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ABSTRACT

Context. To find evidence one day of life on extra solar planets, one will have to directly detect photons of the exoplanet to obtain
spectra and to look for specific spectroscopic features. One possible technique is dark fringe interferometry with several telescopes in
space. This type of interferometry requires an achromatic π phase shift in one arm of an interferometer. We have already presented a
concept of a quasi-achromatic phase shifter that is made of two cellular mirrors in which each cell position and phase shift is specific,
so that the behavior of the null depth as a function of the wavelength is flat within a broad range.
Aims. We want to experimentally validate this concept of an achromatic phase shifter and measure its performance in two different
cases: a transmissive mask, which is made in bulk optics that are machined with ion etching and a reflective one, which is made by
using a commercial segmented deformable mirror that is properly controlled.
Methods. We assembled a dedicated optical bench, nicknamed DAMNED, to assess the concept and characterize its performance in
the visible and to determine the limitations of this phase shifter. We analyze its performance by comparing the experimental results
with a numerical instrument model.
Results. We tested several transmissive masks and a reflective one. We reached an attenuation of about 2 × 10−3 with a white source
(Δλ = 430 to 830 nm) that proved to be the actual achromatic behavior of the phase shifter, despite its modest value. Extrapolated to
mid-IR, its performance would be within typical specifications of a space mission as Darwin.

Key words. astrobiology – instrumentation: interferometers – techniques: high angular resolution – techniques: interferometric –
planets and satellites: detection – planets and satellites: atmospheres

1. Introduction

Today, more than 800 exoplanets have been discovered. If
most of them are between Uranus and Jupiter’s size, some are
definitely rocky planets while very few are in the habitable
zone (HZ). Because of biases in detection methods, planets that
are both rocky and in HZ are exceptional (von Braun et al. 2011).
Only a handful of them have been directly detected and only
in very specific situations, either when the planet is young and
still very hot or when the hosting star is indeed a brown dwarf
(Schneider et al. 2011). It is a known fact that it is extremely
difficult to directly detect an exoplanet that orbits a star. The
reasons are (i) that the planet is very close to the star where
the typical angular distance to the star is on the order of 0.′′1
and (ii) that the contrast is very high, on the order of 10 mil-
lions in the infrared and 10 billions in the visible, as in the case
of the Earth/Sun system. An additional huge challenge and po-
tentially a rewarding one is to determine if a planet does shel-
ter life. One piece of widely accepted evidence of its presence
would be the simultaneous detection of H2O, CO2, O3 in the
planet’s atmosphere. Coupling a low resolution spectrometer and
a multi-telescopes Bracewell nulling interferometer (Bracewell
1978) in a space experiment in the mid-IR (6–18μm) is one of

the paths, which has been proposed since 1993 (Léger et al.
1996) for searching those potential life signatures. The space
mission Darwin is probably the most advanced concept in this
respect (Cockell et al. 2009). In the simplest version of the
nulling interferometer, a π phase shift is added on one arm of
a Michelson interferometer, so the fringe pattern projected on
the sky exhibits a central dark fringe, which is common to all
wavelengths. An on-axis star at the center of this dark fringe
would thus be extinguished, while a putative planet orbiting the
star can coincide with a bright fringe (a transmitting area on the
sky) for a proper baseline between telescopes and hopefully, can
be directly detected.

Among the numerous technical challenges of such a space
mission, a major one is to realize a π phase shift on a broad
wavelength range. Several concepts were already proposed to
solve this problem. We previously presented a new concept for
providing such a functionality, which allows a simple and sym-
metric design of the interferometer, with only one device per
beam in Paper I (Rouan & Pelat 2008) and Paper II (Pelat et al.
2010). This is based on a pair of square cellular mirrors that
looks like chessboards. Each cell has a thickness that introduces
a phase shift of (2k + 1)π or of 2kπ on the fraction of the wave
plane it reflects for a given central wavelength. The number of
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cells, their position and thickness are constrained by a mathe-
matical scheme such that the behavior of the null depth as a
function of wavelength, which is expressed as the ratio of in-
tensities at the recombined focus with and without the phase
shifter, is flat within a broad range, as shown in Sect. 2. We
developed in Papers I and II the theoretical grounds for which
the achromatic phase shifter is based. We considered especially
two-telescope interferometers and studied the two situations of
the optical setup, where the pupils of the two telescopes are ex-
actly superimposed (known as on-axis recombination) or where
recombination occurs at the focal plane (known as multi-axis
recombination).

In Paper I, we examined the basic principles and several so-
lutions of chessboard patterns in terms of the distribution of the
individual phase shifts between cells. We concluded that there
was a preferred one providing the deepest null depth. In Paper II,
the mathematical formalism was established in more details to
reach an analytical expression, and the question of distribution
of cells in the X-Y directions was also studied. We showed that
an optimum pattern for each one of the two configurations was
fulfilling some criterium on minimizing the intensity of the scat-
tered light around the nulled area. The main purpose of this pa-
per is now to present the experimental setup that we developed
to validate the concept and to demonstrate that the chessboard
nuller is working and can reach performances that are well un-
derstood. Some of the material that appears here was presented
at two SPIE conferences and in the proceedings of those confer-
ences (Papers III and IV: Pickel et al. 2010, 2012). However,
the result was preliminary, and we thought it was more con-
sistent to gather a unique paper with all the aspects related to
the experimental demonstrator, even at the price of some repe-
tition. What is essentially new in this paper is the deeper analy-
sis of the results obtained with the transmissive chessboard and
the completely new results related to the reflexive setup using a
segmented deformable mirror (SDM).

We will first present in Sect. 2 a more compact and straight-
forward demonstration of the functioning of the device than what
was established in Papers I and II. In Sect. 3, the experimen-
tal setup, nicknamed DAMNED (Dual Achromatic Mask for
Nulling Experimental Demonstrator), is described. In Sect. 4,
the results are presented and analyzed. Since the question of the
theoretical bandwidth that one can ultimately achieve using the
chessboard phase shifter is related to its actual performance,
we added an appendix, where this quantity is established with
regards the star-to-planet contrast.

2. The achromatic chessboard principle
in a nutshell

In a 2-telescope Bracewell interferometer, a π phase shift must
be added in one arm. This can be achieved for a given wave-
length λo by using some device that introduces just an optical
path difference (opd ) of λo/2; it can be as simple as a dielec-
tric plate. For a point source exactly on-axis (the star) and the
assumption of a perfect interferometer, the electric field after re-
combination is equal to (1+ z) with z = e jπ λoλ , where λ is the ob-
serving wavelength, and λo is a reference wavelength. We note
that the maximum amplitude is 2. If λ = 1

2k+1λo, k = 0, 1, ..., then
the amplitude is null, and the star is fully extinguished. In other
words, z = −1 is a root of the nulling function (1+z), and we have
a nulling effect around z = −1. To strengthen the nulling effect,
we proposed to design a device for which z = −1 is a multiple
root of order n of the nulling function. Under that assumption,

the nulling function is (1+ z)n that is very flat around z = −1 (i.e.
λ = λo at the first spectral order), because the first n terms of its
Taylor series will be zero. In other words the star will be strongly
attenuated on a large bandwidth around λo. We demonstrate in
Appendix A that the nulling bandwidth, when considering the
unavoidable attenuation of the planet, is ( 2

3λo, 2λo) for the first
spectral order. We now show how to construct the corresponding
chessboards.

When developing (1 + z)n using the binomial formula, two
kinds of terms appear: some are in z2k+1, and some are in z2k.
The first ones correspond to an opd λo/2 (mod λo) and the sec-
ond to an opd λo (mod λo). The coefficient of each term (i.e.,(

n
2k

)
or
(

n
2k+1

)
), as given by the binomial formula, gives the num-

ber of cells associated with a given k. One can check that the
total number of cells required is N =

∑n
r=0

(
n
r

)
= (1 + 1)n = 2n.

If we now assign all the λo (mod λo) cells to a chessboard on
one arm and all the λo/2 (mod λo) cells to the chessboard of the
other arm, we still have a Bracewell nulling interferometer at λo
but with the desired property of producing an amplitude vary-
ing as (1 + z)n. This is because this expression is precisely the
sum of all elementary complex amplitudes. To have two square
shaped chessboards of 2m × 2m cells per chessboard (for a to-
tal of 2 × 2m × 2m), n must be odd, where n = 2m + 1. We
call m the order of the chessboards, which is also the order of
the interferometer constructed with them. We note that m = 0
corresponds to the classical Bracewell interferometer and m = 1
to the interferometer with 2 chessboards of 2 × 2 cells each, etc.

For different values of m, we computed the theoretical atten-
uation of a point source: the results are shown in Fig. 1. Each
curve gives the attenuation around λo = 650 nm with m vary-
ing from 0 to 5. As expected for a given null depth, the spectral
bandwidth increases when m increases. In our experiment, we
tested two types of chessboards, a reflective one whose order is
m = 2 (green curve in Fig. 1) and a transmissive one whose order
is m = 3 (dark blue curve). The structure of both pairs of phase
shifters is shown in Fig. 2, where the numbering on each cell is
the phase shift in units of π.

3. Experimental setup

The first goal of the bench is to check if a destructive interfer-
ence can be produced by using the chessboard phase mask as
a π phase shifter in a Bracewell interferometer and to measure
its depth on an artificial star. The second goal is to estimate its
performance in terms of achromaticity.

3.1. Basic choices for the configuration, use
of a single-mode fiber optics

The first choice was to make the demonstration in the visible
range, because on-the-shelf components and detectors are avail-
able only in this domain at reasonable prices. We also wanted
to avoid a cryogenic setup that would be much more complex
to handle and to modify with the advent of new findings or is-
sues. The drawback of course, is that specifications on the opd
between shells is more difficult to meet.

For the sake of simplicity, we have decided to use the multi-
axis solution for the interferometric recombination: it presents
the advantage of avoiding the delicate use of semi-reflecting
plates to superimpose the beams. This means that the interfer-
ometric pattern is the point spread fonction (PSF) of the pupil
modulated by fringes with the central fringe being a dark one.
On the other hand, the putative planet that would correspond to
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Fig. 1. Theoretical attenuation (null depth) of an on-axis point source
versus wavelength for a perfect chessboard device designed for the cen-
tral wavelength of 650 nm. The different curves correspond to the order
of the chessboard from m = 0, which is pure Bracewell (dark), to m = 5
(light blue).

a constructive interference would produce the same fringe pat-
tern but would be just shifted by half a fringe separation (bright
central fringe). Trying to separate the planet signal from the star
signal in the darkest fraction of the central stellar fringe would
correspond to a terrible loss of the planet flux. One possible so-
lution to obtain a gain on the useful planetary signal is then to
make the recombination on the head of a single-mode fiber op-
tics (SMFO), which offers the property of realizing the sum of
the electric field on its head. Because the amplitude of the stellar
light follows an odd distribution in the direction of the baseline,
the sum performed by the SMFO is null on any interval centered
on the axis of symmetry and thus materializes the nulling. The
planet fringe system is even in amplitude and the integral, at least
on the complete central fringe, is positive, as illustrated in Fig. 3.
This scheme was first proposed by Wallner et al. (2004) and
demonstrated experimentally by Haguenauer & Serabyn (2006)
and Buisset (2006). We decided to make use of this property due
to the simplicity of its implementation.

Another important simplification, directly related to the pre-
vious one, is that we did not try to make an actual interferometer
with a long baseline, but we chose to work with the two pupils
that are placed side-by-side. This offers the advantage that we
can use a single collimated beam of a reasonable diameter to il-
luminate the two pupils, and this is not a real limitation consider-
ing the main goal which is the validation of the quasi-achromatic
nulling by the chessboard.

The null depth is defined as the ratio of the minimum in-
tensity coupled into the SMFO to the maximum value of the
non-nulling situation. One produces the non-nulled star by just
using a rectangular diaphragm instead of the phase shifter. The
chessboard and the rectangular diaphragm are the same size.

By moving the head of a SMFO in the image plane – i.e. at
the focus of a parabola – and measuring the flux at each position,
one obtains a convolution of the diffraction amplitude by the core
of the fiber optics. At the exact center of the dark fringe, the

Fig. 2. The two patterns of phase chessboards used in DAMNED: the
upper pattern corresponds to a reflective mask synthetized using a SDM
and the lower pattern to a transmissive mask made in bulk optics my
engraving a transparent plate. In both cases, φ = 0 mod 2π (even) cells
are on the left and φ = π mod 2π (odd) cells are on the right. The
numbering on each cell is the phase shift in units of π.

0 200 400 600 800 1000
−1.0

−0.5

0.0

0.5
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Fig. 3. Principle of nulling recombination on a single-mode fiber: on
the left are the superimposed fringe pattern of a classical interferome-
ter (black) and of a Bracewell interferometer (red). The amplitude of
the black line is smaller on purpose, since it is supposed to correspond
to the planet amplitude. On the right, a close-up of the central part of
the fringes is shown with a shaded area that delineates the core of the
single-mode optics which achieves the summation of the electric field
it receives. The anti symmetric character of the Bracewell fringes (star
signal) leads to the nulling effect, while the symmetry of the planetary
electric field preserves the signal.

electric field is odd, so all the light is, in principle, extinguished
within the SFMO. In a way, this method allows to obtain a map,
which looks like the PSF produced by the interferometer that
features the chessboard at the focus of the parabola, with a better
sampling and with better dynamics than a direct image obtained
on a CCD camera. To illustrate this, one can compare Figs. 9
(reconstructed map) and 11 (direct image).

3.2. Chessboard realization

The transmissive chessboards were manufactured by the
“Pôle Instrumental du GEPI” in the Observatoire de Paris.
The 2 × (8 × 8) cells were engraved by chemistry-assisted
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ion-etching on a glass plate (4.8 mm × 9.6 mm) with a deposit of
chromium on the border to delineate the transmissive area. The
plain diaphragm is an identical non-engraved rectangular glass
plate with the same chromium deposit.

The reflective chessboards are synthetized by means of
a 12×12 deformable electrostatic segmented mirror from Boston
Micro-machines controlled by an electronic module provided
by the same manufacturer. The 300 μm actuators of the seg-
mented mirror can shape a rectangle of 8 × 4 actuators, accord-
ing to the opd pattern of Fig. 2 (1.2 mm × 2.4 mm), or two sep-
arated 4 × 4 squares (with up to four actuators of separation).
The non-nulling configuration is obtained with the same area of
actuators but with a surface as flat as possible. The stroke of
each actuator is not very large (typically 1.5 μm) but compatible
with the 4λo/2 maximum difference of levels of the 4 × 8 cells
configuration.

3.3. Optical bench

The experimental setup was designed to measure rapidly the two
images that are required to calculate the attenuation, in order to
limit the effect of possible drifts. The setup is versatile enough to
use either transmissive (Fig. 4) or reflective chessboards (Fig. 5).
A picture of the setup is shown in Fig. 6.

– The source 1© is either a laser diode (λ = 635 nm) or a
white laser and is linked to fiber optics. It is placed at the
object focal plane of an off-axis parabola 2© (focal length
f 1 = 520 mm).

– The collimated beam is directed to the segmented mirror 6©
after reflection on a beam splitter 5©. This segmented mir-
ror is made of 12 × 12 actuators, which can be moved in
piston with an accuracy better than 1 nm, and produces the
order 2 chessboards of 8 × 4 actuators.

– The rectangle pattern of actuators is selected. Two lenses 4©
are used to image the proper diaphragm 3© (rectangle or two
separate squares) on the mirror.

– The segmented mirror 6© reflects the beam back to the beam
splitter 5©.

– The beam reaches a motorized plate 7© with three positions:
one that is free when using the segmented mirror, one for a
transmissive chessboards, and one for a non-engraved rect-
angular glass plate diaphragm.

– The collimated beam reaches a second high optical quality
off-axis parabola 8© (focal length f = 240 mm), which fo-
cuses it on the core of a SMFO 9©. The fiber has a core of
2.5 μm and is single mode for λ > 430 nm. Two piezoelec-
tric motors are used to move the SMFO in x and y by steps
as small as 10 nm. By moving the fiber, the nulling pattern
produced by the chessboards can be reconstructed and their
performances can be measured.

– The other end of this SMFO is placed at the object focal
plane of a lens 10©. A filter or/and an optical density can be
placed in the collimated beam. Four 20 nm bandpass filters
are used to measure the chromatism effects on the null.

– Eventually, the intensity is measured using a CCD camera
that is placed slightly out of focus from a lens. The effects
of the CCD flat-field in the intensity estimation is limited by
this lack of focus. The defocus allows the use of not too short
exposure times at high flux levels.

When using the transmissive configuration (Fig. 4), the motor-
ized plate 7© puts in place the transmissive chessboard, and the
SDM is replaced by a plane mirror 6©. Both the rectangular di-
aphragm 3© and the two lenses 4© are removed.

Fig. 4. Optical scheme of DAMNED for the transmissive setup.

Fig. 5. Optical scheme of DAMNED for the reflexive setup using a
SDM.

Fig. 6. Optical bench DAMNED. The blue and red lines indicate the
travel of the beam for the main measuring channel and for the strio-
scopic channel, respectively. See Figs. 4, 5, and text for the details on
the different components and their numbering.

3.4. Control of the segmented mirror

As each actuator of the SDM is controlled in open loop, their
relative z-position is not accurate enough, despite the resolution,
which can be of one nanometer. To measure the relative actua-
tors’ positions and correct them, a strioscopic method is used.
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Fig. 7. Structure of the spatial filter used to remove low spatial fre-
quency in the strioscopic setup used to flatten the SDM.

The strioscopic optical path is shown in red in Figs. 5 and 6 and
described in the following:

– The rectangular diaphragm 3© and the two lenses 4© are op-
tional, and they can be removed to observe the complete sur-
face of the mirror.

– After the reflection on the segmented mirror 6© and the beam
splitter 5©, a movable plane mirror 11© reflects the beam to
switch between the strioscopy mode and the measurement
mode.

– A lens 12© (focal length f = 500 mm) is placed, so that the
segmented mirror is at its object focal plane.

– In the image focal plane 13©, a cross-shaped mask (Fig. 7) is
placed to filter the spatial frequencies.

– A second lens 14© (focal length f ′ = 300 mm) is placed, so
that the cross-shaped mask is at its object focal plane.

– The CCD camera 15© is positioned in the image focal plane
of the last lens.

The strioscopy technique produces the modulus of the derivative
of the wavefront phase. With this setup, the surface of the mirror
can be analyzed, and the absolute value of the relative position
between two adjacent actuators can be evaluated by measuring
the flux at the transition. The left image of Fig. 8 shows a pic-
ture of the segmented mirror surface without the spatial filter,
and one can hardly distinguish the actuators. The center image
of Fig. 8 shows the same but with the spatial filter mask: the tran-
sitions between adjacent actuators can be seen clearly. The flux
in the transition area is proportional to the difference of altitude
between the actuators.

To control the position of the actuators and synthesize the
chessboards, the surface needs to be flattened. From an arbitrary
reference actuator, the adjacent actuator is flattened by minimiz-
ing the flux on the transition between them (Fig. 8). The process
is repeated with the next adjacent actuator and iterated until all
the actuators have been flattened. To minimize the propagation
of the error, different ways to chain the flattening have been eval-
uated: the most precise is first flattening the central row, starting
on both right and left directions from the central actuator, and
then by flattening all the columns, starting from the actuators of
the central row on both up and down directions. The result of the
flattened mirror surface is shown in the bottom image Fig. 8. An
accuracy of 3.3 nm has been achieved.

From the flattened position, the chessboard can be easily syn-
thesized by applying a proper voltage map to move each actuator
to its z-position.

Fig. 8. Images of the segmented mirror surface. Upper left: without the
spatial filter of Fig. 7 put in place. Upper right: with the spatial filter
but with the same voltage (135 V) applied to all actuators, so that they
are at about half stroke. Bottom: applying the flattenning procedure (see
text). Note that the contrast has been artificially enhanced in each case.

3.5. Control of the whole bench and measurement procedure

The CCD camera and most of the mechanisms on the bench
have been interfaced to a computer through standard commer-
cial input/output electronic boards – thanks to an integrated GUI
interface and the development of control scripts – so that the dif-
ferent phases of a measurement session can be scheduled in an
automatic way, allowing a fair reproducibility.

A standard session at a given wavelength consists of: i) an in-
troduction in the beam of the plain diaphragm; ii) an acquisition
of a series of CCD dark frames by inserting a small shutter at the
output of the SMFO that is linked to the light source; iii) an ac-
quisition of a series of CCD frames after removing the shutter;
iv) a small displacement of the head of the SMFO in x and/or
y by controlling the piezo; v) going to step ii) until the scan is
complete; vi) resetting the position of the SFMO and the intro-
duction of the chessboard in the beam; and repeating ii) to v).

The integration time of the CCD camera is automatically ad-
justed to avoid saturation. Aperture photometry on the area of
the pixels that are illuminated by the out-of-focus spot produces
the flux measurement used to evaluate the null depth.

4. Results

4.1. Transmissive phase shifter

Several transmissive chessboard masks have been manufactured
and tested when the depth of the cells (measured with a “mea-
suring machine”) were within the specifications. They all were
specified for a central wavelength λo = 650 nm. We note that
the theoretical bandwidth for this wavelength for a chessboard
of infinite order is (433–1300) nm.

In the following, we present the results obtained with the
most accurately manufactured device. The measured dispersion
of depths (1σ) is typically 15 nm within one given level, and the
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difference of the mean depth of a given level with the specified
value is typically 20 nm.

The maps of the null depth produced by the chessboards in
two narrow-band filters, which are centered at 560 and 650 nm,
and in a broad band filter whose bandpass is 450–840 nm, are
shown on the left of Fig. 9. One can clearly see the dark fringe
between two lobes. Using a set of routines in Yorick, specifically
developed to simulate the performance of the experiment, we
were able to simulate a realistic chessboard with the actual cells
thicknesses. We observe (Fig. 9, right) that the simulation gives a
result close to the measurements, especially since the asymmetry
in intensity between the two lobes and their slight relative shift
are correctly reproduced. We conclude that there are probably
no major contributions to the loss of performance that we did
not identify. It is not straightforward to ascribe the asymmetry to
one of the aberrations produced when the wavefront propagates
through the nonperfect chessboard.

Table 1 displays the results in terms of null depth at differ-
ent wavelengths, where each one is defined by a narrow-band
filter of Δλ = 20 nm. The last entry corresponds to a measure-
ment without any filter: this means that the wavelength range
was defined by the response of the camera, the transmission of
the SMFO, and the spectral characteristics of the white source.
We estimate this range to be 450 to 840 nm. In Fig. 10, the cor-
responding value of null depth and several curves taken from
the simulation are plotted. These experimental results prove that
a fair degree of achromaticity of the nulling is reached thanks
to the chessboards phase shifter. In particular, the last entry
shows that we have a significant attenuation for a white source
(450–840 nm). This is clearly much better that the one that
would be produced by a unique dielectric plate phase shifter in
the same narrow band: for instance, one would expect a band-
pass of only 70 nm for a comparable null depth of 8 × 10−3 in
a perfect interferometer. In Fig. 10, the measured null depth at
different wavelengths is compared to the simulations, assuming
two methods for the flux measurement. The most interesting re-
sult is probably the one obtained without any filter that shows
the very significant null depth on a broad band.

Despite that those performances appear modest compared to
a goal of a few 10−6 in null depth, one should not forget that
this null depth would increase in the mid-infrared, assuming
the same manufacturing accuracy. This domain of wavelength
is precisely the one where nulling interferometry is meaningful.
For instance, assuming an identical manufacturing uncertainty
of 20 nm rms on the depths of the seven levels of engraving1 for
a mean wavelength of 10 μm, the null depth should be of the or-
der of 6.3×10−6, which is practically equal to the required speci-
fication. Clearly, a first conclusion of those measurements is that
a chessboard phase shifter in bulk optics could legitimately be
considered for a mid-infrared nulling interferometer.

4.2. Reflective phase shifter

Since the manufacturing process of a transmissive device in bulk
optics cannot be improved by a significant factor, this pushed
us to mitigate the problem of the accuracy of the individual cell
phase shift by using a SDM instead of a transmissive mask, since
nanometric control is in principle possible for the former.

1 Baudoz et al. (2006) quote an accuracy of 0.5% on the step thickness
when prototyping the three four-quadrant phase mask coronagraphs de-
signed for λ = 10 to 15 μm, which equip the MIRI-JWST instrument.
For instance this leads to 25 nm accuracy for the λ

2(n−1) step required by
four-quadrant coronagraph for ZnSe (optical index = 2.4) at λ = 15 μm.

Fig. 9. Upper right: simulated image at λ = 560 nm of the nulled PSF,
which considers the measured phase unaccuracy on the transmissive
chessboard. Upper left: the measured PSF obtained by scanning the
SMFO. One pixel corresponds to one step of displacement of the SMFO
of 200 nm. Middle panel: same as upper panel but at the wavelength of
650 nm. Lower panel: same as upper panel but in a broad wavelength
range of about 450–840 nm.

Table 1. Measured null depth in different broadband filters for one of
the transmissive chessboard phase mask we manufactured.

Wavelength (nm) Null depth Uncertainty

560 5.9 ×10−3 3.4 ×10−5

650 4.4 ×10−3 2.0 ×10−5

740 6.1 ×10−3 4.1 ×10−5

830 3.9 ×10−3 5.4 ×10−5

470–830 7.9 ×10−3 6.6 ×10−5

Notes. The uncertainty (last column) is the standard deviation of ten
measurements.

With this type of device, our expectation is to control the
position of each actuator with better accuracy and to also have
the capability of a feedback after a first measurement to improve
the nulling by small adjustments.

Starting from the configuration of a flattened mirror, as de-
scribed in Sect. 3.4, we synthesize chessboards with a central
wavelength of λo = 635 nm by applying a matrix of offset volt-
ages which is based on the average voltage/piston characteristic
given by the manufacturer. We first made a series of measure-
ment with the same protocol as in the case of the transmissive
mask that is by scanning the head of the SMFO at the focus of
the imaging parabola. The result was, however, disappointing,
and we rapidly identified that the problem was the much larger
size of the PSF because of the reduced size of the chessboard
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Fig. 10. Measured null depth of the transmissive chessboard phase mask
in different broadband filters (colored segments of line), which include
the large band of 470–830 nm. The black line is the theoretical per-
formance of a perfect component and the green line is the simulated
null depth of the real device when the minimum of the fringe pattern
is used. The blue line which is the same quantity when using just the
central pixel value as the measure, assumes that the fiber will be placed
there and not moved (as it would likely be in the case of a space exper-
iment). The dotted line gives the nulling depth for a perfect Bracewell
interferometer.

mask (actually the SDM): there is a factor of 4 between the two
cases. This translated into a strong loss of signal when using the
SMFO and also a difficulty to locate precisely the dark fringe by
scanning, since the separation between the lobes was out of the
range of the xy piezo actuators.

Of course, one could think to reduce the parabola focal
length, but the cost of a new, fast parabola was beyond our bud-
get. We concluded that the method was no longer adapted to this
new situation and decided to make an evaluation of the nulling
efficiency directly on the image of the fringe pattern at the focus
of the parabola, by assessing the darkness of the central fringe
compared to the central bright fringe seen when the SDM is
made flat. For this purpose, we added a few optical elements
to obtain the direct diffraction image produced by the interfer-
ometer. This provided the additional advantage to check in real
time if the actuators were effectively at a level close to their the-
oretical piston value by looking at the symmetry of the pattern;
this check was done before starting a several hours measurement
sequence. This proved to be a real asset.

The very first measurements we obtained are displayed in
Fig. 11: clearly, the dark central fringe is present at all wave-
lengths and symmetric. It is also present in the no-filter image.
The overall aspect of the image also looks more satisfactory than
with the transmissive chessboard: less shear between the lobes
and there is a lower difference in intensity between the peak val-
ues of the lobes. Table 2 and Fig. 12 summarize the results on the
null depth measured at different wavelengths. The red curve is
the ratio of the minimum pixel on the dark fringe, when the SDM
is shaped along the chessboard design, to the maximum pixel on
the bright fringe when the SDM is flat (constructive case). This
ratio represents extinction of an on-axis star that is the null depth.
As far as planet detection is concerned, a more pertinent quantity

Fig. 11. Images at different wavelengths of the fringe pattern; they were
obtained by direct imaging on a CCD camera of the Fizeau recombined
focus. The label at top of each image gives the wavelength. The last
image corresponds to no filter.

(blue curve) is defined which uses another constructive case for
the reference. It is obtained by adding a λo/2 opd to one pupil of
the chessboard (as it would be the case for a planet). The max-
imum pixel on the bright fringe is also taken as the reference.
One notes that at 650 nm which is close to the central wave-
length (635 nm) and at 740 nm, the performance is better than
with the transmissive phase mask, although this is no longer true
at the two extreme wavelengths, 560 and 830 nm. This reduced
bandpass of the nulling performance is however consistent with
the fact that the order of the mask is only 2, instead of 3 for the
transmissive one.

Two other tests were done with the SDM. In the first one
we simulated a configuration closer to a real interferometer, in
contrast to having just two telescopes side-by-side, by using a
synthesized chessboard on square pupils, which are separated
by one or more cells. Figure 13 shows the image obtained with-
out any filter, when the separation is 4 cells (1.2 mm): the fringe
pattern is squeezed, as expected, and the lobes around the cen-
tral dark fringe are well balanced, despite that the image appears
more distorted than in the previous case. We suspect that it is the
delicate positioning of the physical diaphragm that is responsible
of this distortion.

In the second test, we conducted an experiment that is proba-
bly the most robust demonstration of the achromatic character of
the phase shifter. Instead of using different filters, we fixed the
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Fig. 12. Null depth measured in four narrowband filters using the re-
flexive chessboard phase mask (short segments of line). The curves
give the theoretical null depth of a perfect component. The red color
refers to a null depth based on a non-nulling reference produced by a
flattened chessboard; the blue color refers to a reference produced by
adding a λo/2 opd to one pupil of the chessboard: it measures a star-to-
planet contrast ratio than a null depth (see text). The dotted line gives
the nulling depth for a perfect Bracewell interferometer.

Table 2. Measured null depth in different narrow band filters, when
using the reflective chessboard phase mask synthesized with the SDM.

Wavelength (nm) Null depth Uncertainty

560 1.1 ×10−2 4.0 × 10−4

650 1.4 ×10−3 2.0 × 10−4

740 4.3 ×10−3 2.0 × 10−4

830 2.9 ×10−2 1.0 × 10−4

Notes. The uncertainty (last column) is the standard deviation of ten
measurements.

wavelength, using a diode laser as a source (635 nm), and we
scanned the voltages applied to the cells so that at each step the
chessboard pattern produced is the one corresponding to a given
λo. Since there are no exchanges of filters during the sequence,
the stability of the experiment should be better. Figure 14 shows
the result in terms of the null depth related to λo. The behav-
ior appears quite smooth, and a useful bandpass of 380 nm is
derived when considering a null depth of 10−2.

The precise z-position of each actuator is not well mastered
in this preliminary phase, and obviously, there are several points
on which we can work as a means to improve the performance,
to begin with a better calibration of the voltage/piston response
of each cell of the SDM, and to determine a finer use of the
information given by the strioscopy setup in order to adjust more
accurately the piston. A new phase has been started recently to
implement those improvements.

4.3. Interpretation of the measurements

Compared to the theoretical performance of a perfect device
(black curve in Figs. 10, 12, and 14), the measured perfor-
mance is of course much lower. However, our simulations, when

Fig. 13. Images without any filter of the fringe pattern, when the two
pupils on the SDM are separated by 4 cells (1.2 mm).
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Fig. 14. Blue line: measured null depth, when the wavelength is fixed
(laser diode) and the piston of the cells on the SDM is scanned to main-
tain a nulling phase pattern at each step for the reference wavelength,
as indicated on the horizontal axis. The bandpass at a null depth level
of 10−2 is indicated by the horizontal straight line. Solid black line:
null depth in a perfect case. Dotted line: nulling depth for a perfect
Bracewell interferometer.

considering a realistic device, do reproduce to some extent this
loss of performance, which should thus be ascribed to the man-
ufacturing error in the cells thickness. This was expected (see
Pelat et al. 2010), and we do confirm by those measurements
that the chessboards performance is quite sensitive to the errors
on cells thicknesses.

One can give an analytical justification and estimation of this
effect that is similar to the analysis of a wavefront perturbated
by atmospheric turbulence. Let us consider the Fresnel vector
(phasor) associated with the even chessboard: it is the sum of the
Fresnel vectors of each cell. In an orthogonal X-Y frame, the two
projections of this sum have amplitudes that can be written as:
ax =

∑N
i=1 cos(θi) and ay =

∑N
i=1 sin(θi),

where θi is the angle between the Fresnel vector associated
with the cell i and the real axis; θi thus translates the manufac-
turing phase error. Since the error θi is small those expressions
reduce to

ax =

N∑
i=1

1 − 1
2
θ2i and ay =

N∑
i=1

θi.
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Assuming that θi is normally distributed with a variance σ2
θ , we

can derive the statistical mean and variances of ax and ay:

〈ax〉 = N−N
σ2
θ

2
, var(ax) = N

σ4
θ

2
and 〈ay〉 = 0, var(ay)=Nσ2

θ .

For the odd chessboard, the expressions are the same, but of
course, the Fresnel vector is opposite. When recombining the
two beams, for instance, at the focus of the parabola, the result-
ing complex amplitude A = aeven + aodd has a statistical mean
and variance of

〈Ax〉 = 0, var(Ax) = Nσ4
θ and 〈Ay〉 = 0, var(Ay) = 2Nσ2

θ .

Finally, the intensity I, which is the squared modulus of the am-
plitude, is a stochastic variable that has for mean and variance:

〈I〉=
〈
A2

x

〉
+〈A2

y〉=Nσ4
θ + 2Nσ2

θ , var(I)=2
(
Nσ4
θ

)2
+ 2
(
2Nσ2

θ

)2
N.

Since σ4
θ � σ2

θ , this expression reduces to

〈I〉 ≈ 〈A2
y〉 = 2Nσ2

θ , var(I) = 8N2σ4
θ . (1)

The null depth, which is the ratio of the intensities with and with-
out phase shifter, is then a stochastic variable f of mean and
variance:

〈 f 〉 = σ
2
θ

2N
, var( f ) =

σ4
θ

2N2
· (2)

Since each Fresnel vector that is associated with one chessboard
is the sum of many Fresnel vectors, we can use the central limit
theorem to state that Ay is a normal random variable and thus,
conclude that the statistical distribution of I/(2Nσ2

θ) follows a χ2

law with one degree of freedom. The standard deviation of this
distribution function is equal to its mean times

√
2, which im-

plies that large variations of I must be observed from one real-
ization of a device to another. This is what our simulations gives:
from one simulated pair of chessboards with a random manufac-
turing error on each cell to another one, the null depth can vary
by several orders of magnitude. This comes as a surprise in the
first instance but is simply a consequence of the χ2 law with one
degree of freedom. To illustrate this, let us compute the ratio of
the nulling depth f for the worst case (larger f ) scenario to the
best case (lower f ) scenario on a set of 20 devices. We find a
median value for this ratio equal to 2570 on 1000 realizations of
this set.

Concerning the transmissive chessboard we have measured
the best component among those manufactured by the Pôle in-
strumental du GEPI, using a profilometer. We obtained a stan-
dard deviation of 15 nm on the thickness of the cells (relative to
the nominal value) belonging to a same floor, while the step be-
tween two levels is 712 nm. This translates into σθ = 0.0662 ra-
dians. However, there is an additional dispersion of the thick-
ness difference between levels (realtive to the nominal value)
that amounts to 20 nm rms and that produces a more severe ef-
fect, since all cells of a given level have a correlated error. It is
not straightforward to establish the proper expression that takes
this correlation into account, since the number of cells per level
varies largely from one to another. Roughly, one can say that the
null depth should stand somewhere aroundσ2

θ /(Nlevels−2) instead
of around σ2

θ/(2Ncells). We justify the use of (Nlevels − 2) instead
of Nlevels because two of the levels exhibits only 2 cells each.
Using this last expression, we deduce that the null depth should
be of the order of 1.5 × 10−3. This value is smaller by a fac-
tor of three than the actual measured performance summarized

in Table 1 and in Fig. 10 for the most accurate component we
tested. This analytical expression provides a lower limit of the
null depth on average. Other causes, such as non-perfect align-
ment and centering on the single mode fiber, can further reduce
the effectiveness of the nulling. We do not yet have a similar es-
timate of the uncertainty on the actual piston of each actuator of
the SDM; however, the previous generic analysis will, of course,
be applicable when a safe estimate will become available.

5. Conclusion and prospects

We present an experimental setup of a genuine nulling inter-
ferometer that features a new concept of an achromatic phase
shifter. This concept is based on the design of an optical chess-
board with cells that introduce a peculiar pattern of phase shifts
to produce a complex amplitude at the recombined focus, which
has a root of order n at λ = λo and thus leads to a flattening of the
null depth versus wavelength that is equivalent to a broadening
of the achromatic bandpass.

A first series of measurements was done using a transmis-
sive chessboard made in bulk optics as the π phase shifter. The
most important result is that those tests demonstrated the valid-
ity of the concept. They also confirmed numerical simulations
that indicate that our phase shifter is very sensitive to the cells’s
thickness error to a level such that manufacturing a performing
device in bulk optics is probably too challenging in the visible.
By extrapolating the measured performance to the mid-infrared
on the other hand, the null depth would be practically within the
required specification for an earth-like planet detection, provided
that a same manufacturing accuracy is reachable. To go around
this problem in our visible demonstrator, we decided to switch
to a controlled SDM for the synthesis of the phase chessboard
with the hope that the piston on an actuator can be controlled
with an accuracy better than 1 nm. We present the very first re-
sults here using reflective chessboards that are synthesized with
a SDM from Boston micro-machines. They appear to be very
encouraging, since they confirm the achromatic behavior of the
chessboard phase shifter and open the door to a series of new
tests made possible thanks to the versatility offered by the con-
trol of all cells independently. We identified several points where
the null depth could be improved, such as in a better positioning
of the actuators, through a trial and error method. Thanks to the
easy control of the mirror, we plan to do many more tests. For
example, we plan to do a modulation between different nulling
configurations for a better determination of the bias. We expect
to produce more new results within the coming year.

Acknowledgements. CNES and CNRS funded the Ph.D. grant of D. Pickel. We
thank the anonymous referee for his(her) careful reading of the manuscript which
leads to a significant improvement of the paper. Thanks are extended to the
team at Pole Instrumental du GEPI, who manufactured carefully the transmis-
sive chessboards.

Appendix A: The contrast bandwidth

This appendix addresses the question of planet detection, bear-
ing in mind that it is not enough to have a good null depth for
an on-axis star but the planet should not be too significantly ex-
tinguished. Therefore, a more pertinent quantity than the null
depth is the star to planet intensity ratio which is noted as |ρ|2
and called contrast.

The determination of the theoretical bandwidth ( 2
3λo, 2λo)

has been carried out in Paper II (Pelat et al. 2010), but using
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the simplification that an opd of δ = λo/2 on one pupil, which
is introduced to simulate the planet case, is seen as a constant
phase shift of π, as the chessboards order goes to infinity. This
nonobvious fact, which holds true as far as the star/planet ratio
is concerned, certainly needs a justification.

To give substance to this assertion, let us consider a device,
where an on-axis star is seen with the amplitude A∗ = (1 + z)n,
z = e jφ, φ = πλo/λ. We recall that our nulling interferometers
of order m are designed for n = 2m + 1 in such a way that we
can arrange the phase shifters in two square chessboards both
containing 2m × 2m cells. The planet is seen as an off-axis object
which is considered on the same intensity as the star of the sys-
tem to avoid the introduction of a star/planet factor that has no
significance as far as the bandwidth is concerned. We then com-
pare the amplitudes and intensities of a star seen on-axis relative
to the same star seen off-axis. The off-axis star is seen presenting
a supplementary opd of δ = λo/2 on the center of one pupil and
zero on the other. This can be on the odd or on the even pupil.

To perform the computations more easily, two simplifica-
tions, both stemming from the consideration that the size of the
pupils is much smaller than the baseline, are made.

1. We consider a hypothetical super-Michelson interferometer,
where the effects of all cells are added on-axis. That is the
phase shifts induced by the positioning of the cells on the
pupil plane are neglected. (Note that the exact analytical
computation has been done in Paper II.)

2. Because of the tilt of the off-axis waveplane, the opds are
not constant on the pupil’s plane. Nevertheless, we shall ne-
glect this effect. In other words, we consider only a piston
of λo/2 on one pupil (either the even or the odd one). Under
a condition of constructive interferences, this approximation
is of little consequence.

This piston will induce a phase shift of φδ = 2π(λo/2)/λ, or
φδ = φ. Therefore, the complex amplitude on the even or odd
pupil is multiplied by z. Without this piston (on-axis star), the
amplitude at the exit of the even pupil is given by

1
2

[
(1 + z)n + (1 − z)n] , (A.1)

which retains only the terms of even powers of (1 + z)n =∑n
p=0

(
n
p

)
zp; at the exit of the odd one, the amplitude is

1
2
[
(1 + z)n − (1 − z)n] , (A.2)

which retains only the terms of odd powers of (1+z)n. Therefore,
the amplitude A′∗ of the off-axis star, when piston is on the even
pupil, is given by

A′∗ =
1
2

z
[
(1 + z)n + (1 − z)n] + 1

2
[
(1 + z)n − (1 − z)n]

=
1
2

[
(1 + z)n+1 − (1 − z)n+1

]
,

and when the piston is on the odd pupil

A′∗ =
1
2
[
(1 + z)n + (1 − z)n] + 1

2 z
[
(1 + z)n − (1 − z)n]

=
1
2

[
(1 + z)n+1 + (1 − z)n+1

]
.

Let us define ρn = A∗/A′∗. For a planet having an intensity i⊕
relative to its star, a relevant performance indicator of nulling
efficiency is the star/planet intensity ratio. This value is equal to

Table A.1. Behavior of | ρn|2 at the edges of the bandwidths, where
p = n mod 4.

p + −
0 1 1
1 ∞ 1/2
2 1 1
3 1/2 ∞

Notes. The sign + stands for a piston of λo/2 on the odd pupil, and the
sign − stands for the same piston on the even one.

Fig. A.1. Contrast provided by the phase-shifter devices as measured by
| ρn|2. The plot starts from n = 1 for a Bracewell setup (black curve) and
continue up to n = 10. A piston of λo/2 is applied on the even pupil.

Fig. A.2. Same as Fig. A.1 but with a piston of λo/2 applied on the odd
pupil.

| ρn|2/i⊕. When closer it is to zero, the nulling interferometer is
the more efficient. We have

ρn =
A∗
A′∗
=

(1 + z)n

1
2

[
(1 + z)n+1 ± (1 − z)n+1

] · (A.3)

Within the interval φ ∈ (π/2, 3π/2) mod 2π, (1− z) is not equal
to zero; therefore, one can write

ρn =
1

1 − z

(1 + z
1 − z

)n

1
2

[(1 + z
1 − z

)n+1

±1
] · (A.4)
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Fig. A.3. Contrast when adopting, for the off-axis object, a supplemen-
tary constant phase of π applied indifferently on either the odd or the
even pupil. The bandwidth derived from these curves do not differ sig-
nificantly from those computed with the Figs. A.1 and A.2 curves.

As shown in Paper II, (1 + z)/(1 − z) is the stereographic pro-
jection on the imaginary axis of the affix z toward the complex
(1, 0). One gets (1 + z)/(1 − z) = j cot(φ/2), which is a com-
plex whose modulus is less than 1 within the interval considered.
For a given φ, such that | cot φ2 | < 1, the quantity ρn vanishes as
| cot φ2 |n, when n goes to infinity. Therefore

lim
n→∞ ρn = 0 , for φ ∈

(π
2
,

3π
2

)
mod 2π· (A.5)

This equation defines a principal bandwidth of (π/2, 3π/2) or
( 2

3λo, 2λo), as claimed in Paper II. Outside this bandwidth, when
φ ∈ [0, π2 ) ∪ ( 3π

2 , 2π] mod 2π, one gets

ρn =
2

1 + z
1

[
1 ±
(1 − z
1 + z

)n+1] , (A.6)

where (1 − z)/(1 + z) = j tan(φ/2) is a complex of modulus <1.
The limit of the intensity ratio (contrast), which retains only

the term 2
1+z on ρn that does not depend upon n, is therefore

given by

lim
n→∞ | ρn|2 = 4

(1 + z)(1 + z)
=

1
cos2
(
φ/2
) , (A.7)

where z is the complex conjugate of z. The greatest possible con-
trast is equal to 2 near the extremities of the bandwidths. Exactly
at these extremities, where z = ± j, one gets

| ρn|2 =
∣∣∣∣ 2
2 ± jn+1(1 + (−1)n+1)

∣∣∣∣· (A.8)

The behavior of | ρn|2 at the edges of the bandwidth depends on
the rest of n + 1 modulo 4. This is summarized on Table A.1,
where we have set n = 4k + p.

We have plotted | ρn|2 in Figs. A.1 and A.2 for a λo/2 piston
applied on the odd and the even pupil respectively. The curves
have been computed for ten values of n, starting from n = 1
for a Bracewell to n = 10. We have also plotted in Fig. A.3 the
approximation adopted in Paper II. This was where the piston is
supposed to induce a constant phase shift of π on all wavelengths
within the bandwidth. While this seems like a crude approxima-
tion, it is equivalent to the consideration that sin2(φ/2) ≈ 1 on
the (π/2, 3π/2) mod 2π intervals. Therefore it has little influ-
ence on the practical bandwidth approximation, as shown on the
figure.
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