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Ensuring performance and provider profit through data replication in
cloud systems

Uras Tos1,2,3 · Riad Mokadem1 · Abdelkader Hameurlain1 · Tolga Ayav2 · Sebnem Bora3

Abstract
Cloud computing is a relatively recent computing paradigm that is often the answer for dealing with large amounts of data. 
Tenants expect the cloud providers to keep supplying an agreed upon quality of service, while cloud providers aim to 
increase profits as it is a key ingredient of any economic enterprise. In this paper, we propose a data replication strategy for 
cloud systems that satisfies the response time objective for executing queries while simultaneously enables the provider to 
return a profit from each execution. The proposed strategy estimates the response time of the queries and performs data 
replication in a way that the execution of any particular query is still estimated to be profitable for the provider. We show 
with simulations that how the proposed strategy fulfills these two criteria.

Keywords Cloud computing · Data replication · Performance · Economic benefit

1 Introduction

In the last decade cloud computing has been in the spot-
light both as a research area and the implementations in
the industry. Cloud providers are able to provide vast com-
putational resources for an affordable sum by delivering
abstracted resources that is provided by relatively cheap hard-
ware. Providers rent these shared resources to the tenants
in an economy based-manner [9], with the ultimate aim of
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returning profit. As the load generated by tenant applications
change, cloud resources assigned to the tenants can be elas-
tically adjusted. Using a pay-as-you-go pricing model [3],
tenants are billed for only the portion of the cloud resources
that are consumedby them.While the providers pursue profit,
tenants expect the providers to deliver a quality of the service
that will serve the tenants’ needs. This economic relationship
between the provider and the tenant is clearly defined in the
service level agreement (SLA) [32], which is a legally bind-
ing contract between the two parties. Among the terms of
this contract, an agreed upon set of service level objectives
(SLO) are included to define the quality of the service.Breach
of the SLA terms often result in some consequences for the
provider, including monetary compensation as a penalty.

Increased data availability and improved level of perfor-
mance are some important issues that exist in the cloud
systems. Data replication has been around for decades
that addresses these issues as well as providing other
benefits. Data replication has been studied in many tradi-
tional systems, including (i) database management systems
(DBMS) [14], (ii) parallel and distributed systems [23],
(iii) mobile systems [11] and (iv) other large-scale systems
including P2P [31] and data grid systems [35].

A common way of replicating data in the traditional
systems is creating as many replicas as possible to attain
maximum resource utilization to provide best performance.
In cloud systems, such a data replication strategy may not



Theperformance evaluation study aims to show the impor-
tance of data replication in satisfying response time and to
demonstrate howPEPRv2 not only satisfies the SLA, but also
ensures profitability of the cloud provider. In a simulation
environment, we design a scenario that compares the perfor-
mance of PEPRv2 against another data replication strategy
for cloud systems, as well as the original PEPR strategy.

The organization of the rest of the paper is as follows. Sec-
tion 2 provides a summary of relatedwork on data replication
strategies in the cloud. Section 3 gives some background
information and describes the cloud environment in which
PEPRv2 operates. Sections 4 and 5 describe the details of
PEPRv2 and the implemented economic cost model, respec-
tively. Section 6 evaluates the performance of PEPRv2 in a
simulation study. Section 7 concludes the paper and discusses
some possible future studies.

2 Related work

In data replication context, several existing strategies already
deal with some of the issues addressed in this paper. Most
notably, the consideration of the economic impact of data
replication is particularly interesting for our work. This sec-
tion briefly discusses the strategies according towhether they
take the economic aspect of data replication into account.

2.1 Data replication without considering economic
impact

Cost-effective dynamic replication management (CDRM)
strategy [37] highlights that having too many replicas does
not increase availability but instead results in diminished
returns. CDRM calculates andmaintains aminimum number
of replicas to satisfy a given level of availability. In the con-
sidered cloud storage, data sets are fragmented into several
blocks. Authors calculate the availability of data sets depend-
ing on the availability of each of their fragments. With this
information, CDRM calculates a required number of repli-
cas for each fragment. Placement of replicas is performed
in such a way that balances the load on all sites. Reduc-
ing access skew ensures that all of the fragments are served
without causing a bottleneck. As a consequence of balanced
load, the authors also observe increased access performance.
Investigating the relationship between the number of replicas
and the level of availability has been the focus of other stud-
ies as well [22]. Another approach [33] that is very similar to
CDRM also deals with finding minimum number of replicas
from a data popularity point of view in cloud storage clus-
ters. In this work, not all data but only a subset of files which
exceed an access threshold are considered for replication.

Increasing data locality, more specifically spatial locality
through data replication yields increased performance with

be economically beneficial for the provider, since creation of 
a large number of replicas can result in a wasteful resource 
utilization, degraded performance and reduced profit. There-
fore, dealing with data replication, three major questions of 
what to replicate, when to replicate, and where to repli-
cate [26] must be answered in such a way to satisfy the 
performance in an economically feasible way [36].

In the literature, current efforts on data replication in 
cloud systems are mainly interested in satisfying the objec-
tive of a given level of availability for the tenants [29,33]. 
On the other hand, satisfying performance objectives has 
been comparatively a less visited issue with only a handful 
of studies being particularly interested in improved perfor-
mance [4,12,37,39]. This may be particularly attributed to 
the lack of performance guarantees being a de facto part of 
the SLA until recently [16,28]. Moreover, even fewer of the 
proposed strategies consider the economic impact of data 
replication on the cloud provider [7,10].

We propose PErformance and Profit oriented data Repli-
cation strategy, version 2 (PEPRv2) that aims the simulta-
neous satisfaction of both the SLA terms, e.g. availability 
and performance and ensuring the economic profit of the 
cloud provider. We treat the response time as the main per-
formance metric, which is also included in the SLA. PEPRv2 
estimates the response time of the queries when they arrive 
at the cloud. If the estimated response time is greater than 
the SLO response time threshold, profitability of that partic-
ular query is then estimated. The profit estimation includes 
any possible replication event that will be necessary dur-
ing execution. Moreover, PEPRv2 also has the ability of 
dealing with a group of queries that are executed in paral-
lel to achieve a task. Replication is carried out only when 
both the response time and economic benefit of the provider 
are estimated to be satisfied. Placement of the new repli-
cas are also performed considering these two criteria. The 
number of replicas is dynamically adjusted as the SLOs 
are satisfied over time. Furthermore, a minimum number of 
replicas are always kept to ensure a minimum given avail-
ability [37].

Predecessor of PEPRv2 has been introduced in our earlier 
paper [36]. While the two strategies bear some similarities, 
PEPRv2 is proposed with several novel contributions includ-
ing (i) a response time estimation model that regards both the 
computational load and data intensiveness of queries sepa-
rately, (ii) consideration of distributed execution of queries 
on any number of virtual machines, and in turn inclusion of 
this aspect in the proposed replication decision algorithms,
(iii) a detailed economic model that estimates the monetary 
correspondances of the cloud resources expected to be con-
sumed by each query (iii) a realistic performance evaluation 
study performed on a heterogeneous cloud environment that 
includes a comparison with another data replication strategy 
for cloud systems, as well as the predecessor of PEPRv2.



strategically placing replicas closer to the requestor sites.
Even though some strategies do not directly consider perfor-
mance as an objective, increased performance is observed
as a consequence of data replication [17]. Another form
of increasing locality of data for improved performance is
focusing on temporal locality. In this manner, some strate-
gies argue that frequently accessed data sets will likely stay
popular in the future [13] and decidewhat to replicate accord-
ing to the mentioned popularity assessment. This is a simple
but effective strategy for satisfying performance guarantees
as evidenced by RTRM strategy [4]. When accessing pop-
ular data is causing a higher-than-desired average response
time, these data sets are replicated to resolve the performance
issue.What is interesting about RTRM is that it replicates not
all but just popular data in order to conserve resource usage.

Some other strategies deal with availability as a reliability
issue regarding the cloud sites [18,19]. While availability
is a frequently considered objective, what sets these two
strategies apart is their consideration of cost-effectiveness in
satisfying availability. By determining the duration to keep
replicas according to a reliability metric, these strategies can
optimize the number of replicas for each file, hence saving
provider costs on storage resource.

2.2 Data replication with considering economic
impact

Modeling a data placement strategy to improve availability
can be also be achieved through custom economic cost mod-
els. Some present an auction model to implement a replica
placement policy in a large-scale cloud storage environment
[39]. If the desired availability level cannot be maintained,
a bidding is held to determine some placement for a new
replica. Bidding price is dependent on several properties
of the nodes including failure probability, network band-
width and available space. Some performance increase is also
observed as a consequential benefit of data replication. Oth-
ers deal with a similar problem in a multi-cloud context [1],
where tenants receive services frommultiple cloud providers.
These examples use a custom economicmodel that is tailored
to take into account the heterogeneity caused by resource and
pricing variations amongmultiple cloud providers. Similarly
to existing strategies, this economic model is used in order
to minimize a cost model [21].

In another similar effort, Skute [7] is introduced as a cost-
efficient data replication strategy based on a virtual economy
that takes into account marginal utility, storage usage and
query load. Virtual nodes act autonomously and they period-
ically announce their rent to other nodes. Moreover, nodes
also accumulate wealth by answering queries and spend this
wealth on other nodes to store replicas on them, accord-
ing to their rent. Skute self organizes replica configuration
among the virtual nodes to minimize communication cost

while maximizing economic benefit. Even though the strate-
gies of this type utilize some form virtual economy, it is not
an actual monetary cost model of the provider–tenant rela-
tionship [6].

Increasing availability by replicating popular data closer
to the locations that originate most amount of requests is
also a frequently researched problem. Some strategies even
propose mechanisms to predict future accesses based on his-
torical access records to preemptively replicate data to meet
the increased demand [27]. Moreover, some other strategies
deal with data popularity that peaks for a short amount of
time, and then tapers off [25]. In order to deal with the quick
burst of popularity, these data replication strategies quickly
respond and change the replica configuration accordingly.
Increasing data locality based on popularity also decreases
network consumption [20].

Tos et al. [36] deals with some of the concepts that are
proposed in this paper. Proposed work deals with performing
data replication in the cloud with respect to the performance
metric in the SLA as well as estimating the provider profit
in each billing period. Response time estimation for tenant
queries are calculatedwhen the queries are arrive at the cloud.
If the estimation indicate that a desirable performance can-
not be satisfied, data replication is performed, but only when
it is economically feasible for the provider. However, in the
mentioned work, inter-query parallelism is not considered.
Moreover, the performance evaluation considers a compari-
son with a strategy that is targeted at the data grid systems.

3 Background

While cloud providers offer numerous services to the public,
they are also business entities that operate for generat-
ing profit. Regulated by the SLA, the relationship between
provider and tenant revolves around the quality of the service
and monetary cost of these services. Providers take advan-
tage of cheaper hardware, resource sharing, and other factors
to maximize profit and offer elastically scalable resources
simultaneously in a large scale.

Providing computing resources in a global scale with a
realistic quality of service pose significant challenges for the
providers. Often times providers establish facilities in mul-
tiple geographical regions to achieve this goal. By having
facilities in various regions, providers aim to handle queries
from tenants with a large diversity of location. Evidently,
having facilities in a number of different regions may also
result in operating costs of the provider to vary from region
to region, depending on the resources consumed (e.g. power
costs). This introduces a heterogeneous service supply by
the provider. In a particular region, the bandwidth may be
cheaper than the storage, while the inverse might be true for
another region. This is another issue that should be taken



query. However, going through with the decision to replicate
depends on the satisfaction of two criteria.A replication event
occurs if and only if it will satisfy the response time guarantee
and it is a profitable course of action for the provider.

Initially a queryQ is submitted to the cloud that contains a
number of nodes {n1, n2, . . . , ni }. Assuming that Q is dele-
gated to node ni that will execute it, in the first step a response
time estimation for that particular query TQ,ni is calculated.
If the estimated TQ,ni is determined to be greater than the
service guarantee given to the tenant (TSLO ), it would pose
a breach of contract and cause the provider to pay a penalty
to the tenant. Therefore, provider should perform data repli-
cation beforehand to prevent this problem.

The response time estimation is the mechanism that
ensures provider to decide whether to replicate or not to
meet tenant requirements. However, response estimation is
not enough on its own to carry on with the replication. Eco-
nomic benefit of the provider must also be ensured for the
provider to keep the business afloat and continue serving the
tenants.

Algorithm 1 Replication decision algorithm.
1: TQ,ni ← estimated response time of executing Q on node ni
2: if Availability(Q, d j ) < MinAvailabili t ySLO then
3: PlaceReplica()
4: end if
5: if TQ,ni > TSLO then
6: p ← estimated profit generated by the execution of Q
7: if p > 0 then
8: PlaceReplica()
9: end if
10: end if

Executing query Q costs some monetary sum for the
provider. Placement of some replica that is associated with
Q on a node n j that may or may not be the same node as ni is
included in this cost. Ideally, provider wants to return some
profit from the execution of each query. Therefore a profit
estimation is also performed before the execution to evaluate
the profitability of the potential replication decisions. Repli-
cation is performed only if the result of these two estimations
are acceptable as described in Algorithm 1. Of course, repli-
cation decision algorithm also checks the availability of the
data associated withQ and replicates the concerned data set
if the availability is below the threshold defined in the SLA.

4.1.1 Response time estimation

When a queryQ is submitted to the cloud for processing, an
available node n j takes it up for execution. Processing of Q
requires data sets of {d1, d2, . . . , d j } during execution. Some
of this data may already be present on ni or it may be neces-
sary for them to be read from remote nodes {n1, n2, . . . , nk}.

into account by any data management strategy operating in 
the cloud.

The heterogeneity is not only present for the costs of the 
provider, but also the performance of the cloud services as 
well. As an example of this phenomenon, all regions of the 
cloud are interconnected via network links. It can be expected 
that, while the network links are more abundant and less 
expensive inside the subregions; bandwidth is less abun-
dant and more expensive upper in the hierarchy, i.e. between 
different geographical regions [24]. Inside the subregions, 
network links are dedicated to the provider’s use. On the 
other hand, usually the Internet infrastructure is used between 
different geographical regions, therefore bandwidth is more 
precious in that case.

Tenants consume the services they obtained from the 
provider by submitting queries to the cloud in order to pro-
cess their data. The data to be processed is typically globally 
distributed in the cloud. Queries may require one or more 
data sets during execution. Considering the network capabil-
ities between regions and load variations in the nodes that 
will execute the queries, meeting response time objective is 
non-trivial for the provider.

Breach of SLA is handled relatively straightforward from 
the provider’s perspective. For example, in a case when the 
tenant does not pay the rent, the provider can simply stop 
providing the services. On the other hand, it is more difficult 
to keep track of SLA breaches from the tenant’s perspective. 
Usually the provider monitors the quality of the service, and 
when the service quality falls below a threshold, provider 
pays a monetary sum to the tenant [16]. Obviously this 
approach involves a certain amount of trust between the par-
ties.

4 Data replication strategy

Data replication involves several operation steps to be carried 
out in a meaningful way to achieve desired benefits. These 
steps are finding what data to be replicated, when the replica-
tion event should be carried out, how many replicas to create 
and where to place these replicas [26]. As a result, PEPRv2 
makes each of these decisions to determine a near-optimal 
replica configuration. Instead of gathering popularity data 
and performing a periodical replica reconfiguration, PEPRv2 
performs the necessary replication tasks before executing the 
queries. Hence, what to replicate is always the data associated 
with each query being executed at a particular time.

4.1 When to replicate

In PEPRv2, we follow an on-arrival decision approach for 
whether to replicate. That is, when a query arrives at the 
cloud, all replication decisions are made before executing that



Some queries may read data sets only once while other
queries may require data sets to be accessed many times,
depending on the data intensiveness of any particular query.
This variations between queries in terms of data intensiveness
is included in the response time estimation with the factor of
β.During execution, the portionof data that resides on remote
nodes would be required to transferred to the executing node
ni . This transfer took place over the I/O throughput capability
tnk of the remote node nk . Moreover, network link between
ni and nk is also expected to be consumed. Since the network
links other than the ones inside a particular subregion usually
established over the Internet, they are heterogeneous. There-
fore, our estimation model takes into this account by using
the expected available bandwidth between the nodes at the
time of execution.

Total data involved with theQ is expected to be processed
on ni by consuming local I/O throughput of tni . Of course,
there may already be some other query load on ni that may
slow down the execution of Q. This situation is handled by
taken lni into account, which is the expected query load on
ni during execution. Every single query execution may be
different as some queriesmay havemore computational com-
plexity than others. We use α as a factor to differentiate these
computational variations between queries.

Response time estimationmodels for similar scenarios has
been studied in traditional systems [23], whereas Equation 1
shows our response time estimation for the aforementioned
query execution scenario.

TQ,ni = α

j∑

1

d j lni
tni

+ β

j∑

1

k∑

1

(
d j

bni ,nk
+ d j

tnk

)
φ j,k (1)

φ j,k =
{
1 if d j migrated from node nk to ni
0 otherwise

(2)

As depicted, the response time estimation mainly consist
of the sumof twoparts, namely processing andnetwork trans-
fers. As a result, TQ,n > TSLO condition may occur in two
situations that are relevant to those parts. (i) If the remote data
is in a low bandwidth region relative to the executing node
or the node hosting the remote data is having low I/O per-
formance, this may have an adverse affect on response time.
(ii) Ideally the queries should be processed by a node with a
suitable computational load. However, if the CPU load on the
executing node is high during the execution, this would also
cause not meeting the response time guarantee. Therefore, it
is beneficial to replicate remote data to more suitable loca-
tions as well as migrating the tasks to the nodes with enough
computational resources to prevent over-utilization.

In some contexts, tenant may require the completion of
a task that involve parallel execution of multiple indepen-
dent queries [15]. The execution of these queries naturally
takes place in parallel on a multitude of cloud sites. The

completion of that particular task depends on the completion
of all of its queries. In this case, due to parallel execution,
the response time estimation should be taking each of the
concerned queries into account. Rather than the sum, the log-
ical approach is to estimate which of the mentioned queries
is going to take the longest amount of time to produce a
response. PEPRv2 also handles this parallel executionmodel.

Let K be a tenant task that consist of a number of queries,
K = {Q1, Q2, . . . , Qi } that are executed in a parallel. We
assume that a query Qi in K requires a data set Rn for
processing, and all queries of the same task begins at the
submission of the task. Given that all the R data sets as
R = {R1, R2, . . . , Rn} are distributed in the cloudwith repli-
cas on j sites as N = {N1, N2, . . . , N j }; queries will be

executed on the replicas in parallel as Q j
i . In this case, the

estimated response time TK of the task K is determined by
the longest estimated amount of time it takes for Qi to exe-
cute on a certain particular data set R j

n as shown in Eq. 3.

TK = max
j

T (O j
i )|O j

i ∈ K (3)

4.1.2 Profit estimation

While the function of the cloud provider is to create and
distribute services for the tenants, the purpose of the cloud
provider is to obtain economic benefit, in other words mone-
tary profit. Since PEPRv2 makes the replication decision on
a per-query basis, ideally every replication decision should
at least on average be profitable for the provider.

In PEPRv2, we regard that the tenant pays for a particular
service with an agreed upon quality. This service quality may
include the total size of the hosted data and the arrival rate
of the queries. In case the tenant requirements change over
time, the rent is elastically scaled as well. Profitability of the
provider depends on how much of this revenue is spent on
providing the service to the tenants. In other words, ensuring
profitability for a certain amount of revenue, the provider
must pursue the most economical routes of providing the
services in order to decrease expenditures. As PEPRv2 deals
only with the data replication portion of these services, it
aims to make the replication decision that would yield the
least amount of monetary cost.

prof i t = revenues − expenditures (4)

Similar to the idea of estimating the response time, a
profit estimation is calculated for each query. In the profit
estimation (Eq. 4), how much revenue is expected to be gen-
erated for each query is compared with the expenditures of
the resources that are estimated to be used during the exe-
cution of each particular query. The estimated profit is used
alongside the response time estimation to make replication



decisions in a way that only the profitable replication options
are carried out. The details such as how the expected revenue
and estimated resource consumptions are revisited in Sect. 5.

4.2 Howmany replicas

Keeping how many replicas of any particular data set is
another issue to be addressed by the replication strategy.
While PEPRv2 focuses on the performance aspect of the
provider responsibilities, availability is also an important
objective of the provider. Therefore, PEPRv2 keeps each
data set at a minimum given availability through replication.
Satisfying availability is a widely researched topic in cloud
computing as there are already many works focusing on that
particular issue [34]. In our study we do not visit this issue
in depth, and design PEPRv2 in such a way to not let the
number of replicas to not fall below a number that satisfies a
minimum given availability level [37].

In the matter of satisfying response time, the number of
replicas can be varied between theminimumnumber of repli-
cas to satisfy a given availability and a number that is possible
for the provider to physically create. In other words, themax-
imum number of replicas for any particular dataset has not a
predefined limit, PEPRv2 can create seemingly infinite num-
ber of replicas as it deems necessary. This necessity is limited
by determining the satisfaction of the response time estima-
tion and profit estimation models.

Creation of replicas is performed in an incremental man-
ner. At each query execution, the number of replicas of
relevant data to that particular query is incremented by
one. PEPRv2 assumes that, by placing the new replica in
a near-optimal manner, the response time should already be
satisfied. Therefore incrementing the number of replicas by
a number greater than one is should not be necessary.

Algorithm 2 Replica retirement algorithm.
1: slaV iolation ← false
2: logQueryCompletionStatistics()
3: T actual

Q ←measureResponseTime(Q)
4: if T actual

Q > TSLO then
5: slaV iolation ← true
6: end if
7: if ExecutedQCount = QPer Epoch and

slaV iolation = true then
8: slaV iolation ← false
9: ExecutedQCount ← 0
10: removeReplicasByLRU(Num_LRU )
11: end if

to free up storage space for future replicas and reduce storage
costs of the provider.Of course, the retirement operationmust
be done in a way to make the cloud still satisfy the response
time guarantees after the removal of the unnecessary repli-
cas. Evidently, there is a need for a decision mechanism to
determine which replicas to be removed from the cloud and
when.

First step in replica retirement is the identification of some
replicas as unnecessary. While other replication decisions
in PEPRv2 is made on-the-fly before the execution, replica
retirement operation requires some a priori information. This
a priori information mainly consists of access histories of
each individual replica. Using this information, PEPRv2 can
determine the list of replicas that are least frequently accessed
during any particular window of time in the past.

Let QPer Epoch show a system parameter that indicates
the number of queries that defines an epoch. After every
QPer Epoch queries executed, if there are no SLA breaches
observed in that epoch, a predefined number of least recently
used replicas, denoted by Num_LRU , are removed from the
system. The retirement algorithm is invoked at each query
execution, however it only performs the actual cleanup after
each QPer Epoch queries. Algorithm 2 describes the retire-
ment algorithm in more detail.

4.3 Where to replicate

The final replication decision is the placement of the new
replica. Similarly to what has been done in the previ-
ous sections, this decision is also made by the response
time and profit estimations. A suitable placement for a
new replica must satisfy the response time requirement
and should still be profitable for the provider after the
placement. Moreover, the destination node should have
enough storage space and relatively low load to avoid over-
utilization.

Ideally, finding an optimal placement requires evaluation
of all nodes in the cloud for the necessary criteria. However,
as seemingly infinite number of nodes possibly existing in a
globally distributed cloud system, this approach is not fea-
sible. The search duration itself would be enough to violate
the SLA response time guarantee. As a result, a relatively
straightforward heuristic is employed to determine a place-
ment for the new replica. This heuristic would not look for
the best placement, but a near-optimal placement that satis-
fies both the response time and the profit.

∃R ⊂ C |TRi ≤ TSLO
∃Si, j ∈ Ri |PSi, j > 0 ∧ Si, j ← maxPSi, j (5)

In the first step, each region Ri in the cloud C =
{R1, R2, . . . , Ri } is evaluated whether a placement to Ri

would satisfy the response time guarantee or not. Then,

Removal of unnecessary replicas is the other issue regard-
ing the number of replicas maintained in the cloud. Over 
time, some replicas may get infrequent accesses simply due to 
changing demand caused by the tenant queries. In these cases, 
it may be beneficial to retire those replicas from the system



among the regions that satisfy response time (Eq. 5), the
subregion that belongs to that particular region Ri =
{Si,1, Si,2, . . . , Si, j } and nets the highest amount of provider
profit is selected. From the selected subregion, a node with
acceptable storage and load is selected for placement. Band-
width for reaching out of the subregion is the same for each
node inside that particular subregion, as long as storage and
load criteria are met. Therefore choosing one node from
another would not have any significance as long as it is in the
determined subregion.

Algorithm 3 Replica placement algorithm.
1: for each region R in the cloud C do
2: if TR ≤ TSLO then
3: for each subregion S in the region R do
4: if PT h ∧ S ← maxPS then
5: for each node N in the region S do
6: if N . f reeSpace ≥ si zeO f (data) ∧ N .load ≤

loadT hreshold then
7: place on N
8: end if
9: end for
10: end if
11: end for
12: end if
13: end for

Algorithm3 depicts the placement algorithm as described.
While the placement algorithm searches for the most prof-
itable subregion, it does not look for the lowest pos-
sible response time. As the provider’s guarantee is not
the best performance but instead satisfaction of a thresh-
old; it would be economically more beneficial for the
provider to focus on profit once the response time is sat-
isfied.

It is important to mention that, at any time some data
migrate, there is a cost associated with the migration. In data
migration, bandwidth is consumed during transfer and stor-
age is consumed at the destination. Monetary aspect of the
migration cost is dealt with the profit estimation by regard-
ing migration cost a part of bandwidth and storage costs. In
addition, data migration caused by pre-replicating data also
results in an adverse effect on response time of execution of
a query.

5 Economic cost model

Another important consideration inPEPRv2 replicationman-
agement is the economic impact of data replication on
provider’s profit. The economic model presented in this sec-
tion estimates provider revenue and expenditures in order to
assess the estimated profit from the tenant queries.

5.1 Provider’s revenue

As a part of the service agreement, tenants are obligated to
pay for the rent associated with the services acquired. Con-
sidering the elastically scaled services, the total amount of
rent can vary during a billing period. The exact amount of
payment is determined by measuring the utility metrics that
are defined in the SLA. This rent is the only revenue source
for the provider in our economic model.

In PEPRv2, the economic part ofwhether to replicate deci-
sion is also depends on the profit of the provider. However,
in this case we are interested in the revenue and the profit
generated by each query, instead of focusing on profitability
in a certain period of time. Therefore, it is important to make
the transition between the actual revenue to the expected rev-
enue generated from each query. Service details included in
the SLA contains the limits for maximum arrival rate of the
tenant queries. Therefore, it is possible for the provider to
expect how many queries may be received from the tenant in
a billing period. Of course, reaching the limits of the service
is the worst-case scenario for the provider, but it may be sen-
sible for the provider to be prepared for that case as well. The
actual economics of operating a cloud is beyond the scope
of this paper, therefore we assume that the provider is capa-
ble of calculating an expected, on average revenue generated
from the execution of each query.

It is worthy of noting that, data replication is the responsi-
bility of the service provider in PEPRv2. The tenant pays for
a service and expects this service to be supplied at the agreed
upon quality against the changing workload of the tenant
queries. It is therefore the provider’s responsibility to main-
tain the replicas in the cloud to satisfy the SLA terms. The
tenant pays for the utilized service, and does not care about
how many replicas the provider needs to create or maintain
to meet the SLA.

5.2 Provider’s expenditures

Meeting the computational demands of the tenants and elasti-
cally adjusting the properties of the services provided, cloud
providers face the continually changing costs associatedwith
these services. A cloud operator deals with many types of
costs ranging from the paychecks of the employees to the
power consumption of the facilities. While some of these
costs are directly affected by data replication (e.g. storage
costs), others may not be concerned by replication (e.g. on-
site physical security).

Obviously it is not feasible to take into account every type
of cost during a replication decision. In response time esti-
mation model, we estimated the amount of time spent using
some specific types of resources during the execution of a
query. During estimation of the provider cost, we follow a
similar path and estimate the monetary cost of the resources



consumed by each query execution. Consumption of each
type of computational resources is estimated before the exe-
cution and this estimation is compared against the profit
generated by the execution of that particular query to predict
the profit. This profit value is used in the replication decision
as mentioned in the earlier sections. It should be noted that,
while estimating the expenditures, the costs include the pos-
sible replication events to evaluate the profitability with the
inclusion of the new replicas.

During execution of the query Q, a CPU cost of Cc is
incurred as a result of the expected consumption of the CPU
resource. A query may involve a number of nodes, includ-
ing the executor node and other nodes that may contribute
during migrating the relevant data to that particular query.
As a result, the cost of CPU (Eq. 6) is estimated by the con-
sumption of CPU time (Ti ) on all nodes that contribute to the
execution [30]. Conversion of CPU time to monetary cost is
done by the factor of unit cost of CPU resource denoted by
μt,i that is dependent on the node itself to take heterogeneity
into account.

Cc =
i∑

1

Tiμt,i (6)

Data transfer over the network (Eq. 7) is another cost item
(Cn) the provider deals with. Following a similar assumption
as in the response time estimation model, a queryQ requires
data sets of {d1, d2, . . . , d j } during execution. Some of this
data may migrate from remote nodes {n1, n2, . . . , nk} to the
executor node ni . Data migration may occur between nodes
that reside in various parts of the cloud hierarchy. Moreover,
bandwidth cost between any two node can vary due to het-
erogeneity in the cloud. Therefore, ν denotes the unit cost of
bandwidth that is specificbetween any twonodes in the cloud.

Cn =
j∑

1

k∑

1

d jνni ,nkφ j,k (7)

φ j,k =
{
1 if d j migrated from node nk to ni
0 otherwise

(8)

Cs =
j∑

1

k∑

1

d jσnkχ j,k (9)

χ j,k =
{
1 if d j is read from node nk
0 otherwise

(10)

As mentioned before, provider expenditures may include
other cost items that may not be directly caused by data
replication. Providers can simply include these costs in the
economic model as other costs (Cothers) or impose a margin
on the expected profit to cover these expenses. Furthermore,
the provider pays penalties to the tenants if one ormore SLOs
are not satisfied. As a result, in addition to other costs, penal-
ties (Cp) are also included in the provider cost. Through data
replication, the provider aims to minimize the penalties paid
to reduce cost [38]. In regard to all of the described cost
types, the estimated provider cost, i.e. expenditures, is given
in Eq. 11.

expenditures = Cc + Cn + Cs + Cp + Cothers (11)

Since the expected revenue of each query is a known
amount for the provider, at this point, it is a simple subtrac-
tion to calculate the estimated profit using the total amount of
expenditures caused by the execution of any particular query.

6 Performance evaluation

6.1 Simulation environment

Realizing an entire cloud topology is a very hard and
expensive way of verifying the performance of any study.
Acquiring and configuring many hosts to achieve a model
of a desired cloud system is indeed non-trivial. Furthermore,
this way of testing makes it harder to control all the variables
involved in a scenario. In order to address these concerns, sev-
eral cloud simulators have been proposed in the literature [2]
to accurately implement performance evaluation scenarios
without dealing with the burden and cost of an actual cloud
environment.While every proposed simulator focuses on one
aspect of the cloud, e.g. resource provisioning, as of writing
this paper, no particular cloud simulator specializes on data
replication. Among the available simulators, CloudSim [8] is
noticeably widely used in the literature. CloudSim is also an
open source project, therefore it is possible to tailor the simu-
lation suite to meet the the requirements of our performance
evaluation scenarios.

In its standard form, CloudSim is targeted for creating dat-
acenters and allocating virtual machines on physical hosts. It
allows creation of simple tasks called cloudlets and models
the execution of cloudlets on virtual machines. Therefore it is
more suitable towards scenarios that involve virtual machine

Final main cost item that is relevant to data replication 
is the storage cost, Cs , as depicted in Eq. 9. Each data set 
can be used by any number of queries during the lifetime 
of the replicas. It is therefore not accurate to bill the queries 
by the amount of storage space occupied. For this reason, 
we estimate the storage cost by the amount of storage I/O is 
expected to be performed by any particular query. This way, 
we establish that the queries that cause more I/O operations 
result in more monetary cost of storage. The possible hetero-
geneity of different cloud regions having different storage 
costs is handled by the factor σ , which denotes the unit cost 
of storage on any particular cloud node.
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Fig. 1 Simulated cloud topology

(VM) provisioning, task distribution, and power manage-
ment. However, mechanisms for performing data replication
is not present in the original version. As a result, we extended
CloudSim to include data replication functionality, as well as
other aspects that our simulation scenarios require, includ-
ing supporting a cloud topology with heterogeneous sites
and network links andmeasuring resource consumptions and
conversion of consumed resources into monetary counter-
parts.

In the simulations, we realized a cloud environment with
hierarchical network links as described at the beginning
of Sect. 3. Simulated cloud consists of five geographical
regions. Each region contains thre subregions represented as
datacenters. In turn, each datacenter contains ten nodes real-
ized as VMs. Network topology is established in such a way
that, the bandwidth capacity is more abundant and cheaper
inside the datacenters but less abundant and more expen-
sive towards the inter-region level. Moreover, computational
capabilities and storage capacities are also varies from dat-
acenter to datacenter to simulate a cloud environment with
heterogeneous sites and network links. This heterogeneity
is also extended to the costs of the CPU, storage and net-
work resources. In every region, the provider costs of these
resources are varied to achieve a more realistic cloud system.
A schematic overview of this cloud topology is depicted in
Fig. 1. Also a complete list of simulation parameters, includ-
ing in what ranges the heterogeneous cloud resources are
varied can be found in Table 1. We chose the simulation
parameters to be in accord with existing studies [5] to real-
istically represent a typical cloud environment.

Each VM has the necessary computational resources to
perform the execution of queries. These resources include

Table 1 Simulation parameters

Parameter Value

Regions 5

Datacenters per region 3

VMs per datacenter 10

VM processing capability 1000–2000 MIPS

VM storage capacity 15–25 GB

Intra-datacenter bandwidth 4–6 Gbit/s

Intra-region bandwidth 1.25–1.75 Gbit/s

Inter-region bandwidth 0.15–0.25 Gbit/s

Avg. intra-datacenter delay 5–10 ms

Avg. intra-region delay 25–50 ms

Avg. inter-region delay 100–150 ms

Response time SLO 180 s

Simulation duration 10 min

Number of queries processed 10,000

Query arrival rate 16.67 query/s

Computational load of a query 1000–7500 MI

Number of data sets 30

Avg. size of a data set 620 MB

Intra-datacenter transfer cost $0.005/GB

Intra-region transfer cost $0.025/GB

Inter-region transfer cost $0.25/GB

Storage cost $0.20 to $0.30/GB

Processing cost $1.25 to $2.25/109 MI

Penalty cost $0.0025 per violation

Assumed revenue $0.004 per query

Num_LRU 1

QPer Epoch 10

loadT hreshold 90%

CPU, RAM, storage, and network connectivity. During exe-
cution, VMs can access the data sets in other VMs by remote
reads or by replicating them to local storage. Optimal dis-
tribution of queries to virtual machines, and other related
issues including task migration is not a focus this study.
When a query is received by a datacenter, a virtual machines
is randomly assigned to handle the execution of that par-
ticular query. Queries randomly arrive to the cloud system
as the average arrival rate indicates. Each query requires a
dataset that is randomly determined when the query is cre-
ated. Moreover, computational load generated by each query
is also randomly varied from one query to another to simulate
the computational variations between queries, e.g. a simple
projection versus an aggregate function.

The duration of the simulation is regarded as one billing
period. For that period, the tenant is charged for the services
obtained, and provider profit is determined by the expendi-
tures of the provider during this billing period.



Table 2 Simulation results

Replication strategy PEPRv2 PEPR CDRM No replication

Avg. response time (s) 45.56 36.41 203.54 343.27

SLA violations 337 298 3609 7303

Number of replications 1040 1226 797 0

Storage usage (%) 21.96 26.97 16.33 3.81

Inter-region data
transfer (GB)

26.87 28.03 294.90 499.98

Intra-region data
transfer (GB)

295.80 250.64 164.97 62.84

Intra-datacenter data
transfer (GB)

301.94 349.77 173.08 65.26

Total expenditures of the
provider ($)

26.94 33.81 97.08 154.46

Fig. 2 Average response time in seconds

6.2.3 Average response time and SLA violations

Both PEPRv2 and PEPR managed to satisfy the response
time objective with a great margin (Fig. 2). Having a much
lower average response time than the SLA threshold also
meant that these two strategies satisfied the response time
for a greater percentage of the queries processed. On the
other hand, satisfying availability and balanced load does not
ensure performance for CDRM. While the average response
time with CDRM is close to the SLA threshold, response
time is not satisfied for a great amount of queries. The results
also indicate that, it simply was not possible to meet the
performance SLO without using a data replication strategy.

Since SLA violation count is a direct measure of the
response time satisfaction, we see a similar view on this met-
ric as well. Both PEPRv2 and PEPR kept the number of
violations to a minimum, albeit with some breaches during
the initial replica reconfiguration. On the other hand, CDRM
suffered heavy violations, however it still provided a signif-
icant advantage over not using data replication.

6.2.4 Number of replications and storage usage

In terms of the number of replications, PEPRv2made slightly
less replications compared to its predecessor. This difference
can be attributed to themore intricate replica placement deci-
sion on PEPRv2’s part which takes heterogeneous properties
of the cloud into account. Still, both PEPRv2 and PEPR
created more replicas compared to the number of replicas
created by CDRM. This difference in the number of replica-
tion events also made an impact on the storage consumption
of these strategies as well. This different outlook on the repli-
cation event totals and storage usages are due to the different
objectives pursued by these strategies, especially with the
case of CDRM. Obviously, without any data replication, the

6.2 Simulation results

6.2.1 Compared data replication strategies

The aim of the simulation study is to monitor how data repli-
cation enables providers to cope with the query load, in order 
to keep the response time SLO. Simultaneously, we observe 
the provider profit in the same billing period. With a goal 
of demonstrating how the satisfaction of these two criteria 
is achieved by PEPRv2, we compared it to its predecessor, 
PEPR. This enabled us to highlight the improvement of the 
newer iteration. Moreover, in the comparative simulations, 
we also employed a more traditional strategy, Cost-Effective 
Dynamic Replication Management (CDRM) [37]. CDRM is 
another data replication strategy for cloud systems. It consid-
ers the availability and balanced load objectives. However, it 
does not take economic benefit of the provider into account. 
Finally, we also run the simulations without using any data 
replication scheme, in order to show a baseline to demon-
strate the impact of data replication.

6.2.2 Measured metrics

In Cloudsim, we made the necessary effort to log the response 
time, the average of actual response times of all queries 
handled in the billing period. Additionally, number of SLA 
violations, total number of replications, storage usage, and 
the amount of network data transfers are also logged dur-
ing the simulations. The corresponding monetary cost of 
each of these metrics are calculated by using the associated 
unit costs. Since the cloud environment in the simulation is 
heterogeneous, the unit cost of resources are dealt with the 
consideration of variations between regions. These measured 
metrics and the monetary cost for the provider are listed in 
Table 2. The table shows the results for a single billing period, 
not just one single query.



Fig. 3 Breakdown of total data transfers with respect to network hier-
archy

final simulation scenario only used the storage necessary to
host the initially placed data sets.

6.2.5 Network bandwidth consumption

PEPRv2 and PEPR, by having multiple replicas of each data
set strategically placed throughout the cloud, made almost
the entire network transfers inside either the local datacen-
ter or inside the same region. An almost negligible fraction
of the transfers are done at the inter-region level. These two
strategies only chose to remotely read, i.e. without replica-
tion, the data sets that are not presently available in the same
datacenter as the requestor but still available in the same
region; as long as it satisfies the performance SLO. Of course
the decision behind this behavior lies in the profitability. If
accessing a data set in another datacenter is more profitable
than creating a new replica in local datacenter, PEPRv2 and
PEPR took such an action to improve the economic benefit
of the provider. Having said that, there is still a difference
in the intra-region and intra-datacenter transfers of these two
strategies. This difference is mainly due to the improved data
placement heuristic of PEPRv2. Compared to its predeces-
sor, PEPRv2 has a better way of determining the placement
for new replicas by evaluating each subregion for response
time and profit satisfaction instead of former’s simplistic way
of evaluating closest-to-requestor first approach. This way,
PEPRv2 provided a better trade-off between the storage and
network utilization.

CDRMalso placed its replicas throughout the cloud, how-
ever not following an economic objective, its replication
decisions yielded more usage of the expensive inter-region
bandwidth (Fig. 3). Compared to the evaluated replication
strategies, using no data replication obviously made a sig-
nificant portion of the network transfers over the relatively
slow and expensive inter-region bandwidth, hence the failure
in satisfying the performance SLO.

Fig. 4 Total cost (monetary expenditure) of the provider during one
simulated billing period

6.2.6 Monetary cost

Figure 4 depicts the total monetary cost accumulated for the
provider during simulations. Each data replication strategy is
evaluated by processing the same number of queries gener-
ated with the same arrival rate. Moreover, the computational
load of these queries are also the same on average. Therefore,
the CPU cost is very similar for each strategy and difference
between them is at a negligible level. Also, the unit storage
costs are relatively cheap, therefore all strategies impact the
provider at an acceptable level with PEPR accumulating a
slightly more storage cost due to having more replicas. How-
ever it should be noted that, slight difference in storage cost
between PEPRv2 and PEPR is due to the better-established
tradeoffs on PEPRv2’s part as explained in the previous sub-
section. PEPRv2 managed to escape unnecessary storage
costs by performing replication to cheaper-than-local remote
subregions that can still satisfy the response time objective.
In the scenario that uses no replication, only storage cost is
due to having the initial placement of data sets.

Compared to CDRM, PEPRv2 and PEPR accumulated
noticeably less network costs. This is caused by taking mea-
sures to place the replicas in a cost-effective way when
a replication is required for performance satisfaction. Of
course, this is a trade-off move towards utilizing the cheaper
network resource more intensively by sacrificing some stor-
age space. In the scenario without replication, frequent use
of inter-region network links caused the provider costs to rise
beyond acceptable levels.

6.2.7 Overall remarks

It is evident from results that, a data replication strategy is
crucial to meet the desired quality of service. On the other
hand, while a traditional strategy can satisfy the performance



guarantees for a data replication strategy aiming to operate
in the cloud.

A possible future direction for this study is to take queries
that include dependent operations, e.g. join operations, into
account. This way, PEPRv2 would also be applicable to
database queries. Moreover, implementing the proposed
strategy in a real cloud environment may also present an
interesting research opportunity.
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