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Abstract

Discrete Duality Finite Volume (DDFV) methods are very well suited to discretize anisotropic
diffusion problems, even on meshes with low mesh quality. Their performance stems from an accurate
reconstruction of the gradients between mesh cell boundaries, which comes however at the cost of
using both a primal (cell centered) and a dual (vertex centered) mesh, and thus leads to larger system
sizes. To solve these systems, we propose to use non-overlapping optimized Schwarz methods with
Robin transmission conditions, which can also well take into account anisotropic diffusion across sub-
domain interfaces. We study these methods here directly at the discrete level, and prove convergence
using energy estimates for general decompositions including cross points and fully anisotropic diffu-
sion. Our analysis reveals that primal and dual meshes might be coupled using different optimized
Robin parameters in the optimized Schwarz methods. We present both the separate and coupled
optimization of Robin transmission conditions and derive parameters which lead to the fastest pos-
sible convergence in each case. We illustrate our results with numerical experiments for the model
problem, and also in situations that go beyond our analysis, with an application to anisotropic image
reconstruction.

1 Introduction

Anisotropic diffusion problems arise in many applications, from geology [31] to medicine [11], but more
recently they play a major role in image reconstruction [32], pioneered by the Perona-Malik non-linear
partial differential equation [30], see also the fundamental contributions of the Slovak school [25, 29, 10].
With the ever increasing demand for high accuracy and rapid solution, and the availability of more
and more highly parallel computing systems, parallel algorithms to simulate such problems are in high
demand, in particular domain decomposition methods which are naturally parallel. Non-overlapping
optimized Schwarz methods form a class of such domain decomposition methods; for an introduction,
see [12, 13] and references therein. They were introduced for anisotropic diffusion problems at the
continuous level in [17], where their convergence was proved for a two subdomain decomposition using
energy estimates, and optimized transmission conditions between the subdomains were derived, also at
the continuous level. For a reduction of the anisotropic optimization of the transmission conditions to
an isotropic one, see [15, Section 5]. To use such algorithms on a computer, they have to be discretized,
and for anisotropic diffusion problems, discrete duality finite volume (DDFV) methods are well suited
because of their accurate gradient reconstruction. This has been beneficial in many situations: see [23, 3]
for diffusion problems with discontinuous coefficients, [6] for div-curl, [5] for advection-diffusion, [7] for
Stokes, and [24] for Maxwell problems, and [21] for image reconstruction. A first variant of a DDFV
optimized Schwarz algorithm for fluid mechanics can be found in [26, 4]; its convergence did however
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not reach the full potential of optimized Schwarz methods, due to the discretization technique used at
the interfaces. An improved treatment of the transmission conditions can be found in [18, 16], see also
[2] for a space-time variant, and a first application to anisotropic diffusion was tested in [17]. There has
however so far never been a convergence analysis of DDFV optimized Schwarz methods at the discrete
level for general decompositions, including cross points, and also the optimization of the transmission
conditions at the discrete level is lacking. In [17], it was discovered that the best working parameters in
the transmission conditions can differ substantially from the ones predicted by the continuous analysis for
anisotropic diffusion, and a similar discovery was made in [33, 34] for various discretizations of evolution
problems, see also [22]. We therefore study here for the first time non-overlapping optimized Schwarz
methods with Robin transmission conditions at the discrete level for DDFV discretizations of anisotropic
diffusion problems. We give a convergence proof using energy estimates for general decompositions into
many subdomains including cross points, and then optimize the transmission conditions at the discrete
level. Our analysis reveals an interesting, new interplay between the primal and dual mesh components of
the DDFV discretization and the optimized transmission conditions used in optimized Schwarz methods,
a feature which remained hidden in the continuous analysis in [17]. We derive optimized transmission
conditions, both when using separate parameters on the primal and dual mesh, or the same for both.
We then compare our discrete optimized transmission conditions to the ones obtained at the continuous
level in [17], and illustrate our findings using numerical experiments, both for model problems and
discretizations covered and not covered by our analysis, and an example in image reconstruction that
goes quite beyond, mixing different mesh types and containing cross points, with an application in image
reconstruction.

2 Optimized Schwarz for Anisotropic Diffusion

We are interested in the solution of anisotropic diffusion problems of the form

L(u) := −div(A∇u) + ηu = f in Ω,
u = 0 on ∂Ω,

(2.1)

where A is a symmetric positive definite matrix with L∞ coefficients,

(x, y) ∈ Ω 7→ A(x, y) =

(
Axx(x, y) Axy(x, y)
Axy(x, y) Ayy(x, y)

)
,

and (x, y) ∈ Ω 7→ η(x, y) ≥ 0 is a given non-negative function in L∞. A DDFV discretization on arbi-
trary domains and meshes of the anisotropic diffusion problem (2.1), and the associated non-overlapping
optimized Schwarz solver were introduced in [17], and convergence of the Schwarz method was proved
at the discrete level for a two subdomain decomposition using energy estimates. We are interested here
in a complete discrete convergence analysis of the optimized Schwarz method with Robin transmission
conditions for general decompositions including cross points, and also an optimization of the discrete con-
vergence factor, since differences between the continuous analysis and discrete performance were pointed
out in [17].

2.1 Classical notation for DDFV schemes

DDFV discretizations need a certain amount of notation for which we follow [1]. A DDFV mesh T
consists of a primal mesh M, the black triangles in the example in Figure 1 on the left, leading to a cell
centered (CC) scheme, and a dual mesh M∗ ∪ ∂M∗, for which we show only two light red cells in Figure
1 on the left, leading to a vertex centered (VC) scheme. The primal mesh M is a set of disjoint open
polygonal control volumes k ⊂ Ω such that ∪k = Ω. We denote by ∂M the set of edges of the control
volumes in M included in ∂Ω, which we consider as degenerate control volumes. For all neighboring
control volumes k and l, we assume that ∂k ∩ ∂l is an edge of the primal mesh denoted by σ = k|l. To
each control volume and degenerate control volume k ∈ M ∪ ∂M, we associate a point xk ∈ k, see the
black dots in Figure 1. This family of points is denoted by X = {xk, k ∈M ∪ ∂M}. Let X∗ denote the
set of vertices xk∗ of the primal control volumes in M, see the red squares in Figure 1. We split this set
into X∗ = X∗int ∪X∗bnd where X∗int ∩ ∂Ω = ∅ (filled red squares) and X∗bnd ⊂ ∂Ω (not filled red squares).
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Figure 1: DDFV notation. Left: primal mesh and example of an interior and a boundary dual cell.
Middle top: example of a boundary diamond cell. Middle bottom: example of an interior diamond cell.
Right: example of diamond cells associated with xk and xk∗ in the interior and on the boundary.

For each xk∗ we also introduce a control volume, see the light red polygons in Figure 1 on the left for
an interior and boundary control volume example, whose corners are the xk. All these control volumes
define the set M∗ ∪ ∂M∗ of dual control volumes that forms also a partition of Ω into disjoint polygonal
control volumes.

Given the sets X and X∗, we define the diamond cells Dσ,σ∗ being the quadrangles whose diagonals
are a primal edge σ = k|l = (xk∗ , xl∗) and a dual edge σ∗ = k|l = (xk, xl), see Figure 1 in the middle
for two examples. The set of diamond cells is denoted by D, and it has two disjoint subsets: the interior
diamond cells D ∈ Dint (e.g. Figure 1 middle bottom), and the boundary diamond cells D ∈ Dbnd (e.g.
Figure 1 middle top) for which [xk∗ , xl∗ ] ⊂ ∂Ω, where xl ∈ (xk∗ , xl∗). The complete domain is also
formed by all the diamonds, Ω = ∪

D∈D
D. To each diamond D ∈ D, we associate a point xD ∈ [xk∗ , xl∗ ].

Let Dk be the set of diamonds with xk as vertex and Dk∗ be the set of diamonds with xk∗ as vertex, see
Figure 1 on the right for examples.

For any primal control volume k ∈ M ∪ ∂M, we denote by mk its Lebesgue measure, and similarly
use mk∗ for the dual control volumes. For a diamond cell D with vertices (xk, xk∗ , xl, xl∗), we denote by
xD the center of the diamond cell D, that is the intersection of the primal edge σ and the dual edge σ∗,
mD its measure, mσ the length of the primal edge σ, mσ∗ the length of the dual edge σ∗, and mσk∗ the
measure of ∂k∗ ∩ ∂Ω.

In DDFV, a variable uk is associated with all primal control volumes k ∈ M ∪ ∂M, and a variable
uk∗ is associated with all dual control volumes k∗ ∈M∗ ∪ ∂M∗. We denote the approximate solution on
the mesh T by uT ∈ RT , where

uT :=
(

(uk)k∈(M∪∂M) , (uk∗)k∗∈(M∗∪∂M∗)

)
. (2.2)

Following [23, 9], we define a consistent approximation of the gradient operator denoted by ∇D : uT ∈
RT 7→

(
∇DuT

)
D∈D ∈ (R2)D by

∇DuT :=
1

2mD
[(ul − uk)Nkl + (ul∗ − uk∗)Nk∗l∗ ] , ∀D ∈ D, (2.3)

with Nkl := (xl∗ − xk∗)⊥ and Nk∗l∗ := (xl − xk)⊥, where for any vector (x, y), (x, y)⊥ := (−y, x). We
also define a consistent approximation of the divergence operator denoted by divT : ξD = (ξD)D∈D ∈
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(R2)D 7→ divT ξD ∈ RT by

divkξD :=
1

mk

∑
D∈Dk

(ξD,Nkl), ∀k ∈M, and divkξD = 0, ∀k ∈ ∂M, (2.4a)

divk∗ξD :=
1

mk∗

∑
D∈Dk∗

(ξD,Nk∗l∗), ∀k∗ ∈M∗ ∪ ∂M∗. (2.4b)

For uT ∈ RT and fT ∈ RT , we denote by LT (uT , fT ) = 0 the linear system

−divk
(
AD∇DuT

)
+ ηkuk = fk, ∀ k ∈M, (2.5a)

−divk∗
(
AD∇DuT

)
+ ηk∗uk∗ = fk∗ , ∀ k∗ ∈M∗, (2.5b)

uk = 0, ∀ k ∈ ∂M, uk∗ = 0, ∀ k∗ ∈ ∂M∗, (2.5c)

where for smooth functions A, f and η we use pointwise evaluations

AD := (AD)D∈D , AD := A(xD),

fT :=
(

(fk)k∈(M∪∂M) , (fk∗)k∗∈(M∗∪∂M∗)

)
, fk := f(xk), fk∗ := f(xk∗),

ηT :=
(

(ηk)k∈(M∪∂M) , (ηk∗)k∗∈(M∗∪∂M∗)

)
, ηk := η(xk), ηk∗ := η(xk∗).

For non-smooth functions, mean values of the functions can be used. We also recall the fundamental
discrete duality property satisfied by these operators,

(divT ξD, uT )T :=
1

2

(∑
k∈M

mkdivkξDuk+
∑

k∗∈M∗
mk∗divk∗ξDuk∗

)
=−

∑
D∈D

mD(ξD,∇DuT ) :=(ξD,∇DuT )D

(2.6)

2.2 DDFV on Composite Meshes

In the case of a general domain decomposition into many subdomains Ω = ∪j=1,··· ,JΩj including cross
points, we consider for each subdomain Ωj a DDFV mesh Tj = (Mj∪∂Mj ,M

∗
j∪∂M∗j ), and the associated

diamond mesh Dj . We assume that Ωj is covered by the primal mesh Mj , so that M = ∪Mj can be
taken as the primal mesh of a DDFV mesh T associated to Ω. This induces that the interface Γji between
the two sub-domains Ωj and Ωi is covered by primal boundary edges of ∂Mj or ∂Mi, and that corner
points are located at the centers of their dual cells.

For Ωj , we denote the set of neighboring indices by Ij := {i such that Γji 6= ∅} where Γji is the
interface between Ωj and Ωi. We denote by

Dj,Γi := {D ∈ Dj , D ∩ Γji 6= ∅} the diamond cells intersecting Γji,
∂Mj,Γi := {k ∈ ∂Mj , k ∩ Γji 6= ∅} the boundary primal cells intersecting Γji,
∂M∗j,Γi,int := {k∗ ∈ ∂M∗j , k∗ ∩ Γji 6= ∅} the interior boundary dual cells intersecting Γji,

∂Mj,D := {k ∈ ∂Mj , k ∩ ∂Ω 6= ∅} the boundary primal cells intersecting ∂Ω,
∂M∗j,D := {k∗ ∈ ∂M∗j , k∗ ∩ ∂Ω 6= ∅} the boundary dual cells intersecting ∂Ω.

We call the set of all interface diamond cells

Dj,Γ := ∪i∈IjDj,Γi .

The set of all boundary primal cells not located on a Dirichlet boundary is called

∂Mj,Γ := ∪i∈Ij∂Mj,Γi .

The set of all boundary dual cells not located on a Dirichlet boundary is called

∂M∗j,Γ,int := ∪i∈Ij∂M∗j,Γi,int.
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Figure 2: Left: example of a mesh for Ω, with dual cells crossing Γ23 and Γ41. Right: example of a
composite mesh associated to the domain decomposition Ω = ∪4

i=1Ωi on the left, with the notation for
the interface Γ41 with boundary primal and dual cells.

Finally, at cross points Cik, i.e. for i, k ∈ Ij such that Γji ∩ Γjk = {Cik}, see Figure 2,
let

∂M∗j,Cik := {k∗ ∈ ∂M∗j , xk∗ = Cik}

denote the dual cross point cells, and we define the cross point and interface sets

∂M∗j,C := ∪i,k∈Ij∂M∗j,Cik , ∂M∗j,Γ = ∂M∗j,Γ,int ∪ ∂M∗j,C .

We assume that the meshes Tj are compatible in the following sense:

1. If i ∈ Ij , then the two meshes Tj and Ti have the same vertices on Γji. This implies in particular
that the two meshes have the same degenerate control volumes on Γji, that is ∂Mj,Γi = ∂Mi,Γj .

2. The edges σ, whose center is denoted by xl, can be assimilated to a primal degenerated boundary
control volume for both meshes, i.e. l ⊂ ∂Mj ∩ ∂Mi.

We next define the DDFV discretization for the transmission conditions of Robin type. We associate

• one unknown per interior and boundary primal and dual cell uT j ∈ RTj ,

• one flux unknown ψk∗ = ψij,k∗ per interface interior dual cell k∗ ∈ ∂M∗j,Γi,int,

• two flux unknowns ψij,k∗ and ψkj,k∗ per cross point dual cell k∗ ∈ ∂M∗j,Cik .

We denote by ψT j ∈ R∂M
∗
j,Γ the collection of all flux unknowns ψk∗ for inner dual interface cells.

Given fT j ∈ RMj∪M∗j∪∂M
∗
j,Γ , hT j ∈ R∂Mj,Γ∪∂M∗j,Γ and p, p∗ two positive constants, we denote by
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LT j (uT j , ψT j , fT j , hT j ) = 0 the linear system for uT j ∈ RTj , ψT j ∈ R∂M
∗
j,Γ given by

−divk
(
AD∇DuT j

)
+ ηkuk = fk, ∀k ∈Mj , (2.7a)

−divk∗
(
AD∇DuT j

)
+ ηk∗uk∗ = fk∗ , ∀k∗ ∈M∗j , (2.7b)

− 1

mk∗

( ∑
D∈Dk∗

(
AD∇DuT j ,Nk∗l∗

)
+mσk∗ψk∗

)
+ηk∗uk∗ = fk∗ , ∀k∗ ∈ ∂M∗j,Γ,int, (2.7c)

− 1

mk∗

( ∑
D∈Dk∗

(
AD∇DuT j ,Nk∗l∗

)
+mσi

j,k∗
ψij,k∗ +mσk

j,k∗
ψkj,k∗

)
+ηk∗uk∗ = fk∗ , ∀k∗∈∂M∗j,Cik , (2.7d)

1

mσ

(
AD∇DuT j ,Nkl

)
+ pul = hj,l, ∀l ∈ ∂Mj,Γ, (2.7e)

ψk∗ + p∗uk∗ = hj,k∗ , ∀k∗ ∈ ∂M∗j,Γ,int, (2.7f)

ψkj,k∗ + p∗uk∗ = hkj,k∗ and ψij,k∗ + p∗uk∗ = hij,k∗ , ∀k∗∈∂M∗j,Cik , (2.7g)

uk = 0, ∀k ∈ ∂Mj,D, uk∗ = 0, ∀k∗ ∈ ∂M∗j,D, (2.7h)

where we added the subscript j in the interface data hj to denote this is data for subdomain Ωj . Equations
(2.7a)-(2.7d) correspond to an approximation of the equation after integration on Mj , M∗j and ∂M∗j .
Equations (2.7e)-(2.7g) are related to the Robin transmission conditions on ∂Mj,Γ and ∂M∗j,Γ. Finally,
equation (2.7h) corresponds to the homogeneous Dirichlet boundary condition on ∂Ω.

Theorem 2.1 (Well-posedness of the DDFV subdomain problems). For any fT j ∈ RMj∪M∗j∪∂M
∗
j,Γ and

hT j ∈ R∂Mj,Γ∪∂M∗j,Γ , there exists a unique solution (uT j , ψT j ) ∈ RTj ×R∂Mj,Γ∪∂M∗j,Γ of the linear system

LT j (uT j , ψT j , fT j , hT j ) = 0.

Proof. By linearity, since the number of unknowns and the number of equations coincide, it is sufficient
to prove that if LT j (uT j , ψT j , 0, 0) = 0, then uT j = 0 and ψT j = 0. We multiply equation (2.7a) by mkuk
and equations (2.7b)-(2.7d) by mk∗uk∗ and sum these identities over all the control volumes in Mj and
M∗j ∪ ∂M∗j,Γ. Reordering the different contributions over all diamond cells, we obtain

2
∑

D∈Dj

mD(AD∇DuT j ,∇DuT j ) + p(uT j , uT j )∂Mj,Γ

+p∗(uT j , uT j )∂M∗j,Γ +
∑

k∈Mj

mkηku
2
k +

∑
k∗∈M∗j∪∂M∗j,Γ

mk∗ηk∗u
2
k∗ = 0,

(2.8)

where

(uT j , vT j )∂Mj,Γ
:=

∑
l∈∂Mj,Γ

mσulvl =
∑
i∈Ij

∑
l∈∂Mj,Γi

mσulvl, (2.9)

(uT j , vT j )∂M∗j,Γ :=
∑
i∈Ij

∑
k∗∈∂M∗j,Γi

mσk∗uk∗vk∗ +
∑

k∗=k∗ik∈∂M
∗
j,C

(mσi
j,k∗

+mσk
j,k∗

)uk∗vk∗ . (2.10)

Since all the terms are positive, we obtain if η > 0 from the last two terms in (2.8) that uT j = 0. If
η = 0, we get first from (2.8) that uT j vanishes on the boundary ∂Mj,Γ ∪ ∂M∗j,Γ, since p > 0 and p∗ > 0.

Furthermore, since A is coercive, (2.8) also shows that ∇DuT j vanishes, and thus uT j = 0 because a
DDFV Discrete Poincaré inequality proved in [1] gives∑

k∈Mj

mku
2
k +

∑
k∗∈M∗j∪∂M∗j,Γ

mk∗u
2
k∗ ≤ C

∑
D∈D

mD|∇DuT j |2

as soon as uT j vanishes on part of ∂Mj and part of ∂M∗j . We finally obtain ψT j = 0 using the transmission
conditions (2.7f) and (2.7g), which are homogeneous.
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Figure 3: Left: new unknowns needed to describe the DDFV scheme on Ω as the limit of the Schwarz
algorithm. Right: splitting of the diamond cells at the interfaces.

2.3 DDFV Schwarz Algorithm for Anisotropic Diffusion

We can now present the optimized Schwarz algorithm discretized by DDFV: for fT j ∈ RMj∪M∗j∪∂M
∗
j,Γ

and an arbitrary initial guess h0
T j
∈ R∂Mj,Γ∪∂M∗j,Γ , j ∈ {1, · · · , J}, the algorithm performs for iteration

index ` = 0, 1, 2, . . . and i ∈ Ij the two steps:

1. Compute the subdomain solutions (u`+1
T j

, ψ`+1
T j

) ∈ RTj × R∂M
∗
j,Γ by solving for j = 1, 2, . . . , J

LT j (u`+1
T j

, ψ`+1
T j

, fT j , h
`
T j

) = 0. (2.11)

2. Compute the new values h`+1
T j

to be transmitted to neighboring subdomains,

h`+1
j,l = − 1

mσ

(
AD∇Du`+1

T i
,Nkl

)
+ pu`+1

i,l ,∀l ∈ ∂Mj,Γi ,∀i ∈ Ij , (2.12a)

h`+1
j,k∗ = −ψ`+1

i,l∗ + p∗u`+1
i,l∗ ,∀k

∗ ∈ ∂M∗j,Γi,int,∀l
∗ ∈ ∂M∗i,Γj ,int s.t. xk∗ = xl∗ , ∀i ∈ Ij , (2.12b)

hi,`+1
j,k∗ = −ψj,`+1

i,l∗ + p∗u`+1
i,l∗ , ∀k

∗ ∈ ∂M∗j,C ,∀l∗ ∈ ∂M∗i,C s.t. xk∗ = xl∗ , ∀i ∈ Ij . (2.12c)

We can now prove convergence of the non-overlapping DDFV optimized Schwarz algorithm with Robin
transmission conditions. We denote by T = (M, ∂M,M∗, ∂M∗) the DDFV mesh constructed from the
primal discretization of the sub-domain Ωj : M = ∪Mj .

Theorem 2.2 (Convergence of the DDFV Schwarz algorithm). The iterates of the optimized Schwarz
algorithm discretized by DDFV defined by (2.11)-(2.12) converge as ` tends to infinity to the solution uT
of the DDFV scheme (2.5) on Ω.

Proof. The crucial step of the proof consists in rewriting the classical DDFV scheme (2.5) on Ω as the
limit of the Schwarz algorithm. To this end, we introduce new unknowns near the interface Γji, see
Figure 3:
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• for all k ∈Mj and k∗ ∈M∗j , we set u∞k := uk and u∞k∗ := uk∗ ,

• for all k ∈ ∂Mj,D and k∗ ∈ ∂M∗j,D, we set u∞k := 0 and u∞k∗ := 0,

• for all l = kj |ki ∈ ∂Mj,Γi = ∂Mi,Γj , define

u∞j,l = u∞i,l :=
mdiukj +mdjuki

md
,

so that
(
Adj∇dju∞T j ,Nkjl

)
= −

(
Adi∇diu∞T i ,Nkil

)
, with dj ∈ Dj,Γ and di ∈ Di,Γ, with Adj =

Adi = Ad as xdj = xdi = xl.

• for all k∗ ∈ M∗ such that xk∗ ∈ Γij , i.e. k∗ = k∗i ∪ k∗j with k∗j ∈ ∂M∗j,Γi,int and k∗i ∈ ∂M∗i,Γj ,int,
set u∞j,k∗j = u∞i,k∗i := uk∗ and

ψ∞j,k∗j = −ψ∞i,k∗i := − 1

mσk∗

∑
D∈Dk∗

j

(
Ad∇Du∞T j ,Nk∗j l

∗
j

)
+

mk∗j

mσk∗
(ηk∗uk∗ − fk∗)

=
1

mσk∗

∑
D∈Dk∗

i

(
Ad∇Du∞T i ,Nk∗i l

∗
i

)
−

mk∗i

mσk∗
(ηk∗uk∗ − fk∗). (2.13)

Equation (2.13) comes from equation (2.5b), in which we have split the terms from k∗i and k∗j ,
noting that mk∗ = mk∗j

+mk∗i
.

• At a cross point c, we denote by Ic the set of indices of the subdomains that intersect in that cross
point. The cross point is the center of a dual cell k∗ that is split in the domain decomposition. We
define for each subcell k∗j ⊂ Ωj , j ∈ Ic an unknown u∞j,k∗j := uk∗ . We also have to introduce for all

j ∈ Ic additional unknowns ψi,∞j,k∗j
and ψk,∞j,k∗j

in such a way that

mσi
j,k∗
j

ψi,∞j,k∗j
+mσk

j,k∗
j

ψk,∞j,k∗j
=
∑

D∈Dk∗
j

(
AD∇DuT j ,Nk∗l∗

)
−mk∗j

ηk∗uj,k∗ +mk∗j
fk∗ =: bj .

According to the DDFV scheme (2.5),
∑
j∈Ic bj = 0. We denote by nc the cardinal of Ic. Now

imposing ψi,∞j,k∗j
= −ψj,∞i,k∗i , these fluxes must satisfy a linear system of the form Bψ = b with B an

nc × nc matrix, b = (bj)j∈Ic and ψ the vector of ψi,∞j,k∗j
after selection of nc out of the 2nc possible

ones, see [20] where this technique to treat cross points was introduced. For example, in the case
nc = 4, Ic = {1, 2, 3, 4} with Ωj arranged clockwise, we can take

ψ =


ψ2,∞

1,k∗1

ψ3,∞
2,k∗2

ψ4,∞
3,k∗3

ψ1,∞
4,k∗4

 , B =


mσ2

1,k∗1
0 0 −mσ1

4,k∗4
−mσ2

1,k∗1
mσ3

2,k∗2
0 0

0 −mσ3
2,k∗2

mσ4
3,k∗3

0

0 0 −mσ4
3,k∗3

mσ1
4,k∗4

 . (2.14)

The rank of B is equal to nc − 1 and b ∈ ImB since
∑
j∈Ic bj = 0. Therefore, ψ exists but is

not unique. The ψ at the cross point will thus in general not converge in the optimized Schwarz
algorithm, which does however not affect the convergence of the u, see [20].

• Therefore, we can define

h∞j,l = − 1

mσ

(
AD∇Du∞T i ,Nkl

)
+ pu∞i,l,∀l ∈ ∂Mj,Γi ,∀i ∈ Ij , (2.15a)

h∞j,k∗ = −ψ∞i,l∗ + p∗u∞i,l∗ ,∀k∗ ∈ ∂M∗j,Γi,int,∀l
∗ ∈ ∂M∗i,Γj ,int s.t. xk∗ = xl∗ , ∀i ∈ Ij , (2.15b)

hi,∞j,k∗ = −ψj,∞i,l∗ + p∗u∞i,l∗ , ∀k∗ ∈ ∂M∗j,C ,∀l∗ ∈ ∂M∗i,C s.t. xk∗ = xl∗ , ∀i ∈ Ij . (2.15c)
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We have constructed (u∞T j , ψ
∞
T j

) from the solution uT of the DDFV scheme (2.5) on Ω such that

LT j (u∞T j , ψ
∞
T j
, fT j , h

∞
T j

) = 0.

Observe that the errors e`+1
T j

:= u`+1
T j
− u∞T j , Ψ`+1

T j
:= ψ`+1

T j
− ψ∞T j satisfy

LT j (e`+1
T j

,Ψ`+1
T j

, 0, H`
T j

) = 0, (2.16)

with

H`
j,l = − 1

mσ
(AD∇De`T i ,Nkl) + pe`i,l, ∀ l ∈ ∂Mj,Γi ,∀i ∈ Ij , (2.17a)

H`
j,k∗ = −Ψ`

i,l∗ + p∗e`i,l∗ , ∀k∗ ∈ ∂M∗j,Γi,int,∀l
∗ ∈ ∂M∗i,Γj ,int s.t. xk∗ = xl∗ , ∀i ∈ Ij , (2.17b)

Hi,`
j,k∗ = −Ψj,`

i,l∗ + p∗e`i,l∗ , ∀k∗ ∈ ∂M∗j,C ,∀l∗ ∈ ∂M∗i,C s.t. xk∗ = xl∗ , ∀i ∈ Ij . (2.17c)

For j = 1, · · · , J , we multiply equation (2.7a) associated to the scheme (2.16) by mkek and equations
(2.7b)-(2.7d) by mk∗ek∗ and sum these identities over all the control volumes in Mj and M∗j ∪ ∂M∗j,Γ.
Reordering the different contributions over all diamond cells, we obtain

2
∑

D∈Dj

mD(AD∇De`+1
T j

,∇De`+1
T j

) +
∑

k∈Mj

mkηk(e`+1
j,k )2 +

∑
k∗∈M∗j∪∂M∗j,Γ

mk∗ηk∗(e
`+1
j,k∗)

2

−
∑

l∈∂Mj,Γ

(AD∇De`+1
T j

,Nkl)e
`+1
j,l −

∑
k∗∈∂M∗j,Γ,int

mσk∗Ψ`+1
k∗ e

`+1
j,k∗

−
∑

k∗=k∗ik∈∂M
∗
j,C

(mσk
j,k∗

Ψk,`+1
j,k∗ +mσi

j,k∗
Ψi,`+1
j,k∗ )e`+1

j,k∗ = 0.

(2.18)

Now we apply the identity −ab = 1
4

(
(a− b)2 − (a+ b)2

)
, used for such estimates in [27, 8], to the four

terms
(AD∇De`+1

T j
,Nkl)e

`+1
j,l , mσk∗Ψ`+1

k∗ e
`+1
j,k∗ , mσk

j,k∗
Ψk,`+1
j,k∗ e`+1

j,k∗ , mσi
j,k∗

Ψi,`+1
j,k∗ e

`+1
j,k∗ ,

the transmission conditions appear, for example

mσi
j,k∗

Ψi,`+1
j,k∗ e

`+1
j,k∗ =

mσi
j,k∗

4p∗

(
(Ψi,`+1

j,k∗ + p∗e`+1
j,k∗)

2 − (−Ψi,`+1
j,k∗ + p∗e`+1

j,k∗)
2
)
,

and thus using (2.17c), we get

mσi
j,k∗

Ψi,`+1
j,k∗ e

`+1
j,k∗ =

mσi
j,k∗

4p∗

(
(−Ψj,`

i,k∗ + p∗e`i,k∗)
2 − (−Ψi,`+1

j,k∗ + p∗e`+1
j,k∗)

2
)
.

Summing now over all iteration indices ` = 0, . . . , `max − 1 and subdomain indices j = 1, . . . , J we get
for all k∗ = k∗ik ∈ ∂M∗j,C using mσi

j,k∗
= mσj

i,k∗

−
`max−1∑
`=0

J∑
j=1

mσi
j,k∗

Ψi,`+1
j,k∗ e

`+1
j,k∗ =

1

4p∗

`max−1∑
`=0

J∑
j=1

mσi
j,k∗

(
−(−Ψj,`

i,k∗ + p∗e`i,k∗)
2 + (−Ψi,`+1

j,k∗ + p∗e`+1
j,k∗)

2
)

=
1

4p∗

J∑
j=1

mσi
j,k∗

(
−(−Ψj,0

j,k∗ + p∗e0
j,k∗)

2 + (−Ψi,`max

j,k∗ + p∗e`max
j,k∗ )2

)
.

Similarly,

−
`max−1∑
`=0

J∑
j=1

mσk
j,k∗

Ψk,`+1
j,k∗ e`+1

j,k∗ =
1

4p∗

J∑
j=1

mσk
j,k∗

(
−(−Ψj,0

j,k∗ + p∗e0
j,k∗)

2 + (−Ψk,`max

j,k∗ + p∗e`max
j,k∗ )2

)
.
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For all k∗ ∈ ∂M∗j,Γ,int, we have

−
`max−1∑
`=0

J∑
j=1

mσk∗Ψ`+1
k∗ e

`+1
j,k∗ =

1

4p∗

J∑
j=1

mσk∗

(
−(−Ψj,0

j,k∗ + p∗e0
j,k∗)

2 + (−Ψ`max
j,k∗ + p∗e`max

j,k∗ )2
)
,

and for all l ∈ ∂Mj,Γ, we have

−
`max−1∑
`=0

J∑
j=1

(AD∇De`+1
T j

,Nkl)e
`+1
j,l =

1

4p∗

J∑
j=1

(
−(−(AD∇De0

T j
,Nkl)+pe0

j,l)
2+(−(AD∇De`max

T j
,Nkl)+pe`max

j,l )2
)
.

Gathering theses contributions, we obtain

2

`max−1∑
`=0

J∑
j=1

∑
D∈Dj

mD(AD∇De`+1
T j

,∇De`+1
T j

) +

`max−1∑
`=0

J∑
j=1

∑
k∈Mj

mkηk(e`+1
k )2 +

`max−1∑
`=0

J∑
j=1

∑
k∗∈M∗j∪∂M∗j,Γ

mk∗ηk∗(e
`+1
k∗ )2

+
1

4p

J∑
j=1

∥∥∥−(ADj,Γ
∇Dj,Γe`maxTj ,nj) + pe`max∂Mj,Γ

∥∥∥2

∂Mj,Γ

+
1

4p∗

J∑
j=1

∥∥∥−Ψ`max
Tj + p∗e`max∂M∗j,Γ

∥∥∥2

∂M∗j,Γ

≤ 1

4p

J∑
j=1

∥∥∥−(ADj,Γ
∇Dj,Γe0

T j
,nj) + pe0

∂Mj,Γ

∥∥∥2

∂Mj,Γ

+
1

4p∗

J∑
j=1

∥∥∥−Ψ0
T j

+ p∗e0
∂M∗j,Γ

∥∥∥2

∂M∗j,Γ

,

where ‖.‖∂Mj,Γ
and ‖.‖∂M∗j,Γ are the norms associated to the scalar products defined in (2.9) and (2.10).

This shows that the total discrete energy stays bounded as the iteration index ` goes to infinity, and
hence the discrete H1 norm of e`+1

T j
converges to zero as ` tends to infinity for all j. In other words, the

iterates u`T j of the optimized Schwarz algorithm discretized by DDFV defined by (2.11)-(2.12) converge
as ` tends to infinity to u∞T j . Coming back to the construction of u∞T j , we obtain the convergence to uT
the solution of the DDFV scheme (2.5) on Ω. Note that the estimate only gives a bound on the discrete
fluxes Ψ`

Tj and in practice the discrete fluxes do not converge at cross points, because the flux system

there is not full rank, see (2.14).

3 Optimization of the Robin Transmission Conditions

We now present for the first time a discrete optimization of the Robin parameter in the transmission
conditions of the DDFV Schwarz algorithm (2.11), (2.15a)-(2.15c) in order to understand why the opti-
mized parameters from the continuous analysis in [17] sometimes give suboptimal performance for high
anisotropies. As in the continuous case, we focus on a two subdomain decomposition, and will use the
same parameters also at cross points. There are also cross point formulations where this is not advised,
see [19].

3.1 Discrete Subdomain Solutions

To obtain a discrete convergence factor, we use the typical approach in optimized Schwarz methods
to consider a domain Ω := (−a, a) × (0, b) decomposed into two non-overlapping subdomains Ω1 :=
(−a, 0)× (0, b) and Ω2 := (0, a)× (0, b), with the interface Γ := ∂Ω1 ∩ ∂Ω2. We use a rectangular grid, so
that the DDFV discretization away from the interface Γ leads to two interlaced five point finite difference
schemes. The mesh size is denoted by (hx, hy). To simplify the notation compared to the general DDFV

scheme, we use for the dual (vertex centered) unknowns aligned with the interface star indices, uj,`m∗,n∗ .
These are associated with the dual cells shown in dashed Figure 4, whose centers are squares (� or
�), and the superscripts j and ` stand for the domain and the iteration. For the primal (cell centered)
unknowns, we use indices without stars, uj,`m,n. These are associated with the primal cells, whose centers

are bullets (• or ◦ for interface cells), see Figure 4. Additional primal unknowns uj,`1
2 ,n

, located at ◦ in

Figure 4, and also additional flux unknowns ψj,`n∗ are needed on the interface Γ. We study directly the
error um,n − uj,`m,n which satisfies the same algorithm as uj,`m,n but with zero source term and boundary
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Ω1 Ω2

m = 4 m = 3 m = 2 m = 1
m = 1

2

m = 0 m = 4m = 3m = 2m = 1
m = 1

2

m = 0

m∗ = 4 m∗ = 3 m∗ = 2 m∗ = 1 m∗ = 0 m∗ = 4m∗ = 3m∗ = 2m∗ = 1m∗ = 0

n− 1

n

n+ 1

n∗ − 1

n∗

n∗ + 1

n∗ + 2

u1,`
m,n u2,`

m,n

u1,`
m∗,n∗ u2,`

m∗,n∗

ψ1,`
n∗ ψ2,`

n∗

Figure 4: Notation for the rectangular DDFV configuration.

conditions, and for simplicity we still call it uj,`m,n. At each iteration ` = 1, 2, . . ., in the left domain Ωj
the values in the primal cells and the values in the dual cells, denoted with a star ∗, are related by two
recurrence relations. We assume here that Axy = 0, so that the two recurrence relations are decoupled,
the study of the fully anisotropic case is substantially harder and will be tackled in future work. For
m ≥ 1 and m∗ ≥ 1, we have

Axx
h2
x

(uj,`m+1,n − 2uj,`m,n + uj,`m−1,n) +
Ayy
h2
y

(uj,`m,n+1 − 2uj,`m,n + uj,`m,n−1)− ηuj,`m,n = 0,
Axx
h2
x

(uj,`m∗+1,n∗ − 2uj,`m∗,n∗ + uj,`m∗−1,n∗) +
Ayy
h2
y

(uj,`m∗,n∗+1 − 2uj,`m∗,n∗ + uj,`m∗,n∗−1)− ηuj,`m∗,n∗ = 0.

(3.1)

In order to obtain the primal equation in (3.1) for m = 1, we introduce uj,`0,n which is linked to the

interface primal unknowns uj,`1
2 ,n

by

uj,`1
2 ,n

=
1

2
(uj,`1,n + uj,`0,n). (3.2)

On boundary dual cells, the additional fluxes ψj,`n∗ are used, given by

hyψ
j,`
n∗ +

hyAxx
hx

(uj,`1∗,n∗ − u
j,`
0∗,n∗) +

Ayyhx
2hy

(uj,`0∗,n∗+1 − 2uj,`0∗,n∗ + uj,`0∗,n∗−1)− ηhxhy
2

u1,`
0∗,n∗ = 0. (3.3)

We can now express the transmission condition on Γ for (j, i) = (1, 2) or (2, 1). The Robin transmission

conditions on Γ for dual cells are expressed with the fluxes ψj,`n∗ , see (2.7f) and (2.15b),

ψj,`n∗ + p∗uj,`0∗,n∗ = −ψi,`−1
n∗ + p∗ui,`−1

0∗,n∗ , (3.4)

and on primal cells the discrete Robin conditions are, see (2.7e) and (2.15a),

2

hx
Axx(uj,`1

2 ,n
− uj,`1,n) + puj,`1

2 ,n
=

2

hx
Axx(ui,`−1

1,n − ui,`−1
1
2 ,n

) + pui,`−1
1
2 ,n

. (3.5)

The equations (3.1-3.5) completely describe the original Robin DDFV optimized Schwarz algorithm from
Section 2 for the specific two subdomain decomposition. We see that in the case of Cartesian meshes
with Axy = 0, the optimized Schwarz algorithm for the primal and the dual meshes are decoupled. For
the primal unknowns, the interface is at m = 1

2 ,

Axx
h2
x

(u1,`
m+1,n − 2u1,`

m,n + u1,`
m−1,n) +

Ayy
h2
y

(u1,`
m,n+1 − 2u1,`

m,n + u1,`
m,n−1)− ηu1,`

m,n = 0,
2
hx
Axx(uj,`1

2 ,n
− uj,`1,n) + pccu

j,`
1
2 ,n

= 2
hx
Axx(ui,`−1

1,n − ui,`−1
1
2 ,n

) + pccu
i,`−1
1
2 ,n

.
(3.6)
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This corresponds to a discrete optimized Schwarz algorithm with Robin transmission conditions for a
cell centered (CC) 5-point finite difference discretization of the anisotropic diffusion problem (2.1), with
the interface through the middle of the cells, and we therefore use now pcc ≡ p for the optimization
parameter. For the dual unknowns, the interface is at m = 0,

Axx
h2
x

(u1,`
m∗+1,n∗ − 2u1,`

m∗,n∗ + u1,`
m∗−1,n∗) +

Ayy
h2
y

(u1,`
m∗,n∗+1 − 2u1,`

m∗,n∗ + u1,`
m∗,n∗−1)− ηu1,`

m∗,n∗ = 0,
Axx
hx

(uj,`0∗,n∗ − u
j,`
1∗,n∗)−

Ayyhx
2h2
y

(uj,`0∗,n∗+1 − 2uj,`0∗,n∗ + uj,`0∗,n∗−1) + η hx2 u
j,`
0∗,n∗ + pvcu

j,`
0∗,n∗

= −Axxhx (ui,`−1
0∗,n∗ − u

i,`−1
1∗,n∗) +

Ayyhx
2h2
y

(ui,`−1
0∗,n∗+1 − 2ui,`−1

0∗,n∗ + ui,`−1
0∗,n∗−1)− η hx2 u

i,`−1
0∗,n∗ + pvcu

i,`−1
0∗,n∗ .

(3.7)

This is also a discrete optimized Schwarz algorithm with Robin transmission conditions, but for a vertex
centered (VC) 5-point finite difference discretization of the anisotropic diffusion equation (2.1), with the
interface on the boundary of the cells, and we therefore use now pvc ≡ p∗ for the optimization parameter.
The energy estimate convergence proof in Section 2 implies that each of these algorithms separately is
convergent. In contrast to the common continuous approach (a few exceptions are [28, 33, 34] and [22]),
we optimize parameters in the transmission conditions at the discrete level here, and we start with a
separate analysis for the primal (CC) and the dual (VC) components of the DDFV optimized Schwarz
algorithm, before tackling the coupled problem with pvc = pcc, which will need a new theoretical result
on best approximation problems.

3.2 Discrete Convergence Factor

Since the domain is bounded in the y direction, y ∈ (0, b) with homogeneous Dirichlet boundary condi-
tions, that is in the index n and n∗, we use a discrete sine series expansion in the y variable to compute the
convergence factor for each sine mode, and study the existence and uniqueness of a set of best transmission
parameters pvc and pcc that are minimizing the convergence factor over a given set of frequencies.

We expand for n ∈ {1, . . . , N} and m ∈ {1, . . . ,M} with Nhy = b the grid function um,n in a discrete
Fourier sine series,

um,n =

kmax∑
k=1

ûm(k) sin (knπ
hy
b

),

with a slightly different kmax depending on if the scheme is primal or dual, since the number of gridpoints
differs by one,

kmax :=

{
b
hy
− 1 for the dual scheme,

b
hy

for the primal scheme.
(3.8)

The Fourier coefficients are functions of the variable k: uj,`m,n ↔ ûj,`m (k) and uj,`m∗,n∗ ↔ ûj,`m∗(k), which is
discrete in this case, but we will optimize over a continuous set for k to simplify the analysis, since this
makes a negligible difference for the resulting parameters [28, Subsection 4.2]. Introducing the Fourier
sine expansion into the difference equation satisfied by um,n, we obtain by a direct calculation

Ayy
h2
y

(um,n+1 − 2um,n + um,n−1)− ηum,n = −
∑
k

(4
Ayy
h2
y

sin2(
kπhy

2b
) + η)ûm(k) sin (knπ

hy
b

). (3.9)

To simplify the notation, we define the quantities

α(k) :=
4Ayy
h2
y

sin2(
kπhy

2b
), µ(k) :=

h2
x

Axx
(α(k) + η). (3.10)

Then the discrete grid function um,n is a solution of either of the two equations (3.1) if and only if the
corresponding Fourier coefficients ûm(k) satisfy for each k the recurrence relation in the m variable

ûm+1(k)− 2ûm(k) + ûm−1(k)− µûm(k) = 0. (3.11)

The characteristic equation of the recurrence relation,

λ2 − 2λ+ 1− µλ = 0, (3.12)
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has two positive distinct roots, which are inverses of each other. For fixed k, denoting by λ(k) the root
that is smaller than 1,

λ(k) := 1 +
µ(k)

2
−
√
µ(k) +

µ(k)2

4
< 1, (3.13)

the grid function um,n is a solution of either of the two equations in (3.1) if and only if ûm(k) is a
linear combination of λ(k)m and λ(k)−m. We rewrite now the transmission conditions on the Fourier
coefficients. On the primal cells we obtain

Axx
hx

(ûj,`0 − û
j,`
1 ) +

pcc
2

(ûj,`0 + ûj,`1 ) =
Axx
hx

(ûi,`−1
1 − ûi,`−1

0 ) +
pcc
2

(ûi,`−1
1 + ûi,`−1

0 ).

and on the dual cells we obtain

Axx
hx

(ûj,`0∗ − û
j,`
1∗ ) +

hx
2

(α(k) + η)ûj,`0∗ + pvcû
j,`
0∗ = −Axx

hx
(ûi,`−1

0∗ − ûi,`−1
1∗ )− hx

2
(α(k) + η)ûi,`−1

0∗ + pvcû
i,`−1
0∗ .

Introducing the notation p̃ := p hx
Axx

, we obtain for the system of transmission conditions in Fourier

(ûj,`0 − û
j,`
1 ) +

p̃cc
2

(ûj,`0 + ûj,`1 ) = (ûi,`−1
1 − ûi,`−1

0 ) +
p̃cc
2

(ûi,`−1
1 + ûi,`−1

0 ),

ûj,`0∗ − û
j,`
1∗ +

µ

2
ûj,`0∗ + p̃vcû

j,`
0∗ = −(ûi,`−1

0∗ − ûi,`−1
1∗ )− µ

2
ûi,`−1

0∗ + p̃vcû
i,`−1
0∗ .

(3.14)

3.3 Unbounded domain in the x direction

We start by considering an unbounded domain in the x direction, Ω = (−a, a) × (0, b) with a = ∞. By
Parseval’s relation, for uj,`m,n to be in L2(R± × [0, b]) in (x, y) for any j, `, there exist coefficients Cj,`(k)

and Dj,`(k) such that

ûj,`m,k = Cj,`(k)λ(k)m, ûj,`m∗,k = Dj,`(k)λ(k)m
∗
. (3.15)

Inserting this into the transmission conditions (3.14) we obtain for j = 1, 2, i 6= j and l ≥ 1,

(1− λ+
p̃cc
2

(1 + λ))Cj,` = (−(1− λ) +
p̃cc
2

(1 + λ))Ci,`−1,

(1− λ+
µ

2
+ p̃vc)D

j,` = (−(1− λ)− µ

2
+ p̃vc)D

i,`−1.

We now introduce the notation
ν(k) := − lnλ(k) > 0, (3.16)

which lets us write the transmission conditions in Fourier in compact form: solving (3.12) for µ and
introducing it into the following expression, we find

1 +
µ

2
− λ =

1− λ2

2λ
= sinh ν and

1− λ
1 + λ

= tanh
ν

2
, (3.17)

which gives for the transmission conditions

(2 tanh
ν

2
+ p̃cc)C

j,` = (−2 tanh
ν

2
+ p̃cc)C

i,`−1,

(sinh ν + p̃vc)D
j,` = (− sinh ν + p̃vc)D

i,`−1.

Writing this iteration in matrix form over two iteration steps, we obtain(
Cj,`

Dj,`

)
= Rd,∞(pcc, pvc, ν)

(
Cj,`−2

Dj,`−2

)
, Rd,∞(pcc, pvc, ν) :=

(
ρcc,∞(pcc, ν) 0

0 ρvc,∞(pvc, ν)

)
,

(3.18)
with the convergence factors of the vertex centered and cell centered schemes given by

ρcc,∞(p, ν) :=
p− fcc,∞(ν)

p+ fcc,∞(ν)
, ρvc,∞(p, ν) :=

p− fvc,∞(ν)

p+ fvc,∞(ν)
,

fcc,∞(ν) := 2Axxhx tanh ν
2 , fvc,∞(ν) := Axx

hx
sinh ν.

(3.19)
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3.4 Bounded domain in the x direction

Outer boundary conditions can have an influence on the convergence of Schwarz methods, see for example
[14], and we therefore now also study the case of a bounded domain, Ω = (−a, a)×(0, b) with a = Mhx =
M∗hx < ∞, which leads to slightly more complicated formulas. The Fourier coefficients of the sine
transformed grid function are then of the form

ûj,`m,k = Cj,`(k)λ(k)m + C̃j,`(k)λ(k)−m, ûj,`m∗,k = Dj,`(k)λ(k)m
∗

+ D̃j,`(k)λ(k)−m
∗
.

With the notations in Figure 4, the Dirichlet boundary conditions are enforced in both subdomains as

uM∗,n = 0,
1

2
(uM,n + uM+1,n) = 0.

This gives the relations between the coefficients C,D and their tilde counterpart,

C̃j,`(k) = −λ2M+1Cj,`(k), D̃j,`(k) = −λ2MDj,`(k),

which leads to the Fourier coefficients

ûj,`m,k = Cj,`(k)(λ(k)m − λ(k)2M+1−m), ûj,`m∗,k = Dj,`(k)(λ(k)m
∗
− λ(k)2M−m∗).

Inserting these expressions into the transmission conditions (3.14) we get after simplification using again
(3.16)

(2 tanh(
ν

2
) coth(Mν) + p̃cc)C

j,` = (−2 tanh(
ν

2
coth(Mν) + p̃cc)C

i,`−1,

(sinh(ν) coth(Mν) + p̃vc)D
j,` = (− sinh(ν) coth(Mν) + p̃vc)D

i,`−1.

We thus also get a matrix iteration similar to the unbounded case in (3.18), namely(
Cj,`

Dj,`

)
=Rd,M (pcc,M , pvc,M , ν)

(
Cj,`−2

Dj,`−2

)
, Rd,M (pcc,M , pvc,M , ν) :=

(
ρcc,M (pcc,M , ν) 0

0 ρvc,M (pvc,M , ν)

)
,

(3.20)
with the convergence factors of the vertex centered and cell centered schemes for the bounded case given
by

ρcc,M (p, ν) =
p− fcc,M (ν)

p+ fcc,M (ν)
, ρvc,M (p, ν) =

p− fvc,M (ν)

p+ fvc,M (ν)
,

fcc,M (ν) = 2Axxhx tanh ν
2 coth(Mν), fvc,M (ν) = Axx

hx
sinh ν coth(Mν).

(3.21)

We now recall the convergence factors for the continuous algorithm from [17],

ρc,a(p, r) =
p−fc,a(r)
p+fc,a(r) , ρc,∞(p, r) =

p−fc,∞(r)
p+fc,∞(r)

fc,a(r) = Axxr coth(ar), fc,∞(r) = Axxr,
(3.22)

where

r(k) :=
1

Axx

√
ηAxx + (

πk

b
)2 detA. (3.23)

It is because we introduced the quantity ν(k) in (3.16) that the discrete convergence factors have a
very similar form to the continuous ones from [17], only the functions f which are summarized in Table
1 change. For small hx and hy, ν is equivalent to rhx, and for a = Mhx, ar is equivalent to Mν.
The functions for the continuous and discrete problems are equivalent at first order. We need to find
parameters p in the transmission conditions which minimize the convergence factors ρ(k) in modulus
over all frequencies k, and we investigate two options: the first is to use two parameters pcc and pvc and
optimize separately the convergence factors ρcc for the primal and ρvc for the dual equation. The second,
which is a first step toward the fully anisotropic problem, is to use pvc = pcc, and to minimize the spectral
radius of the iteration matrix R(k) for all k.
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Continuous Discrete CC Discrete VC

fc,∞(r) = Axxr fcc,∞(ν) = 2Axxhx tanh ν
2 fvc,∞(ν) = Axx

hx
sinh ν

fc,a(r) = Axxr coth(ar) fcc,M (ν) = 2Axxhx tanh ν
2 coth(Mν) fvc,M (ν) = Axx

hx
sinh ν coth(Mν)

r = 1
Axx

√
ηAxx + (πkb )2 detA ν = − log

(
1 + µ(k)

2 −
√
µ(k) + µ(k)2

4

)
, µ(k) :=

h2
x

Axx
(

4Ayy
h2
y

sin2(
kπhy

2b ) + η)

Table 1: Functions involved in the various convergence factors

3.5 The best approximation problem: separate optimization

Since with our change of variables (3.16) all convergence factors are of the same form, we define a general
minmax problem for a continuous function f of s on K = [smin, smax],

for F (p, s) := p−f(s)
p+f(s) and G(p) := sups∈K |F (p, s)|,

find popt ∈ R such that G(popt) = infp∈RG(p) := δopt.
(3.24)

Following ideas in [12], we now solve this minmax problem for rather general functions f with the help
of several lemmas.

Lemma 3.1. If f is the identity function, then problem (3.24) has a unique solution, given by

popt =
√
sminsmax, δ

opt = F (popt, smin) = −F (popt, smax). (3.25)

Proof. If p is outside K, then moving p toward K decreases F uniformly, so the best p must be in
K. But then G(p) = max(|F (p, smin)|, |F (p, smax)|), and the minimum of G is thus attained when
F (p, smin) = −F (p, smax), which gives (3.25).

Lemma 3.2. If f is a positive monotonic function, then Problem (3.24) has a unique solution, given by

popt =
√
f(smin)f(smax), δopt = F (popt, smin) = −F (popt, smax).

Proof. This proof is obtained from Lemma 3.1 by the bijective change of variables f .

Lemma 3.3. Both for the unbounded and bounded domain case, the functions f(r) associated with the
continuous convergence factors, and f(ν) associated with the discrete cell centered and vertex centered
convergence factors, are positive monotonic functions.

Proof. For the unbounded case, we see from the first line in Table 1 that the functions are increasing.
For the bounded case, for fc,a, we only need to check that the function s coth s is increasing, which we
see directly by writing its derivative in the form sinh 2s−2s

2 sinh2 s
> 0. For fvc,M , we differentiate in ν to find

f ′vc,M (ν) =
Axx
hx

1
2 cosh ν sinh(2Mν)−M sinh ν

sinh2(Mν)
.

Differentiating the numerator again we find

M cosh ν(cosh(2Mν)− 1) +
1

2
sinh ν sinh(2Mν) > 0,

which shows that the numerator of f ′vc,M (ν) is increasing, and since it is zero for ν = 0, it must be
positive. Hence the function fvc,M is increasing. For fcc,M , its derivative is

f ′cc,M (ν) =
Axx
hx

sinh(2Mν)− 2M sinh ν

2 sinh2(Mν) cosh2 ν
.

A series expansion of the numerator shows that this quantity is positive for M ≥ 1,

sinh(2Mν)− 2M sinh ν =
∑
n≥1

2M((2M)2n − 1)
ν2n+1

(2n+ 1)!
> 0,

which concludes the proof of the lemma.
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It remains to apply the lemmas to the functions f for the different cases to obtain

Theorem 3.1. The best performance of the Robin Schwarz algorithm both in the unbounded and bounded
domains, in the continuous case with s := r and in the discrete cases with s := ν is attained for
popt =

√
f(s(kmin))f(s(kmax)), where f is given in Table 1, and the associated convergence factor is

then bounded by

∣∣∣∣√f(s(kmax))−
√
f(s(kmin))√

f(s(kmax))+
√
f(s(kmin))

∣∣∣∣. Here, kmin = 1 and kmax is defined in (3.8).

3.6 Coupled Optimization

We suppose now that the optimization parameters pcc and pvc for the primal and dual problems are equal
to p, pcc = pvc = p. The convergence speed is then governed both in the bounded and unbounded case
by the spectral radius of the corresponding iteration matrix R, that is

ρd(p, ν) := max(|ρcc(p, ν)|, |ρvc(p, ν)|).

We thus obtain for two functions f1(= fcc) and f2(= fvc) the general best approximation problem

for Fj(p, ν) =
p− fj(ν)

p+ fj(ν)
, F (p, ν) = maxj(|Fj(p, ν)|), G(p) = sup

ν∈K
|F (p, ν)| ,

find popt ∈ R, G(popt) = inf
p∈R

G(p) =: δopt, K := [νmin, νmax].
(3.26)

Lemma 3.4. If f1 and f2 are positive increasing functions of ν, and f2 ≥ f1, then there exists a unique
solution popt of (3.26) given by

popt =
√
f1(νmin)f2(νmax), δopt =

√
f2(νmax)−

√
f1(νmin)√

f2(νmax) +
√
f1(νmin)

. (3.27)

Proof. Since δopt ≤ G(p = 1) < 1, popt must be positive, since G(p < 0) > 1. We next evaluate the
maximum in the function F : for positive p, we obtain(

p− f1(ν)

p+ f1(ν)

)2

−
(
p− f2(ν)

p+ f2(ν)

)2

=
4p(f2(ν)− f1(ν))(p2 − f1(ν)f2(ν))

(p+ f1(ν))2(p+ f2(ν))2
,

which shows that

F (p, ν) =


∣∣∣∣f2(ν)− p
f2(ν) + p

∣∣∣∣ if p ≤
√
f1(ν)f2(ν),∣∣∣∣f1(ν)− p

f1(ν) + p

∣∣∣∣ if p ≥
√
f1(ν)f2(ν).

(3.28)

Now for all ν, we have by assumption that f2(ν) ≥ f1(ν), and therefore p ≤
√
f1(ν)f2(ν) implies

p ≤ f2(ν), and p ≥
√
f1(ν)f2(ν) implies p ≥ f1(ν). The function f defined by f(ν) =

√
f1(ν)f2(ν) is

increasing therefore bijective, and we can thus write F from (3.28) without the modulus,

F (p, ν) =


f2(ν)− p
f2(ν) + p

if p ≤ f(ν),

p− f1(ν)

f1(ν) + p
if p ≥ f(ν).

(3.29)

We next show that if popt exists, it must lie in f(K): if p ≤ f(νmin) then for all ν ∈ K, p ≤ f(ν), and
therefore

F (p, ν) =
f2(ν)− p
f2(ν) + p

,

which is an increasing function of ν over K, and therefore reaches its maximum at νmax:

G(p) = F (p, νmax) =
f2(νmax)− p
f2(νmax) + p

.
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Now G is a continuous decreasing function of p on (−∞, f(νmin)) and reaches its minimum at f(νmin).
A similar argument holds for p ≥ f(νmax) and (f(νmax),+∞). Therefore the minimum of G over R is
reached over f(K). Then by compactness and continuity, there exists popt ∈ f(K), δopt ∈ (0, 1) solution
of the minmax problem.

To determine popt ∈ f(K), we consider F now as a function of ν,

F (p, ν) =


p− f1(ν)

f1(ν) + p
if ν ≤ f−1(p),

f2(ν)− p
f2(ν) + p

if ν ≥ f−1(p).
(3.30)

Hence F (p, ν) is decreasing in ν on [νmin, f
−1(p)], and increasing in ν on [f−1(p), νmax], and therefore

G(p) = max (g1(p), g2(p)) with g1(p) =
p− f1(νmin)

f1(νmin) + p
and g2(p) =

f2(νmax)− p
f2(νmax) + p

.

As g1 increases, g2 decreases, and looking at their values at 0 and ∞, it easy to see that there exists popt

such that G(p) = g2(p) for p ≤ popt and G(p) = g1(p) for p ≥ popt. Hence, the minimum is reached at
popt, that is at equilibrium, g1(popt) = g2(popt), and popt =

√
f1(νmin)f2(νmax), which leads to

G(popt) =

√
f2(νmax)−

√
f1(νmin)√

f2(νmax) +
√
f1(νmin)

.

Theorem 3.2. The best performance for the DDFV Robin Schwarz algorithm for a single parameter
pcc = pvc = p is obtained for

poptddfv,α =
√
fcc,α(νmin)fvc,α(νmax), (3.31)

where α ∈ {M,∞} for either the bounded or unbounded case from Table 1, and the convergence factor

is then bounded by

√
fvc,α(νmax)−

√
fcc,α(νmin)√

fvc,α(νmax)+
√
fcc,α(νmin)

, where νmin = ν(kmin), νmax = ν(kmax) with kmin = 1 and

kmax = b
hy
− 1.

Proof. It suffices to notice that for all ν > 0, fcc,α(ν) < fvc,α(ν), as we can see from Table 1, since

fcc,α(ν) < fvc,α(ν) ⇐⇒ 2 tanh
ν

2
< sinh ν ⇐⇒ 2

sinh ν
2

cosh ν
2

< 2 sinh
ν

2
cosh

ν

2
⇐⇒ cosh2 ν

2
> 1,

which clearly holds. Then apply Lemma 3.4 with f1 = fcc,α and f2 = fvc,α.

4 Numerical Experiments

We now test our optimized DDFV Schwarz algorithms numerically, both for cases covered by our analysis
on rectangular meshes with two subdomain decompositions, and more general meshes and decompositions
including cross points.

4.1 Experiments Covered by our Analysis

We study as our first model problem

−∇ · (A∇u) + u = 0, in Ω = (−1, 1)× (0, 1),

with the two subdomains Ω1 = (−1, 0)× (0, 1) and Ω1 = (0, 1)× (0, 1), and use rectangular meshes, for
which our fully discrete analysis holds. We determine numerically optimized parameters pnum by running
our implementation to find the parameter which gives the best performance. We simulate directly the
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Figure 5: Isotropic rectangular mesh called m22 on the left, and anisotropically refined rectangular mesh
in the x-direction called anisox4y1 in the middle, and in the y-direction called anisox1y4 on the right,
each for the corresponding second lines in Table 2.

Continuous Analysis Discrete Analysis Numerically Best

∆x,∆y poptccc,∞ poptcvc,∞ poptccc,a poptcvc,a poptcc,∞ poptvc,∞ poptcc,M poptvc,M poptddfv,∞ poptddfv,M poptcc,num poptvc,num poptddfv,num

Axx = 1, Ayy = 1, η = 1, mesh m22
2−3, 2−3 9.11 8.52 9.12 8.53 6.03 8.59 6.04 8.60 8.54 8.55 6.04 8.59 8.27
2−4, 2−4 12.87 12.47 12.89 12.48 8.61 12.20 8.62 12.22 12.18 12.20 8.61 12.18 11.79
2−5, 2−5 18.21 17.92 18.23 17.94 12.20 17.27 12.22 17.29 17.26 17.29 12.20 17.20 16.26
2−6, 2−6 25.75 25.54 25.78 25.58 17.27 24.43 17.29 24.46 24.42 24.46 17.24 24.32 22.13

Axx = 16, Ayy = 1, η = 1, mesh m22
2−3, 2−3 36.43 34.08 44.26 41.41 28.54 29.16 34.76 35.52 29.42 35.83 34.71 35.49 35.01
2−4, 2−4 51.50 49.86 62.57 60.59 40.44 41.59 49.16 50.56 41.69 50.68 49.11 50.48 49.59
2−5, 2−5 72.82 71.68 88.48 87.09 57.22 58.95 69.53 71.63 58.98 71.67 69.37 71.38 68.66
2−6, 2−6 102.99 102.18 125.13 124.15 80.93 83.41 98.34 101.35 83.42 101.36 98.02 100.94 96.45

Axx = 16, Ayy = 1, η = 1, mesh anisox1y4
2−3, 2−5 72.82 71.68 88.48 87.09 48.82 69.07 59.33 83.95 69.05 83.91 59.23 83.57 80.07
2−4, 2−6 102.99 102.18 125.13 124.15 69.08 97.71 83.94 118.73 97.70 118.72 83.73 118.14 109.80
2−5, 2−7 145.64 145.07 176.96 176.27 97.71 138.19 118.73 167.91 138.19 167.91 118.20 166.69 148.52
2−6, 2−8 205.97 205.57 250.26 249.77 138.19 195.44 167.91 237.46 195.43 237.46 167.15 235.69 192.65

Axx = 1, Ayy = 16, η = 1, mesh m22
2−3, 2−3 35.60 33.30 35.60 33.30 12.37 63.59 12.37 63.59 51.02 51.02 12.37 63.44 48.41
2−4, 2−4 50.35 48.75 50.35 48.75 19.07 84.09 19.07 84.09 78.62 78.62 19.06 83.70 74.03
2−5, 2−5 71.20 70.08 71.20 70.08 27.71 116.29 27.71 116.29 114.24 114.24 27.68 115.37 103.04
2−6, 2−6 100.69 99.90 100.69 99.90 39.47 163.47 39.47 163.47 162.73 162.73 39.41 161.89 135.74

Axx = 1, Ayy = 16, η = 1, mesh anisox4y1
2−5, 2−3 35.60 33.30 35.60 33.30 23.59 33.50 23.59 33.50 33.36 33.36 23.55 33.45 32.25
2−6, 2−4 50.35 48.75 50.35 48.75 33.67 47.67 33.67 47.67 47.62 47.62 33.63 47.54 45.88
2−7, 2−5 71.20 70.08 71.20 70.08 47.73 67.52 47.73 67.52 67.50 67.50 47.63 67.17 63.33
2−8, 2−6 100.69 99.90 100.69 99.90 67.54 95.53 67.54 95.53 95.52 95.52 67.32 94.96 85.93

Table 2: Theoretically and numerically optimized parameters p for various anisotropic diffusions and
meshes.
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Figure 6: Meshes not covered by our discrete analysis used with refinements for Table 3.

error equations, and start with a random initial guess to make sure all error components are present.
We use the three meshes shown in Figure 5, which we refine by dividing the mesh sizes by 2 several
times. We show in Table 2 the corresponding results, including our theoretically optimized parameters
at the continuous and discrete level from Theorem 3.1 and Theorem 3.2. For the cell centered and
vertex centered schemes, we use for the optimized parameters the same notation as in Table 1 for the
corresponding functions: poptcc,∞ and poptvc,∞ for the unbounded domain optimized choice, and poptcc,M and

poptvc,M for the bounded domain optimized choice. For the DDFV results, we use poptddfv,∞ and poptddfv,M for the
theoretical optimized parameters from Theorem 3.2. For the optimized parameters from the continuous
analysis, there is also a small influence on the value depending on the use of a cell centered scheme or
a vertex centered scheme, since the cell centered scheme uses one more grid point in the interior, which
increases the estimate kmax, see (3.8), and we use poptccc,∞, poptcvc,∞, poptccc,a, and poptcvc,a for the corresponding

values. Finally, we denote by poptcc,num, poptvc,num and poptddfv,num the value of the parameter which worked
best in the numerical experiments by minimizing the numerical convergence factor ρnum of the method.
The numerical convergence factors ρnum were computed by dividing the error after 100 iterations by the
initial error and taking the 1/99-th root, and we denote the optimized value by ρoptnum. There are several
interesting observations: first, we see that our new discrete bounded domain analysis very well predicts the
numerical behavior, both for the cell centered and vertex centered discretizations and the combined DDFV
scheme. Second, we see that for the Laplace case on an isotropic mesh, the bounded and unbounded
analyses give similar results, and the vertex centered scheme performs like predicted also by the continuous
analysis, while the cell centered scheme works best for a slightly smaller value of the parameter, which
is very well captured by the discrete analysis. In the anisotropic case with isotropic mesh, there is a
substantial difference between the continuous and discrete analysis, and the continuous parameters work
less well with strong diffusion along the interface direction, Ayy = 16. There is also a big difference
between the cell centered and vertex centered discretizations then, the former needs a much smaller, and
the latter a much larger optimized parameter than predicted by the continuous analysis. This is very well
captured by our new discrete analysis. With strong diffusion across the interface, Axx = 16 , the difference
between the bounded and unbounded domain analysis becomes important, but the difference between
cell centered and vertex centered discretization is negligible. Finally, if one adapts the discretization
to the anisotropy with a corresponding anisotropic mesh, then the continuous analysis becomes more
appropriate again, the marked discretization differences above diminish, though the bounded versus
unbounded domain analyses importance remains. To conclude, for anisotropic diffusion, it is important
to have optimized parameters for the discretization employed, and taking into account the subdomain
sizes, especially when the anisotropy is large.

4.2 Experiments not Covered by our Analysis

We next study a two subdomain decomposition for DDFV discretizations where our analysis does not hold
any more. We show the meshes used in Figure 6, namely a triangular mesh, a non-matching rectangular
mesh, and a general polygonal mesh. We show in Table 3 the results we obtained as a function of
the mesh size at the interface hy, and we now also show the numerically optimized convergence factors

ρoptddfv,num, and for the non-matching rectangular mesh a heuristic formula poptddfv,M (
hy
3 ) for a theoretical

value with the corresponding numerical ρddfv,num. For the triangular mesh, we see that the discrete
bounded domain analysis from Table 2 still gives quite a good prediction poptddfv,M of the numerically

better performing parameter indicated by poptddfv,num in Table 3, it is just a bit too large. For the non-
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Triangular mesh non-matching rectangular mesh General polygonal mesh

hy poptddfv,num ρoptddfv,num poptddfv,M (
hy
3 ) ρddfv,num poptddfv,num ρoptddfv,num poptddfv,num ρoptddfv,num

Axx = 1, Ayy = 1, η = 1
2−3 7.14 0.36862 14.96 0.65728 15.48 0.65150 7.86 0.47536
2−4 10.03 0.50431 21.18 0.74192 21.76 0.73881 11.52 0.58273
2−5 14.02 0.61881 29.96 0.80624 29.77 0.80620 16.01 0.67410
2−6 19.55 0.70966 42.37 0.85492 39.07 0.84919 22.74 0.74700

Axx = 16, Ayy = 1, η = 1
2−3 28.97 0.36842 62.07 0.55472 46.24 0.53020 28.74 0.40197
2−4 41.01 0.50141 87.78 0.63339 74.94 0.58622 44.78 0.53487
2−5 57.99 0.62145 124.15 0.72350 107.78 0.6909 61.77 0.63437
2−6 78.78 0.71177 175.57 0.79615 150.21 0.76996 83.59 0.71457

Axx = 1, Ayy = 16, η = 1
2−3 33.89 0.46124 98.21 0.82432 110.73 0.81007 38.30 0.61290
2−4 47.83 0.58546 140.66 0.85607 153.64 0.85031 57.51 0.68985
2−5 67.16 0.68884 199.58 0.88194 188.27 0.87939 81.14 0.75575
2−6 93.52 0.76320 282.47 0.91427 220.13 0.89859 112.62 0.81342

Table 3: Heuristically and numerically optimized parameters p for different non-conforming and non-
rectangular meshes, and corresponding numerical contraction factors.

matching mesh however, it seems that the artificially cut mesh size
hy
3 visible in the middle in Figure

6 needs to be used in the discrete formulas to get a good prediction, both hx and hy must be divided
by 3, which leads to parameters close to the best performing ones numerically. Finally, for the general
polygonal last mesh, our discrete rectangular mesh analysis give rather good predictions. To conclude,
the new discrete optimized parameters work also outside their scope of validity, and for non-matching
grids, the smallest artificially created mesh size at the interface should be used in the theoretical formulas.

4.3 Image Reconstruction Application

We finally show an application of anisotropic diffusion for image reconstruction. Our domain embedded
in the rectangle (−2, 2)×(−1, 1) is shown in Figure 7. It represents a 2D section of a model underground,
where in the refined mesh region at the bottom there is a salt dome of interest for oil recovery. On the
top we have the surface of the earth, with a flat part and a downward sloped part. We decompose the
domain into four subdomains, three rectangular ones and the top right one is triangular, and mesh them
using different meshing techniques. In the center the decomposition has a cross point. We generate an
artificial image ũ0(x, y) in this domain with several layers, shown in Figure 8 at the top on the left. We
then add random noise to this image to obtain u0(x, y), which leads to the image on the top right in
Figure 8. To remove the noise, one can use a time dependent diffusion equation of the form

∂tu(x, y, t) = ∇ · (A(x, y)∇u(x, y, t)), u(x, y, 0) = u0(x, y),

and take one or a few time steps of a Backward Euler method to smooth the high frequency noise. If one
does one step with the time step ∆t = 0.1 on the mesh in Figure 7, and uses isotropic diffusion, A = 1,
we obtain the result shown at the bottom left of Figure 8. We see that all sharp boundaries have also
been diffused, together with the noise. To avoid this, we choose now anisotropic diffusion, with

A =

(
1 0
0 1e− 5

)
except in the region −1 < y < −0.75 and −0.3 < x < 0.3 where we chose

A =

(
1e− 5 0

0 1

)
.
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Figure 7: Domain for the image reconstruction example for a salt dome. The computations are done
with a 3 times more refined mesh.

Figure 8: Top left: original image without noise. Top right: image with random noise. Bottom left:
reconstructed image using isotropic diffusion. Bottom right: reconstructed image using anisotropic dif-
fusion.
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This choice is well adapted to our image, since in the special zone, the boundaries are vertical, where in
the rest they are horizontal, and we do not want to diffuse across the sharp interfaces, only along them.
The reconstruction computed with our algorithm is shown at the bottom right in Figure 8. We clearly
see that anisotropic diffusion is very well capable of preserving sharp edges in the noise removal process.
In a more realistic situation one would need to use in the anisotropic diffusion tensor the gradient of u to
determine the diffusion directions to avoid. Using the Robin parameter p = 0.05, our algorithm needed
14 iterations to converge to a tolerance of 1e − 3, whereas with p = 0.01 it took 45 iterations, and with
p = 1.5 it took 213 iterations. This illustrates well the importance of a good choice of the parameter p.

5 Conclusion

Discrete Duality Finite Volume methods (DDFV) are a recent class of powerful discretizations for
anisotropic diffusion problems. They reach high accuracy also on distorted meshes and for high anisotropies
due to excellent gradient reconstructions. DDFV methods require however more unknowns than classical
finite volume methods, and therefore good solvers are needed. Optimized Schwarz methods (OSM) are
excellent candidates for this task, since they are naturally parallel, and their performance can also be
tuned for highly anisotropic diffusion. We proved convergence of a non-overlapping Schwarz method with
Robin transmission conditions for a very general decomposition of a DDFV discretized anisotropic diffu-
sion problem into many subdomains including cross points, and also discovered that the Robin parameter
can be optimized separately for primal and dual grid components in DDFV. We derived such asymptot-
ically optimized parameters that are easy to use in practice, and showed in numerical experiments that
very good convergence speeds are achieved, also for the concrete application of image reconstruction.
This application shows however also a further research direction, namely how the optimized parameters
should be adapted to highly variable coefficients, a case not covered by the present analysis. Also higher
order transmission conditions of Ventcell type should be investigated which can further accelerate OSMs.
Finally, one should also study the preconditioning capabilities of our OSMs for Krylov methods, but these
topics will be addressed elsewhere.
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