only has to consider what is happening in
the transition phase, that is for |n| < Nα for the L2 terms, and for |n| ≤ Nα for the tv
terms. To understand what is at stake, let us first try with the piecewise affine function

f(x) =


0 if x < −1
x+1

2 if − 1 ≤ x ≤ 1
1 if x > 1

First compute the fidelity term:

h

2
||u− g||22 = h

Nα−1∑
1

(f( n
Nα

)− 1)2

=
h

4N2
α

Nα−1∑
1

n2

=
hNα

12
− h

8
+

h

24Nα

12



and then the tv term:

tvhi (u) =
1√
2

Nα−1∑
−Nα+1

√(
n+ 1

2Nα
− n

2Nα

)2

+

(
n

2Nα
− n− 1

2Nα

)2

+
1√
2

∣∣∣∣1− 1

2

(
Nα − 1

Nα
+ 1

)∣∣∣∣+
1√
2

∣∣∣∣12
(
−Nα + 1

Nα
+ 1

)∣∣∣∣
=

1√
2

(
(2Nα − 1)×

√
2× 1

4N2
α

+
1

Nα

)

= 1 +

√
2− 1

2Nα

Note that, the limit energy appears in the above expression as 1 = E. This finally leads
to

Eh(u)− E =

√
2− 1

2Nα
+

hNα

12
√

2λ
− h

8
√

2λ
+

h

24
√

2λNα

≤
√

2− 1

2
hα +

h(h−α + 1)

12
√

2λ
− h

8
√

2λ
+

hα+1

24
√

2λ

≤
√

2− 1

2
hα +

h1−α

12
√

2λ
+

hα+1

24
√

2λ

The optimal choice of α is then to make the two dominant terms in hα and h1−α of the

same order, hence α = 1/2. We conclude that, for any c >
√

2−1
2 + 1

12
√

2λ
, one has for h

small enough
Eh(u)− E ≤ c

√
h

In the following we show that with a cubic function f , realising a smoother transition,
this procedure leads to the better result: there exist constants c > 0 and h > 0 depending
only on λ such that:

∀h ≤ h, Eh(u)− E ≤ ch2/3 (9)

3.2 Analysis for an appropriate function f

In fact for any function regular enough (C1) f , when h→ 0 we have: uh converges to g
in L2 so h||uh− gh||22 → 0, and tvhi (u)→ tv(g) = 1. So E(u)→ E. We want to estimate
the speed of this convergence.

13



The L2 term is easy to estimate:

h

2
||u− g||22 = h

Nα−1∑
n=1

(f( n
Nα

)− 1)2

= hNα
1

Nα

Nα−1∑
1

(f( n
Nα

)− 1)2

∼ h1−α
∫ 1

0
(f − 1)2 when Nα →∞

hence for any c1 >
1√
2λ

∫ 1
0 (f − 1)2, we have for h small enough:

h

2
√

2λ
||u− g||22 ≤ c1h

1−α (10)

Manipulations on the total variation term are trickier, it is given by:

tvhi (u) =
1√
2

Nα−1∑
n=−Nα+1

√(
f(n+1

Nα
)− f( n

Nα
)
)2

+
(
f( n

Nα
)− f(n−1

Nα
)
)2

+
1√
2
|1− f(Nα−1

Nα
)|+ 1√

2
|f(−Nα+1

Nα
)|

The boundary terms simplify into

1√
2
|1− f(Nα−1

Nα
)|+ 1√

2

∣∣∣f(−Nα+1
Nα

)
∣∣∣ =
√

2(1− f(1− 1
Nα

))

For the middle terms, we use the following lemma with un = f( n
Nα

):

Lemma 1. If (un) is an increasing sequence, then for any n:

1√
2

√
(un+1 − un)2 + (un − un−1)2 ≤ 1

2
(un+1 − un−1) + dn

with

dn =
1

4
(un+1 − un−1)(2un − un+1 − un−1)

(
1

un+1 − un
− 1

un − un−1

)
(11)

=
(un+1 − un−1)(2un − un+1 − un−1)2

4(un+1 − un)(un − un−1)
(12)

Proof. Denote A =
√

(un+1 − un)2 + (un − un−1)2 the quantity we want to estimate.
Using

√
x+ h ≤

√
x+ 1

2
√
x
h we get:

A =
√

2(un+1 − un)2 + (un − un−1)2 − (un+1 − un)2

=
√

2(un+1 − un)2 + (un+1 − un−1)(2un − un+1 − un−1)

≤
√

2(un+1 − un) +
1

2
√

2(un+1 − un)
(un+1 − un−1)(2un − un+1 − un−1)

14



And similarly

A =
√

2(un − un−1)2 + (un+1 − un)2 − (un − un−1)2

≤
√

2(un − un−1)− 1

2
√

2(un − un−1)
(un+1 − un−1)(2un − un+1 − un−1)

The result is obtained as the average of these two estimates.

The term in 1
2(un+1 − un−1) = 1

2(f(n+1
Nα

)− f(n−1
Nα

)) is responsible for the convergence
towards 1 as

Nα−1∑
−Nα+1

1

2

(
f(n+1

Nα
)− f(n−1

Nα
)
)

=
1

2

(
f(1) + f(1− 1

Nα
)− f(−1)− f(−1 + 1

Nα
)
)

= f(1− 1
Nα

)

For the term in dn note that the symmetry of f gives d0 = 0 and d−n = dn so that the
sum is reduced to n ∈ [1, Nα − 1] and we get the expression:

tvhi (u) ≤ 1 + (
√

2− 1)(1− f(1− 1
Nα

)) +

Nα−1∑
1

dn (13)

Next we pursue our analysis for a particular function f given by

f(t) =


0 if t ≤ −1
1
2(1 + t)3 if − 1 ≤ t ≤ 0
1− 1

2(1− t)3 if 0 ≤ t ≤ 1
1 if t ≥ 1

(14)

Then the term 1− f(1− 1
Nα

) equals 1
N3
α

while
∑Nα−1

1 dn is bounded by 1
N2
α

:

Claim. For the choice of f given by (14), one has

Nα−1∑
1

dn ≤
6

N2
α

Proof. Let us denote

∆+ := f(n+1
Nα

)− f( n
Nα

) = 1
2

(
(1− n

Nα
)3 − (1− n+1

Nα
)3
)

= 1
2

(
3(1− n

Nα
)2 1
Nα
− 3(1− n

Nα
) 1
N2
α

+ 1
N3
α

)
= 3

2Nα

(
(1− n

Nα
)2 − (1− n

Nα
) 1
Nα

+ 1
3N2

α

)
Similarly (that is, taking n← n− 1),

∆− := f( n
Nα

)− f(n−1
Nα

) = 3
2Nα

(
(1− n

Nα
)2 + (1− n

Nα
) 1
Nα

+ 1
3N2

α

)
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so that

∆+ + ∆− = f(n+1
Nα

)− f(n−1
Nα

) = 3
Nα

(
1

3N2
α

+ (1− n
Nα

)2
)

∆− −∆+ = 2f( n
Nα

)− f(n+1
Nα

)− f(n−1
Nα

) = 3
N2
α

(1− n
Nα

)

and

∆+ ×∆− =
(
f(n+1

Nα
)− f( n

Nα
)
)(
f( n

Nα
)− f(n−1

Nα
)
)

= 9
4N2

α

(
(1− n

Nα
)2 + 1

N3
α
− (1− n

Nα
) 1
N

)
×
(

(1− n
Nα

)2 + 1
N3
α

+ (1− n
Nα

) 1
N

)
= 9

4N2
α

((
(1− n

Nα
)2 + 1

3N2
α

)2 − ((1− n
Nα

) 1
Nα

)2)
We can now estimate dn thanks to expression (12):

dn = 1
4 ×

(
3
Nα

(
1

3N2
α

+(1− n
Nα

)2

))
×
(

3
N2
α

(1− n
Nα

)

)2

9
4N2

α

((
(1− n

Nα
)2+

1
3N2

α

)2
−
(

(1− n
Nα

)
1
Nα

)2
)

= 3
N3
α

(1− n
Nα

)2 ×
1

3N2
α

+(1− n
Nα

)2(
(1− n

Nα
)2+

1
3N2

α

)2
−(1− n

Nα
)2 1
N2
α

Then as n ≤ Nα − 1 we can use(
(1− n

Nα
)2 + 1

3N2
α

)2 − (1− n
Nα

)2 1
N2
α
≥ (1− n

Nα
)4 − 1

3N2
α

(1− n
Nα

)2 > 0

and make the variable change n← N − n to get:

Nα−1∑
n=1

dn ≤
3

N3
α

Nα−1∑
1

n2

1
3N2

α
+ n2

n4 − 1
3N2

α
n2
≤ 3

N3
α

Nα−1∑
1

2 ≤ 6

N2
α

because 1
3N2

α
+ n2 ≤ 2(n2 − 1

3N2
α

).

This concludes our proof of the upper bound inequality for the main theorem 1.
Indeed, when combining the tv estimate (13) with the L2 estimate (10), we finally are
able to state the following: for any c1 >

1√
2λ

∫ 1
0 (f − 1)2 = 1

28
√

2λ
and c2 > 6, there exists

h > 0 such that

∀h ≤ h, Eh(u) ≤ E + c1h
1−α + c2h

2α (15)

Taking α = 1/3 then proves our result (9). More precisely, given c1, c2 and h > 0, the best

α in (15) must satisfy −c1h
1−α log h+ 2c2h

2α log h = 0 which leads to α = 1
3 −

log(2c2/c1)
3 log h

and gives the upper bound Eh(u) ≤ E + ch2/3 with c = (21/3 + 2−2/3) c
2/3
1 c

1/3
2 (note

that c varies in λ−2/3).
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3.3 Upper bound for Neumann boundary conditions

In this section we adjust the admissible variable u from the previous section to explain
why the upper bound result (9) remains valid for Neumann boundary conditions. In the
following, c denotes a constant depending only on λ that can change from line to line.

Remember from Section 2.2 that with the Neumann boundary conditions, the limit

continuous value of the energy is changed to E = EN = 1 −
√

2λ when λ ≤ λ∗ =
√

2
4 .

Because of the form of this continuous solution, it is natural to consider, for u the cubic
transition in the Dirichlet setting of the previous section, the variable v given by

∀ −N ≤ n ≤ N, vn =
1

2
+ µ(un −

1

2
)

Here µ ∈ (0, 1) is a shrinking parameter that we adjust so that vN = 1−aopt = 1−
√

2λ:
as uN = 1 this corresponds to taking µ = 1− 2

√
2λ.

We write vn = fµ( n
Nα

) for the function fµ = 1
2 + µ(f − 1

2) which is such that fµ(x) =
1+µ

2 = 1−
√

2λ for x ≥ 1. This leads to splitting the fidelity term into:

h

2
||v − g||22 = h

Nα∑
n=1

(vn − 1)2 + h

N∑
n=Nα+1

(vn − 1)2

Then on one hand when Nα →∞,

h

Nα∑
n=1

(vn − 1)2 ∼ h1−α
∫ 1

0
(fµ − 1)2 so h

Nα∑
n=1

(vn − 1)2 ≤ ch1−α

and on the other hand

h
N∑

n=Nα+1

(vn − 1)2 = h(N −Nα)× 2λ2 ≤ 2λ2

For the tv term, we have

tvhi (v) = µtvhi (u) = (1− 2
√

2λ)tvhi (u)

≤ (1− 2
√

2λ)(1 + ch2α)

≤ 1− 2
√

2λ+ ch2α

so finally

Eh(v) =
h

2
√

2λ
||v − g||22 + tvhi (v)

≤
√

2λ+ ch1−α + 1− 2
√

2λ+ ch2α

≤ E + ch2/3

when taking α = 1/3.
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4 Lower bound estimate

In this section we now prove the lower bound of the point 2 of theorem 1, that is:
∃h, c > 0 such that

∀h ≤ h, ch2/3 ≤ Eh − E
Symmetrically to what we did in the previous section, we will obtain this bound by
proposing an admissible solution, but for the dual problem.

4.1 Dual problem

Writing that√
(un+1 − un)2 + (un − un−1)2 = max

p2
n+q2

n≤1
qn(un+1 − un) + pn(un − un−1)

we obtain the following dual problem of (7):

max
p2
n+q2

n≤1
−N≤n≤N

min
u∈R2N+1

N∑
n=−N

h

2λ
(un − gn)2 + qn(un+1 − un) + pn(un − un−1)

= max
p2
n+q2

n≤1
−N≤n≤N

min
u∈R2N+1

1√
2

{ N∑
n=−N

h

2λ
(un − gn)2 +

N−1∑
n=−N+1

un
(
qn−1 − qn + pn − pn+1

)
+ uN

(
qN−1 − qN + pN

)
+ u−N

(
− q−N + p−N − p−N+1

)
+ uN+1qN − u−N−1p−N

}
From this point on, we focus exclusively on Dirichlet boundary conditions, that is

uN = uN+1 = 1 ; u−N = u−N−1 = 0. See Section 4.5 for Neumann boundary conditions.
For |n| < N , we find that un = gn − λ

h(qn−1 − qn + pn − pn+1), and the value of the
dual problem is consequently (after simplification using the value of gn):

max
p2
n+q2

n≤1
−N≤n≤N

1√
2

{1

2
(q−1 + q0 + p0 + p1)− λ

2h

N−1∑
n=−N+1

(qn−1 − qn + pn − pn+1)2
}

Now we make two more simplifications before turning to an evaluation of the convergence
rate of this quantity. First, one easily checks that the objective is concave and invariant
by the change (qn, pn)→ (p−n, q−n): as a consequence, one can find a solution satisfying
qn = p−n for all n.

Second, duality indicates that at the optimum one should have for all n:√
(un+1 − un)2 + (un − un−1)2 = qn(un+1 − un) + pn(un − un−1). For n = 0 this gives,

thanks to Proposition 2 that
√

2|u1 − u0| = (q0 + p0)(u1 − u0) so that q0 = p0 =
√

2
2 .

Simplifying the term (qn−1−qn+pn−pn+1)2 which is invariant by n→ −n and vanishes
at n = 0, we finally get

E
h

= max
1

2
+

1√
2
p1 −

λ√
2h

N−1∑
n=1

(p−n+1 − p−n + pn − pn+1)2 (16)
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with the constraint that p2
n + p2

−n ≤ 1 for all 1 ≤ n ≤ N and that p0 =
√

2
2 .

4.2 Change of variables

We are interested in the evaluation of the convergence rate of the value of the problem
(16) towards its continuous limit E = ED = 1. First let us notice that taking pn ≡

√
2/2

gives E
h ≥ E. Consequently, we expect the optimal value of p to be close to

√
2/2 for

N large. Together with the symmetry regarding n→ −n of the objective, this leads us
to proposing the following change of variable: for 0 ≤ n ≤ N

sn =
1√
2

(pn + p−n)− 1 ; rn =
1√
2

(pn − p−n)

for which we calculate

p−n+1 − p−n + pn − pn+1 =
1√
2

(sn−1 − sn+1 + 2rn − rn−1 − rn+1)

p2
n + p2

−n ≤ 1 ⇐⇒ s2
n + 2sn + r2

n ≤ 0

and it gives rise to

E
h − E = max

(sn,rn)0≤n≤N
s0=r0=0

s2n+2sn+r2
n≤0

1√
2

{
s1 + r1 −

λ

2h

N−1∑
n=1

(sn−1 − sn+1 + 2rn − rn−1 − rn+1)2
}

We would like to show that E
h − E ≥ cN−α for some exponent 0 < α < 1. If we

introduce τ = 1/Nβ for some β ∈ (0, α) and σn = Nαsn, ρn = Nα−βrn, then we can
force the appearance of first and second discrete derivatives for σ and ρ as

(E
h − E)Nα = max

(σn,ρn)
0≤n≤N

1√
2

{
σ1 +

ρ1

τ

− λ

2
N1−α−βτ

N−1∑
n=1

(
σn−1 − σn+1

τ
+

2ρn − ρn−1 − ρn+1

τ2
)2
}

along with the constraints σ0 = ρ0 = 0 and N−ασ2
n + 2σn +N2β−αρ2

n ≤ 0.
If 1−α−β = 0, we find that as N →∞, the limiting energy in the variational problem

should be of the form,

max
1√
2

{
ρ′(0)− λ

2

∫ ∞
0
|2σ′ + ρ′′|2

}
for functions σ, ρ : [0,∞)→ R with σ(0) = ρ(0) = 0. The constraint, on the other hand,
becomes 

ρ2 = 0 if 2β − α > 0

2σ + ρ2 ≤ 0 if 2β − α = 0⇔ β = 1/3, α = 2/3

2σ ≤ 0 if 2β − α < 0.
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In the first case, which is when α < 2/3, we may expect that the discrete energy goes to

zero, and we expect that E
h−E = o(N−α) as N →∞. In the third case, the continuous

problem has value +∞ and we expect that Nα(E
h − E) → ∞ for α > 2/3. We would

like to show that in the second case, that is α = 2/3, the limiting problem has a positive

value c so that E
h − E ≥ cN−2/3 for sufficiently large N . Consequently we deal with

the problem

max
(σ,ρ)∈S

1√
2

{
ρ′(0)− λ

2

∫ ∞
0

(2σ′ + ρ′′)2
}

=: D(σ, ρ) (17)

where S is the set of couples of functions σ, ρ : [0,∞) → R such that: σ(0) = ρ(0) =
0, 2σ+ρ2 ≤ 0, ρ admits a right derivative at 0 and the distributional derivative 2σ′+ρ′′

is in L2(0,∞).
Our strategy is now the following: in Section 4.3 we prove that Problem (17) has a

positive value and investigate the form of the solution (σ, ρ). Then in Section 4.4 we
explain how to discretize it in order to get the positivity, for h small enough, of our
discrete problem:

(E
h − E)h−2/3 = max

(σn,ρn)0≤n≤N
σ0=ρ0=0

N−2/3σ2
n+2σn+ρ2

n≤0

Dh(σ,ρ) (18)

where Dh(σ,ρ) :=
1√
2

{
σ1 +

ρ1

τ
− λ

2
τ
N−1∑
n=1

(
σn−1 − σn+1

τ
+

2ρn − ρn−1 − ρn+1

τ2

)2 }
4.3 Study of the limit problem

First, the change of variable σ̂(t) = λ−2/3σ(tλ−1/3), ρ̂(t) = λ−1/3ρ(tλ−1/3) shows that
(adding the parameter λ to the arguments of D)

maxD(σ, ρ, λ) = λ−2/3 maxD(σ, ρ, 1)

Consequently we suppose λ = 1 in all of the following.

4.3.1 A dual of the dual

To understand the solution of problem (17), we derive a dual of it writing

−1

2

∫ ∞
0

(2σ′ + ρ′′)2 = inf
ψ

∫ ∞
0

(2σ′ + ρ′′)ψ +
1

2

∫ ∞
0

ψ2

where the infimum lies on ψ ∈ C∞c ([0,∞)), the set of the restrictions to [0,∞) of smooth
functions with compact support in R. (Note that if σ, ρ are regular enough one has at
the optimum ψ = −(2σ′ + ρ′′) ). Integrating by parts and using that σ(0) = ρ(0) = 0
for any (σ, ρ) ∈ S, we obtain the dual problem

1√
2

inf
ψ

1

2

∫ ∞
0

ψ2 + sup
(σ,ρ)∈S

(1− ψ(0))ρ′(0) +

∫ ∞
0

(ρψ′′ − 2σψ′)
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First, taking for ρ a bounded smooth function with |ρ′(0)| as large as we want, we see
that one must have ψ(0) = 1. Second, we relax the constraint (σ, ρ) ∈ S in the remaining
integral into just 2σ+ ρ2 ≤ 0 (we will show below that strong duality with problem (17)
actually occurs) to get:

1√
2

inf
ψ(0)=1

1

2

∫ ∞
0
|ψ|2 +

∫ ∞
0

H(ψ′, ψ′′)

where the function H is defined for x, y ∈ R by

H(x, y) = sup
2σ+ρ2≤0

−2σx+ ρy =


+∞ if x > 0 or x = 0, y 6= 0, (via ρ = 0, σ = −N)

0 if (x, y) = (0, 0),
y2

4|x| if x < 0 (via ρ = −y/2x, σ = −ρ2/2).

Observe that necessarily ψ′ ≤ 0. Denoting φ =
√
−ψ′ gives φ′ = −ψ′′/(2

√
−ψ′) so that

H(ψ′, ψ′′) = |φ′|2. Then, one has ψ(x) = 1−
∫ x

0 φ(t)2dt. In particular as ψ2 is integrable,
one must have

∫∞
0 φ(t)2dt = 1 and ψ(x) =

∫∞
x φ(t)2dt. Hence the dual problem can be

rewritten (extending the search of φ to H1(0,∞) by density)

1√
2

inf
(φ,ψ)∈S′

{
1

2

∫ ∞
0
|ψ|2 +

∫ ∞
0
|φ′|2

}
(19)

where S′ = {(φ, ψ) such that φ ∈ H1(0,∞), ‖φ‖22 = 1 and ψ(x) =
∫∞
x φ(t)2dt}.

It turns out this problem has a positive value:

Proposition 3. Problem (19) has a minimizer (ψ, φ) ∈W 2,1(0,∞)×H1(0,∞).

Proof. Consider a minimizing sequence (φn, ψn): as φn is bounded in H1(0,+∞), up to
a subsequence it converges to some φ, moreover the convergence is strong in L2(0, T ) for
any T > 0, and

∫∞
0 φ2 ≤ 1. We also assume that ψn converges, weakly in L2(0,+∞), to

some ψ. In addition, ψn(x) = 1−
∫ x

0 φ
2
n → 1−

∫ x
0 φ

2 =: ψ̃(x) for any x ≥ 0, and one even

has |ψn(x)− ψ̃(x)| = |
∫ x

0 (φn − φ)(φn + φ)| ≤ 2‖φn − φ‖L2(0,x) hence the convergence is

locally uniform. Consequently, it must be that ψ̃ = ψ. As
∫∞

0 |ψ|
2 < +∞, we deduce

that ψ (which is nonincreasing) goes to 0 at ∞, hence
∫∞

0 φ2 = 1. It follows that (ψ, φ)
is a minimizer of (19).

To recover the positive value of problem (17), we now need to show that strong duality
holds. To do that we first prove some properties of the minimizer (ψ, φ).

Proposition 4. The minimizer (ψ, φ) of problem (19) satisfies:

1. ψ, φ ∈ C∞([0,∞)) ∩ L2(0,∞).

2. φ′(0) = 0 and φ′′ = kφ where k(t) =
∫ t

0 ψ − A with A = ‖φ′‖22 + ‖ψ‖22 satisfies
k′ = ψ.

3. φ ≥ 0, φ(0) > 0, φ is nonincreasing and tends to zero at infinity.
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Proof. One has ψ′ = −φ2 ∈ L1(0,∞) and ψ′′ = −2φφ′ ∈ L1(0,∞) (hence ψ ∈
W 2,1(0,+∞) and is at least C1). Moreover, if (ψ, φ) is a minimizer, so is (ψ, |φ|). The
solution of (19) being unique, one has φ ≥ 0.

From this solution (ψ, φ), let us form for ε ∈ R and for a test function η

φε =
φ+ εη

||φ+ εη||2
; ψε(x) =

∫ ∞
x

φ2
ε

Then (φε, ψε) are admissible in the dual of the dual problem and one computes:

φ2
ε = φ2 + 2εηφ− 2εφ2

∫ ∞
0

φη +O(ε2)

ψ2
ε(x) = ψ2(x) + 4εψ(x)

∫ ∞
x

φη − 4εψ2(x)

∫ ∞
0

φη +O(ε2)

φ′ε = φ′ + εη′ − εφ′
∫ ∞

0
φη +O(ε2)

so that, after noting that
∫∞

0 ψ(x)
∫∞
x φη dx =

∫∞
0 φην with ν(t) =

∫ t
0 ψ one has∫ ∞

0
|φ′ε|2 =

∫ ∞
0
|φ′|2 − 2ε

∫ ∞
0
|φ′|2

∫ ∞
0

φη + 2ε

∫ ∞
0

φ′η′ +O(ε2)∫ ∞
0
|ψε|2 =

∫ ∞
0
|ψ|2 − 4ε

∫ ∞
0
|ψ|2

∫ ∞
0

φη + 4ε

∫ ∞
0

φην +O(ε2)

Now the optimality of (ψ, φ) in problem (19) leads to∫ ∞
0

φην −
∫ ∞

0
|ψ|2

∫ ∞
0

φη +

∫ ∞
0

φ′η′ −
∫ ∞

0
|φ′|2

∫ ∞
0

φη = 0 (20)

First, as this relation holds for any η ∈ C∞c (0,∞), we have φ′′ = kφ (with k = ν − A
where A = ||ψ||2 + ||φ′||2) in the weak sense. However this relation induces the regularity
of φ and ψ which are finally C∞. What is more is that, re-evaluating the relation (20)
with now η ∈ C∞c ([0,∞)), we also deduce that φ′(0) = 0.

To finish with, one must have φ(0) > 0 as otherwise φ would be zero everywhere as
solution of φ′′ = kφ, φ′(0) = φ(0) = 0. And for its monoticity, note that φ′′ = kφ
has the sign of k which is nonincreasing since k′ = ψ ≥ 0. Hence φ′′ is first nonpositive
(starting at φ′′(0) = −Aφ(0) ≤ 0) then possibly nonnegative. As a consequence, φ′ is first
nonincreasing, and hence nonpositive since φ′(0) = 0, then can become nondecreasing.
But even in that case, φ′ has to remain nonpositive otherwise one has φ′(t) ≥ c > 0 for
t large enough so φ(t) ≥ ct + c′ which contradicts the fact that φ2 is integrable. This
concludes the proof.

In the following we show that strong duality holds between problems (17) and (19).
To do so we divide our study in two cases: either φ > 0 on R+ (the “positive” case),
or φ > 0 on [0, a) and φ = 0 on [a,+∞[ for some a > 0 (the “compact support” case).
Note that numerical experiments seem to show we actually are in the “compact support”
case, see Figure 4.
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4.3.2 Strong duality holds

In the “positive” case, recalling how the dual problem was obtained, one defines σ =
−ρ2/2 and ρ = −φ′/φ and then checks that 2σ+ρ2 ≤ 0, σ(0) = ρ(0) = 0, ρ′(0) = A and
2σ′ + ρ′′ = −ψ so that

1√
2

{
ρ′(0)− 1

2

∫ ∞
0
|2σ′ + ρ′′|2

}
=

1√
2

{∫ ∞
0

φ′2 +
1

2

∫ ∞
0

ψ2
}

and strong duality holds.
In the “compact support” case, one still defines ρ = −φ′/φ and σ = −ρ2/2 on [0, a).

Then one has to decide what to do on [a,+∞). First, for t < a:

ρ(t) = −φ
′(t)

φ(t)
=

1

φ(t)

∫ a

t
φ′′(s)ds =

∫ a

t

φ(s)

φ(t)
k(s)ds

As φ is nonincreasing, φ(s)
φ(t) ≤ 1 in the above integral and we deduce

|ρ(t)| ≤
∫ a

t
k(s)ds→ 0 when t→ a

and also σ(t) = −ρ(t)2/2 → 0 when t → a. The first guess would then consist in
extending σ and ρ by continuity one could set σ = ρ = 0 on [a,+∞).

This would actually lead to a discontinuous ρ′. Indeed ρ is differentiable in a+ with
ρ′(a+) = 0; furthermore ρ′(t) = ρ2(t) + k(t) for t ∈ (0, a) with ρ(t) → 0 and k(t) →
k(a) when t → a, hence ρ is differentiable in a− with ρ′(a−) = k(a). Anyway ρ′ is
discontinuous at a (and C∞ elsewhere), so ρ′′ has a dirac mass at a. Whereas σ = −ρ2/2
on (0, a) as well as on [a,+∞) is continuous and has derivative σ′ = −ρ′ρ also continuous
at a as ρ(a) = 0. Finally 2σ′ + ρ′′ 6∈ L2.

This is why one should not take σ = 0 but rather σ = −k(a)/2 on (a,+∞) and still
ρ = 0. This is correct as k(a) > 0: indeed this comes again from the fact that φ′′ = kφ:
if k(a) < 0 then, as φ > 0 on [0, a) and k is nondecreasing, one would obtain that φ′

is (strictly) decreasing on [0, a). Starting with φ′(0) = 0 we obtain that φ′(a) < 0, but
φ = 0 on [a,+∞) so one should have φ′(a) = 0. With this setting, 2σ + ρ′ is continuous
at a and two dirac masses compensate each other so that 2σ′ + ρ′′ ∈ L2. And, just as
before, 2σ′ + ρ′′ = −ψ so strong duality holds.

4.4 Back to the discrete problem

Recall we denoted

D(σ, ρ) =
1√
2

{
ρ′(0)− 1

2

∫ ∞
0
|2σ′ + ρ′′|2

}
Dh(σ,ρ) =

1√
2

{
σ1 +

1

τ
ρ1 −

τ

2

N−1∑
n=1

(
σn−1 − σn+1

τ
+

2ρn − ρn−1 − ρn+1

τ2

)2 }
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Figure 4: Primal solution u (left), dual solutions p and q (center), corresponding σ (blue)
and ρ (red) (right) in the Dirichlet setting with N = 100.

the objectives of the continuous and discrete problems respectively (recall that τ =
N−1/3). The constraints on σ, ρ : R+ → R and σ,ρ ∈ RN+1 are

σ(0) = ρ(0) = 0 and 2σ + ρ2 ≤ 0 on R+

σ0 = ρ0 = 0 and ∀n ≥ 1, N−2/3σ2
n + 2σn + ρ2

n ≤ 0

Given an admissible (σ, ρ) of the continuous problem with D(σ, ρ) > 0 we chose the
following discretization: set σ0 = 0 and ∀n ≥ 1, σn = σ(τn)− τ and ρn = ρ(τn) for all
n. Then - provided σ is bounded - (σ,ρ) is indeed admissible in the discrete problem as
σ0 = ρ0 = 0 and

N−2/3σ2
n + 2σn + ρ2

n = N−2/3(σ(τn)− τ)2 − 2τ + 2σ(τn) + ρ(τn)2

≤ N−2/3(σ(τn)− τ)2 − 2N−1/3

with this quantity being nonpositive as soon as |σ(τn)−N−1/3| ≤
√

2N1/6 which is true
for N sufficiently large when σ is bounded.

Therefore we just need to check that with this discretization Dh(σ,ρ) converges to
D(σ, ρ) when N → ∞ as expected in the first place. First note that σ1 = σ(τ) − τ →
σ(0) = 0 (as long as σ is continuous) and that 1

τ ρ1 = ρ(τ)−ρ(0)
τ → ρ′(0). As a result we

focus next on the convergence of the Riemann sum towards the desired integral.
Second, we can in fact take σ to be σn = σ(τn). Indeed this only affects the first

term of the sum adding:

−τ
2

∣∣∣∣σ(2τ)− τ
τ

+
ρ(2τ)− 2ρ(τ) + ρ(0)

τ2

∣∣∣∣2 +
τ

2

∣∣∣∣σ(2τ)− σ(0)

τ
+
ρ(2τ)− 2ρ(τ) + ρ(0)

τ2

∣∣∣∣2
with ρ(2τ)−2ρ(τ)+ρ(0)

τ2 → ρ′′(0), σ(2τ)−σ(0)
τ → 2σ′(0) and σ(2τ)−τ

τ → 2σ′(0)− 1, so that this
quantity tends to zero when τ → 0.

To ensure the convergence of the sum, we will need additional regularity on σ and ρ.
In the compact support case, we find a new couple (σ,ρ), more regular and still satisfying
D(σ, ρ) > 0 whereas in the positive case we stick with the (σ, ρ) defined above but show
they decrease exponentially fast.
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4.4.1 Compact support case

Recall that in this case we have σ, ρ : R+ → R satisfying D(σ, ρ) > 0 with ρ = σ′ = 0
on (a,+∞) and σ, ρ of class C∞ on [0,∞)\{a}. We extend σ and ρ to R− by 0 and
regularize them into C∞ functions on [0,∞) while keeping their admissibility in problem
(17) as well as the compactness of their support and the value of ρ′(0).

To this end, we first regularize by convolution with a function η ∈ C∞c (R) with η ≥ 0,∫∞
0 η = 1, and η(x) = 0 for any x 6∈ (0, 1): we obtain functions ρε =

∫
R ρ(. + εt)η(t)dt

and σε =
∫
R σ(.+ εt)η(t)dt which are C∞ on [0,∞) and satisfy ρε = σ′ε = 0 on (a,∞) as

well as 2σε+ρ2
ε ≤ 0 since this constraint is convex, that is C = {(s, r) ∈ R2 : 2s+r2 ≤ 0}

is a convex set.
However, we lost the values of ρ(0), σ(0) and more importantly of ρ′(0) which appears

in problem (17). To this end, take ν ∈ C∞ a plateau function such that ν = 1 on (−∞, a3 )
and ν = 0 on (2a

3 ,+∞), and set σ̂ε = νσ + (1 − ν)σε, ρ̂ε = νρ + (1 − ν)ρε. As σ and ρ
are C∞ on [0,+∞) except in a which is avoided, σ̂ε and ρ̂ε are C∞ on [0,+∞), and as
ρ̂ε = ρ, σ̂ε = σ near 0 we keep σ̂ε(0) = ρ̂ε(0) = 0 and ρ̂ε

′(0) = ρ′(0). Furthermore, the
constraint 2σ̂ε + ρ̂ε

2 ≤ 0 is still fulfilled by convexity. Finally one checks that:

2σ̂ε
′+ ρ̂ε

′′ = 2σ′ε + ρ′′ε + {2(σ′−σ′ε) + (ρ′′− ρ′′ε)}ν+ {(σ−σε) + 2(ρ′− ρ′ε)}ν ′+ {ρ− ρε}ν ′′

so that when ε goes to 0:

• 2σ′ε + ρ′′ε converges to 2σ′ + ρ′′ in L2(0,∞).

• σ′, ρ′′ are continuous on [0, 2a
3 ] hence 2(σ′−σ′ε)+(ρ′′−ρ′′ε) converges to 0 uniformly

on [0, 2a
3 ]. As ν = 0 on (2a

3 ,+∞) this implies that {2(σ′−σ′ε)+(ρ′′−ρ′′ε)}ν converges
to 0 in L2(0,∞).

• ν ′ = ν ′′ = 0 outside of [a3 ,
2a
3 ] where σ, σ′ and ρ′ are continuous hence {(σ − σε) +

2(ρ′ − ρ′ε)}ν ′ + {ρ− ρε}ν ′′ converges to 0 uniformly hence in L2(0,∞).

To conclude, D(σ̂ε, ρ̂ε) → D(σ, ρ). This shows that one can find (σ, ρ) admissible in
the continuous problem such that D(σ, ρ) > 0 and σ, ρ are C∞ on [0,+∞), with ρ and
σ′ having compact supports. In particular all the functions σ, σ′, σ′′, ρ, ρ′, ρ′′ and ρ′′′ can
be uniformly bounded by some constant M > 0.

Then to estimate convergence of Dh(σ,ρ) towards D(σ, ρ) we can truncate the Rie-
mann sum at n = baτ c where the supports of σ′ and ρ are included in [0, a]. Doing so it
is easy to show that

τ
N−1∑
n=1

∣∣∣∣σn+1 − σn−1

τ
+

ρn+1 − 2ρn + ρn−1

τ2

∣∣∣∣2 = τ

b a
τ
c∑

n=1

|2σ′(τn) + ρ′′(τn)|2 +O(τ)

And we conclude saying that as (2σ′ + ρ′′)2 is Riemann integrable one has

τ

b a
τ
c∑

n=1

|2σ′(τn) + ρ′′(τn)|2 →
∫ a

0
(2σ′ + ρ′′)2 =

∫ ∞
0

(2σ′ + ρ′′)2

hence the desired convergence.
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4.4.2 Positive case

Recall that in this case we have σ, ρ : R+ → R satisfying D(σ, ρ) > 0 with σ = −ρ2/2
and ρ = −φ′/φ for some φ > 0 C∞ on R+. We also had that φ′ ≤ 0 and φ′′ = kφ with
k(t) =

∫ t
0 sφ

2(s)ds+ tψ(t)−A nondecreasing. Therefore ρ satisfies on R+

ρ′ = −φ
′′

φ
+
φ′2

φ2
= ρ2 − k

This relation allows us to show that the derivatives of ρ tends to 0 exponentially fast,
which will compensate the non compactness of their support. It is important to note
that the key argument in the following proofs is that this relation holds on the whole R+:
in the case of compact support it only holds on [0, a) and one cannot obtain the same
conclusions (especially, in the compact support case, we cannot have ρ′(t) ≥ 0 for all
t ≥ 0 as shown below). Our analysis begins with the two following lemmas that derive
from easy manipulations and antidifferentiation and for which we only give sketches of
the proofs.

Lemma 2. Let ρ, k : R+ → R be C1 functions such that for all t ≥ 0, ρ′(t) = ρ2(t) −
k(t), ρ(t) ≥ 0 and k′(t) ≥ 0. Then for all t ≥ 0, ρ′(t) ≥ 0.

Proof. Suppose ρ′(t) = −r < 0 for some t ≥ 0, then one can prove that ρ is nonincreasing
on (t,∞). But then so is ρ′ = ρ2−k as ρ, k′ ≥ 0. Consequently, ρ′(s) ≤ −r for any s ≥ t
which cannot stand with the hypothesis that ρ ≥ 0.

Lemma 3. Let t1 ∈ R and let ρ : [t1,+∞[→ R+ be a C1 function. There is no L ∈ R
such that ∀t ≥ t1

ρ2(t)− L 6= 0 and
ρ′(t)

ρ2(t)− L
≥ 1

Proof. The case L = 0 is clear.Otherwise, one integrates ρ′

ρ2−L as log
(
ρ−
√
L

ρ+
√
L

)
if L > 0

or as arctan
(

ρ√
−L

)
if L < 0. In either cases, taking the limit at infinity leads to a

contradiction.

Thanks to the first lemma, ρ is nonnegative and nondecreasing (and not zero every-
where), so ρ(t)→ R ∈ (0,+∞] when t→∞. In particular there exists c > 0 and t0 > 0

such that ∀t ≥ t0, −φ′(t)
φ(t) = ρ(t) ≥ c > 0 which leads to φ(t) ≤ φ(t0) exp(−c(t − t0)).

As a consequence, k(t) =
∫ t

0 sφ
2(s)ds + t

∫∞
t φ2(s)ds − A is bounded and increasing so

converges to some L ∈ R and the convergence is exponential since :

L− k(t) =

∫ ∞
t

(s− t)φ2(s)ds ≤M exp(−2ct) for some M > 0

Next we must have R < +∞. Indeed, otherwise we would have a t1 > 0 such that

∀t ≥ t1, ρ
′(t) = ρ2(t) − k(t) ≥ ρ2(t) − L > 0 hence ρ′(t)

ρ(t)2−L ≥ 1 which is not possible

according to the second lemma.
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Hence R2 ≤ L, while since ρ′ = ρ2 − k remains nonnegative and converges to R2 − L,
R2 = L and finally,

∀t ≥ 0, ρ′(t) = ρ2(t)− L+ L− k(t) ≤ L− k(t) ≤M exp(−2ct)

As a consequence, σ′, ρ′′, σ′′ and ρ′′′ decrease exponentially to zero. Indeed:

• σ′ = −ρ′ρ with ρ bounded.

• ρ′′ = 2σ′σ − ψ with σ = −ρ2/2 bounded and ψ decreasing exponentially to zero
(as ψ(t) =

∫∞
t φ2 with φ decreasing exponentially).

• σ′′ = −ρ′2 − ρ′′ρ.

• ρ′′′ = 2ρ′′ρ+ 2ρ′2 + φ2.

Then we get the following estimate for our discretization: write for 1 ≤ n ≤ N − 1

σn+1 − σn−1

τ
= 2σ′(τn+ ηn) and

ρn+1 − 2ρn + ρn−1

τ2
= ρ′′(τn+ η̃n)

for some ηn, η̃n ∈ (−τ, τ), so that we have:∣∣∣∣∣
∣∣∣∣σn+1 − σn−1

τ
+

ρn+1 − 2ρn + ρn−1

τ2

∣∣∣∣2 − τ N−1∑
n=1

∣∣2σ′(τn)− ρ′′(τn)
∣∣2∣∣∣∣∣ = ∆−n ×∆+

n

with

∆−n :=
∣∣2σ′(τn+ ηn)− 2σ′(τn) + ρ′′(τn+ η̃n)− ρ′′(τn)

∣∣
≤ 2τ × (2||σ′′||∞,(τn−τ,τn+τ) + ||ρ′′′||∞,(τn−τ,τn+τ))

≤ τM exp(−c(τn− τ))

∆+
n :=

∣∣2σ′(τn+ ηn) + 2σ′(τn) + ρ′′(τn+ η̃n) + ρ′′(τn)
∣∣

≤ 4||σ′||∞,(τn−τ,τn+τ) + 2||ρ′′′||∞,(τn−τ,τn+τ)

≤ τM exp(−c(τn− τ))

for some constants M, c > 0 and finally one wan write (for other constants M, c > 0):∣∣∣∣∣τ
N−1∑
n=1

∣∣∣∣σn+1 − σn−1

τ
+

ρn+1 − 2ρn + ρn−1

τ2

∣∣∣∣2 − τ N−1∑
n=1

∣∣2σ′(τn)− ρ′′(τn)
∣∣2∣∣∣∣∣

≤ τ2
N−1∑
n=1

M exp(−c(τn− τ))

≤Mτ2
∞∑
n=0

exp(−cτ)n = M
τ2

1− exp(−cτ)
∼M τ2

cτ
→ 0 as N →∞
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To conclude (i.e. to obtain Dh(σ,ρ)→ D(σ, ρ)), we state that

τ

N−1∑
n=1

(2σ′(τn) + ρ′′(τn))2 →
∫ ∞

0
(2σ′ + ρ′′)2 as N →∞

This comes from taking f = (2σ′ + ρ′′)2 = ψ2 – which is indeed nonincreasing as
ψ′ = −φ2 ≤ 0 and ψ ≥ 0 – in the following easy result:

Proposition 5. Let f : R+ → R be a continuous and nonincreasing function such that∫∞
0 f converges. Let a > b > 0 and c1, c2, c3 ∈ R constants. Then

1

N b

bc2Na+c3c∑
l=bc1c

f

(
l

N b

)
→
∫ ∞

0
f when N →∞

4.5 Modifications for Neumann boundary conditions

Dealing with Neumann boundary conditions takes us back to the 1D problem (7), where
we know take uN+1 = uN and u−N−1 = u−N . We also suppose λ < λ∗ so that u 6≡ 1

2 .

Thanks to Proposition 2, we can suppose p0 = q0 =
√

2/2 in the dual problem (16), and
one checks that it is changed into

E
h

= max
p2
n+p2

−n≤1
−N≤n≤N
p0=
√

2/2

1

2
+

1√
2
p1 −

λ

h
√

2

N−1∑
n=1

(p−n+1 − p−n + pn − pn+1)2 − λ

h
√

2
(p−N+1 + pN )2

Remember from Section 2.2 that the limit value when h = 1
N → 0 is E = EN =

1−
√

2λ. This value is (almost) achieved when taking pn =
√

2/2− |n|/
√

2N as it gives

E
h ≥ 1−

√
2λ+ 3λ−

√
2

2
√

2
h (but 3λ−

√
2 < 0). Let us denote

F (p, λ) =
1

2
+

1√
2
p1 −

λ√
2h

N−1∑
n=1

(p−n+1 − p−n + pn − pn+1)2

F̃ (p̃, λ) =
1

2
+

1√
2
p̃1 −

λ√
2h

N−1∑
n=1

(p̃−n+1 − p̃−n + p̃n − p̃n+1)2 − λ√
2h

(p̃−N+1 + p̃N )2

Note that the constraint on p in Dirichlet and Neumann problems is the same: p0 =√
2/2 and p2

n + p2
−n ≤ 1. Now suppose p is the Dirichlet variable constructed in the

previous sections, and form p̃n = pn − |n|√
2N

. We want to compare F̃ (p̃, λ) − EN to

F (p, λ) − ED. As EN = 1 − λ
√

2 = ED − λ
√

2, we split λ
√

2 into N × λ√
2h
× 2

N2 and

allocate each 2
N2 to a term involving p2 in the expression of Ẽ. We obtain:

(p̃−n+1− p̃−n+ p̃n− p̃n+1)2− 2

N2
= (p−n+1−p−n+pn−pn+1 +

√
2

N
)2− 2

N2
= x2

n+
2
√

2

N
xn
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where we denoted xn = p−n+1 − p−n + pn − pn+1. When summing, we will recover the
term in x2

n appearing in E(p, λ), along with

N−1∑
n=1

xn = p1 − pN + p0 − p−N+1 = (p1 −
√

2

2
)− (pN + pN−1 −

√
2)

Besides, one has

(p̃−N+1 + p̃N )2 − 2

N2
= (p−N+1 + pN −

√
2)2 +

√
2

N
(p−N+1 + pN −

√
2)− 3

N2

Then we obtain:

F̃ (p̃, λ)− EN =
1

2
+

1√
2
p1 −

1

2N
− 1− λ√

2h

N−1∑
n=1

x2
n

− λ√
2h
× 2
√

2

N
(p1 −

√
2

2
)− λ√

2h
(p−N+1 + pN −

√
2)2

− λ√
2h
×
√

2

N
(p−N+1 + pN −

√
2) +

λ√
2h

3

N2

= F (p, λ)− ED − 2λ(p1 −
√

2

2
) +R (21)

where R = λ(pN + p−N+1 −
√

2)− λ√
2h

(pN + p−N+1 −
√

2)2 + 3
√

2λ−1
2N .

At this point, remember p was obtained from continuous functions σ and ρ through{
pn = 1√

2
(σn + 1 + ρn) ; p−n = 1√

2
(σn + 1− ρn)

with σn = N−2/3(σ(τn)− τ) ; ρn = N−1/3ρ(τn)

As ρ and σ are bounded, one sees that pn converges to
√

2
2 uniformly as N goes to infinity

(that is max−N≤n≤N |pn −
√

2
2 | → 0 as N → ∞). This first shows that p̃ is admissible

in the dual problem (meaning that p̃2
n + p̃2

−n ≤ 1): indeed p is itself admissible and
pn ≥ p̃n ≥ −1 ≥ −pn for N sufficiently large. Second, remember that, at infinity, σ
converges to −k(a) < 0 or 0, and ρ converges to 0. Writing

p−N+1 + pN −
√

2 =
1√
2

(σN + σN−1 + ρN − ρN−1)

one sees that N2/3R→ 0 when N →∞. Then we apply a last trick to include 2λ(p1−
√

2
2 )

from (21) into our energies: we remark that

F (p, λ)− ED − 2λ(p1 −
√

2

2
) = (1− 2

√
2λ)
(
F (p,

λ

1− 2
√

2λ
)− ED

)
This finally shows that

N2/3
(
F̃ (p̃, λ)− EN

)
= N2/3

(
(1− 2

√
2λ)
(
F (p,

λ

1− 2
√

2λ
)− ED

))
+N2/3R

converges to a positive value when N tends to infinity; hence the O(h2/3) rate is also
true in the Neumann setting.
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5 Raviart-Thomas total variation

5.1 Definitions

The idea behind the definition of the isotropic total variation is of course to catch the L1

norm of the gradient of u based on a discretization of the expression TV(u) =
∫

Ω |∇u|.
To do so, one chooses a finite differences operator D, defined on the mesh Ω = ∪Ci,j ,
to approximate ∇. However, the non isotropy of the grid itself prevents D from being
isotropic, as it has to involve a notion of neighbor on this two-directional grid. On the
contrary, the dual definition of TV offers the possibility to discretize a field rather than
an operator. In the formulas

TVN (u) = sup
{
−
∫

Ω
u divφ, φ ∈ C1

c (Ω,R2) s.t. || |φ| ||∞ ≤ 1
}

(22)

TVD(u) = sup
{
−
∫

Ω
u divφ+

∫
∂Ω
b〈φ|~n〉, φ ∈ C1(Ω,R2) s.t. || |φ| ||∞ ≤ 1

}
(23)

we will keep the exact operator div but replace the spaces C1
c (Ω,R2) and C1(Ω,R2) of

(compactly supported) C1 fields from Ω to R2, by a space of discrete fields favouring no
direction.

The most simple space available is the so-called ”Raviart-Thomas” finite elements
space [14], which first seems to have been used in this context in [10]. Raviart-Thomas
fields are defined via their fluxes through the edges of the squares, we will denote fi+ 1

2
,j

(resp. fi,j+ 1
2
) the flux through the edge between the squares Ci,j and Ci+1,j (resp. Ci,j

and Ci,j+1), and (xi,j , yi,j) the center of the square Ci,j . Then the Raviart-Thomas fields
are the elements of

RT0 =
{
φ : Ω→ R2 : ∃(fi+ 1

2
,j , fi,j+ 1

2
)i,j s.t. ∀1 ≤ i, j ≤ N,

φ(x, y) =


fi+ 1

2
,j + fi− 1

2
,j

2
+ (fi+ 1

2
,j − fi− 1

2
,j)
x− xi,j

h
fi,j+ 1

2
+ fi,j− 1

2

2
+ (fi,j+ 1

2
− fi,j− 1

2
)
y − yi,j
h

 in Ci,j

} (24)

In the sequel, we will write φ = φf ∈ RT0 to precise that f denotes the fluxes of the
Raviart-Thomas fields φ according to (24). In the Neumann setting, we use Raviart-
Thomas fields vanishing on the boundary of Ω, which we denote RT00:

RT00 =
{
φf ∈ RT0 s.t. ∀1 ≤ i, j ≤ N, f 1

2
,j = fN+ 1

2
,j = fi, 1

2
= fi,N+ 1

2
= 0
}

Finally, in the Neumann setting, the Raviart-Thomas total variation we study is, for
any uh ∈ P0:

TVh
RT,N (uh) = sup

{
−
∫

Ω
uh divφ, φ = φf ∈ RT00 s.t. || |φ| ||∞ ≤ 1

}
(25)
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while in the Dirichlet setting, we directly use the source term gh of the ROF problem in
the integral on ∂Ω:

TVh
RT,D(uh) = sup

{
−
∫

Ω
uh divφ +

∫
∂Ω
bh〈φ|~n〉, φ = φf ∈ RT0 s.t. || |φ| ||∞ ≤ 1

}
(26)

We stress the fact that no continuity jump appears in the calculus of divφf so that,
for instance in the Neumann setting, for φf ∈ RT00:

−
∫

Ω
uh divφf = −

∑
i,j

h2uhi,j
1

h
(fi+ 1

2
,j − fi− 1

2
,j + fi,j+ 1

2
− fi,j− 1

2
)

= h
∑
i,j

fi+ 1
2
,j(u

h
i+1,j − uhi,j) + h

∑
i,j

fi,j+ 1
2
(uhi,j+1 − uhi,j)

= h
∑
i,j

〈(
fi+ 1

2
,j

fi,j+ 1
2

)
|
(

(uh)i+1,j − (uh)i,j
(uh)i,j+1 − (uh)i,j

)〉
= h

〈〈
f |Duh

〉〉
In particular, as noted by the authors of [13], the isotropic total variation can be recov-
ered in the context of Raviart-Thomas field total variation as

TVh
i (uh) = sup

{
−
∫

Ω
uh divφ, φ = φf ∈ RT00 s.t. ∀i, j,

∣∣∣∣∣
(
fi+ 1

2
,j

fi,j+ 1
2

)∣∣∣∣∣ ≤ 1
}

In TVh
RT , the constraint on φf is the same as on φ on the continuous TV, namely

that |φf (x)| ≤ 1 for all x ∈ Ω. Note that since the two components of φf are piecewise
affine, the constraint of being less than 1 everywhere on Ω reduces to being less than 1
in the corners of the mesh, that is

TVh
RT,N (uh) = sup

{
−
∫

Ω
uh divφf , φf ∈ RT00 s.t.

∀1 ≤ i, j ≤ N, max
1≤k≤4

|(Lkφf )i,j | ≤ 1
}

TVh
RT,D(uh) = sup

{
−
∫

Ω
uh divφf +

∫
∂Ω
bh〈φf |~n〉, φf ∈ RT0 s.t.

∀1 ≤ i, j ≤ N, max
1≤k≤4

|(Lkφf )i,j | ≤ 1
}

with


(L1φf )i,j = φf (xi,j + h

2

−
, yi,j + h

2

−
)

(L2φf )i,j = φf (xi,j − h
2

−
, yi,j + h

2

−
)

(L3φf )i,j = φf (xi,j − h
2

−
, yi,j − h

2

−
)

(L4φf )i,j = φf (xi,j + h
2

−
, yi,j − h

2

−
)

•
2

•
3

•
4

•
1

(xi,j , yi,j)
×

where we used the notation a− (a+) to denote we take the left (right) limit. Other
choices of constraints on φf proposed in [9, 11] lead to better numerical results, however
we do not have convergence rates for them. Nevertheless, they also fit the framework of
Raviart-Thomas total variations, see Section 6.
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5.2 Convergence rate for TVh
RT

In [7] the authors have studied Crouzeix-Raviart finite elements based total variation
on a triangular mesh, which can be computed by approximating the dual fields with
Raviart-Thomas fields with a norm constraint only in the center of each triangle. Given
a source term g ∈ L∞, and under a regularity assumption on the dual field, they show
there exists a constant c (depending on g and the value of the continuous ROF problem)

such that |E − Eh| ≤ ch where we recall that E and E
h

are respectively the optimal
values of the continuous and discrete problems:

u = arg min
u∈BV (Ω)

1

2λ
||u− g||2L2 + TV(u) =: E(u) (27)

uh = arg min
uh∈P0

1

2λ
||uh − gh||2L2 + TVh

RT (uh) =: Eh(uh) (28)

with appropriate variants for Dirichlet and Neumann boundary conditions (recall that
when no subscript N or D is specified, the proposed results are valid for both settings).
Thanks to the strong convexity of the energy these estimates are also controlling the
squared L2 error between u and uh. This study easily transposes to our context. We
emphasize in this section the main lemmas that result in the desired convergence rate.
We refer the reader to [7] for more details and to [2] for a generalization.

The proof of this rate is two-fold: a first estimate comes from the primal problems, a
second from the dual. The first one relies on the conformal aspect of our discrete total
variation TVh

RT (25), (26) with respect to the continuous TV (22), (23). As in [1], it
follows from the TV-diminishing lemma:

Lemma 4. For any u ∈ BV ∩ L2(Ω) admissible in the continuous ROF problem (1),
one has TVh

RT (ΠP0u) ≤ TV (u).

Proof. The main argument is that if φ ∈ RT0, then divφ is piecewise constant so that
uh = ΠP0(u) satisfies ∫

Ω
uh divφ =

∫
Ω
u divφ

The result follows by approximation of Raviart-Thomas fields by regular fields.

Using strong convexity of the primal objectives leads to the first estimate:

Proposition 6. The solutions u, uh of (27), (28) satisfy

1

2λ
||uh −ΠP0u||2L2 ≤ E − E

h − 1

2λ

(
||u− g||2L2 − ||ΠP0(u− g)||2L2

)
The second part relies on the evaluation of the dual problems of (27) and (28). In the

continuous setting, switching the min operator from (27) with the supremum defining
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the total variation leads to the following dual problems:

φN ∈ arg max
φ∈H0 s.t.
|| |φ| ||∞≤1

−
∫

Ω
g divφ− λ

2
||divφ||22 =: DN (φ) (29)

φD ∈ arg max
φ∈H s.t.
|| |φ| ||∞≤1

−
∫

Ω
g divφ− λ

2
||divφ||22 +

∫
∂Ω
b〈φ|~n〉 =: DD(φ) (30)

where H = {φ ∈ L∞(Ω) s.t. divφ ∈ L2(Ω)} and H0 is the subset of H made of fields
vanishing at the boundary in the weak sense H0 = {φ ∈ H s.t. ∀u ∈ H1(Ω),

∫
Ω〈∇u|φ〉 =

−
∫

Ω u divφ}. Observe, for instance in the Neumann setting, that for any φ ∈ H0 such
that || |φ| ||∞ ≤ 1, one has DN (φ) ≤ E(u) = TV(u) + 1

2λ ||u− g||
2
L2 . The Euler-Lagrange

equation for the ROF problem (see [5]) shows that u is a minimizer of (27) if and only
if there exists φ ∈ H with u − g = λdivφ, || |φ| ||∞ ≤ 1 and −

∫
Ω u divφ = TV(u).

Choosing φ = φ in the above inequality shows that strong duality between primal and
dual problems holds. Finally, D := D(φ) = E through the relation u = g + λdivφ.
The same relations hold in the discrete case which is completely similar and where dual
problems are:

φ
h
N ∈ arg max

φh∈RT00

|| |φh| ||∞≤1

−
∫

Ω
gh divφh − λ

2
||divφh||22 =: Dh

N (φh)

φ
h
D ∈ arg max

φh∈RT0
|| |φh| ||∞≤1

−
∫

Ω
gh divφh − λ

2
||divφh||22 +

∫
∂Ω
bh〈φh|~n〉 =: Dh

D(φh)

As previously, one has to be able to get a discrete field from a continuous one through
a projection operator like ΠP0. This will be achieved by the operator ΠRT0 : H → RT0
which takes z = (z1, z2) : Ω→ R2 to φ = φf ∈ RT0 where the fluxes through the edges
of the mesh f are defined as

fi+1/2,j =
1

h

∫
Ei+1/2,j

z2 ; fi,j+1/2 =
1

h

∫
Ei,j+1/2

z1

where Ei+1/2,j = ∂Ci,j∩∂Ci+1,j and Ei,j+1/2 = ∂Ci,j∩∂Ci,j+1. This projection operator
enjoys two properties that derive from simple integration formulas. The first one is
classical:

Lemma 5. ∀φ ∈ H, div (ΠRT0(φ)) = ΠP0(divφ).

The second one deals with the behavior of ΠRT0 with respect to the infinite norm:
when φh = ΠRT0(φ), one sees that the value of |φh|2 at a corner of the square writes as
an average of |φ|2 on an adjacent edge up to a first order derivative term. This leads to
the following result:

Lemma 6. If φ : Ω → R2 is L-Lipschitz and if || |φ| ||∞ ≤ 1 then its projection
φh = ΠRT0(φ) satisfies || |φh| ||∞ ≤ 1 + Lh.

33



In our analysis, we will consequently need a Lipschitz hypothesis to hold on the optimal
dual field φ. As noticed by [7], this hypothesis is reasonable in the sense that it is known
to hold when g is the characteristic of a disk and Ω = R2, as well as in the case g = gν
(where one can even take L = 0 as φ = ν is a solution). It seems plausible that this
hypothesis is satisfied as long as g ∈ L∞ (when working in a bounded convex domain
of R2), however no such result is known for the time being. We now apply these two
lemmas to get an admissible solution in the discrete dual problem from a continuous
dual solution, and get the second estimate:

Proposition 7. Suppose the dual continuous problem (29), (30) admits a L-Lipschitz
solution, then one has:

DN ≤ (1 + Lh)D
h
N +

1

2λ
||g − gh||2L2(Ω)

DD ≤ (1 + Lh)D
h
D +

1

2λ
||g − gh||2L2(Ω) + ||b− bh||L1(∂Ω)

Now combining Propositions 6 and 7, we deduce, for instance in the Neumann setting,
that there exist a constant c > 0, depending on the optimal energy E such that, thanks
to Jensen’s inequality:

1

2λ
||uh −ΠP0u||2L2 ≤ ch+

1

2λ

(
||g − gh||2L2 − (||u− g||2L2 + ||ΠP0(u− g)||2L2

)
= ch+

1

2λ

(
||ΠP0u||2L2 − ||u||2L2 + 2

∫
Ω
ug − 2

∫
Ω

(ΠP0u)gh
)

≤ ch+
1

λ

∫
Ω
g(u−ΠP0u)

≤ ch+
1

λ
||g||L∞ ||u−ΠP0u||L1

≤ c′h

where in the final inequality we used the following lemma:

Lemma 7. For any bounded domain ω ⊂ R2, there exists a constant c > 0 such that

∀f ∈ BV (ω), ||f −ΠP0f ||L1(ω) ≤ chTV(f)

This lemma also applies (with now ω = ∂Ω) to get the same estimate in the Dirichlet
setting as b ∈ BV (∂Ω). We finally showed that, under the hypotheses g ∈ L∞(Ω) and φ
is Lipschitz, there exists a constant c > 0 such that ||uh−ΠP0u||L2 ≤ c

√
h. However, to

estimate the convergence of the energies |E−Eh| it seems mandatory to control the term
||g − gh||2L2 through lemma 7 and ask that g ∈ BV (Ω). In this situation, we finally get
the announced convergence rate: for some c > 0 depending on g and on the continuous
energy E, provided φ is Lipschitz,

∀h > 0, |E − Eh| ≤ ch
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Note finally that the same rates would be obtained with the weaker TV diminishing
lemma: TVh(ΠP0(u)) ≤ (1 + ch)TV(u) which could be true for other discrete total
variations.

Remark. One could also chose to consider the discrete problem where gh is replaced by
g in the L2 term, that is to minimize Ẽh(uh) = 1

2λ ||u
h−g||2L2 + TVh

RT (uh). Actually this

leads to the same optimizer uh as Ẽh = Eh + 1
2λ ||g − g

h||2L2. However, denoting Ẽh the

optimal value of this energy, Proposition 7 then writes E − Ẽh ≤ ch. Meanwhile, after
using the already mentioned calculation

||u− g||2L2 − ||ΠP0(u− g)||2L2 = ||u−ΠP0u||2L2 + ||g − gh||2L2 − 2

∫
Ω
g(u−ΠP0u)

one sees that Proposition 6 implies E − Ẽh ≥ − 1
λ

∫
Ω g(u−ΠP0u) ≥ −ch so that finally,

even when g 6∈ BV (but still assuming there exists a Lipschitz dual field φ), one has∣∣E − Ẽh∣∣ ≤ ch
6 Implementation and results

6.1 A united framework

As we have seen, the Raviart-Thomas fields offer a united framework to deal with dif-
ferent total variations. Indeed, TVh

i , TVh
RT as well as the total variation proposed in

[9, 11] (that we will refer to as “Condat TV”, referring to the implementation in [9]) can
all be expressed in the form:

TVL
N (uh) = sup

{
−
∫

Ω
uh divφ, φ ∈ RT00 s.t. || |Lφ| ||∞ ≤ 1

}
TVL

D(uh) = sup
{
−
∫

Ω
uh divφ+

∫
∂Ω
bh〈φ|~n〉, φ ∈ RT0 s.t. || |Lφ| ||∞ ≤ 1

}
where L : RT0 →

(
R2
)I

is some linear operator giving the constraints that the dual
field must satisfy, namely that ∀i, j, |(Lφ)i,j | ≤ 1.

In the case of the isotropic total variation, one has L = L1, for Raviart-Thomas
L = (L1, L2, L3, L4), and for Condat L = (L•, L↔, L↔) where all these operators are
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given ∀0 ≤ i, j ≤ N by:

(L1(φf ))i,j =

(
fi+ 1

2
,j

fi,j+ 1
2

)
(L2(φf ))i,j =

(
fi− 1

2
,j

fi,j+ 1
2

)

(L3(φf ))i,j =

(
fi− 1

2
,j

fi,j− 1
2

)
(L4(φf ))i,j =

(
fi+ 1

2
,j

fi,j− 1
2

)

(L•φf )i,j =
1

2

(
fi+ 1

2
,j + fi− 1

2
,j

fi,j+ 1
2

+ fi,j− 1
2

)

(L↔φf )i,j =

(
1
4(fi+ 1

2
,j + fi− 1

2
,j + fi+ 1

2
,j+1 + fi− 1

2
,j+1)

fi,j+ 1
2

)

(Llφf )i,j =

(
fi+ 1

2
,j

1
4(fi,j+ 1

2
+ fi,j− 1

2
+ fi+1,j+ 1

2
+ fi+1,j− 1

2
)

)

with fk,l = 0 for couples (k, l) such that this quantity is not defined.
Note that the four variants of the isotropic total variation (obtained through the four

combinations of directions selected to discretize the ∇ operator) correspond to enforcing
the constraints || |Lk(φf )| ||∞ ≤ 1 for 1 ≤ k ≤ 4 separately. On the contrary, the
Raviart-Thomas total variation enforces the four of them simultaneously.

6.2 Resolution by a primal-dual algorithm

We write the (dual) ROF problem in the following way, for instance for Neumann bound-
ary conditions:

min
uh∈P0

1

2λ
||uh − gh||2L2 + sup

{
−
∫

Ω
uh divφf , φf ∈ RT00 s.t. || |Lφf | ||∞ ≤ 1

}
= sup

φf∈RT00

min
uh∈P0

1

2λ
||uh − gh||2L2 −

∫
Ω
uh divφf − F (Lφf )

= − min
φf∈RT00

G(φf ) + F (Lφf )

where G(φf ) = λ
2 ||divφf ||2L2 +

∫
Ω g

hdivφf and F :
(
R2
)I → R is given by F (z) = 0 if

|| |z| ||∞ ≤ 1, +∞ otherwise. Note that the optimal primal solution will be obtained
from the optimal φf through uh = gh + λdivφf .

This allows one to use one of the primal-dual algorithm presented in [6] for which one
needs to calculate the following proximal operators (we denote F ∗ the convex conjugate
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of F and use the Moreau identity to calculate its prox, see [3]):

(Id+ τ∂G)−1(φf ) =

(
1

τ
Id+ λDD∗

)−1

(
1

τ
φf +Dgh)

(Id+ σ∂F ∗)−1(z) =

{
0 if |zi| ≤ σ
zi(1− σ

|zi|) otherwise

}
i∈I

where D = −div ∗ is the opposite of the dual operator of the divergence on the RT0
fields, which corresponds to a finite difference approximation of the gradient. Finally,
we use the simplest version of the proposed algorithm and obtain the following:

Algorithm. From φ0
f ∈ RT00, z0 ∈

(
R2
)I

, and σ, τ > 0 such that στ ||L||2 ≤ 1, set

φ
0
f = φ0

f and do ∀n ≥ 0:

zn+1 = (Id+ σ∂F ∗)−1(zn + σL∗φ
n
f )

φn+1
f =

(
1

τ
Id+ λDD∗

)−1

(
1

τ
φnf − L∗zn+1 +Dgh)

φ
n+1
f = 2φn+1

f − φnf

One checks that in the Dirichlet setting, the functionG is replaced byG(φf ) = λ
2 ||divφf ||2L2+∫

Ω g
hdivφf −

∫
∂Ω b

h〈φf |~n〉 and that the same algorithm applies just replacing Dgh with
the appropriate correction to take into account the boundary term (namely in Neu-
mann Dgh = 0 on the boundary edges while in Dirichlet Dgh has value Dghb such that∫
∂Ω〈φf |Dg

h
b 〉 =

∫
∂Ω b

h〈φf |~n〉).

6.3 Numerical results

Figure 5: E
h

(plain) and h2/3 (dashed) as functions of N = 1
h (Cartesian and log–log).

Numerical optimization of the 1D problem 7 reveals that the O(h2/3) rate is almost

observed in practice. In Figure 5 we plotted the value of the energy E
h

in the Dirichlet
setting for N ranging in [100, 5000] with a stepsize of 100. The corresponding log− log
graph exhibits an empirical convergence rate of hθ with θ = 0.6240.
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Figure 6: Denoising lines and a circle with isotropic (left col. and 2nd circle), RT (middle
col. and 3rd circle) and Condat (right col. and 4th circle) total variations.

We present in Figure 6 the results for the denoising of a line, that is g = gν in
the Dirichlet setting for different orientations ν and for the three total variations we
considered: isotropic, Raviart-Thomas and “Condat”. We give also the results for the
denoising of the circle we showed in the introduction, this time in the Neumann setting.

We see that the Raviart-Thomas TV performs as well as the TV of [9, 11]. However,
it is important to notice that this good behavior relies heavily on the presence of the
L2 term ||u − g||22 in the problem we considered. Indeed, when tackling the inpainting
problem, that is the completion of a missing image (here, a plain discontinuity) from its
boundary datum:

arg min
uh∈P0

s.t. uh|B=gh|B

TVh
D(uh) (31)

where B denotes the 4N − 4 border pixels of our image, the Raviart-Thomas TV does
worse than the isotropic TV, while the “Condat” TV still produces sharp discontinuities,
see Figure 7.
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Figure 7: Inpainting with isotropic (left), RT (mid.) and Condat (right) total variations.

7 Conclusion and perspectives

In this article we developed a study of the convergence rate of the discrete towards
the continuous energies of the ROF model for two discretizations of the total variation.
These two discrete TV, as well as the one introduced in [9, 11] can be united under the
framework of constrained Raviart-Thomas fields. Future works include estimations on
convergence of the minimizers uh towards u, investigations on convergence rates for the
inpainting problem (31), for “Condat” TV and for other directions in the isotropic TV.
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