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Introduction

Fluorescent Pseudomonas bacteria have been implicated in the biological control of plant pathogens (Olorunleke et al., 2015a). Multi-locus sequence analysis (MLSA), a method based on sequence analysis of several housekeeping genes, has proven reliable for species delineation and strain identification within the Pseudomonas genus (Mulet et al., 2010;[START_REF] Gomila | Phylogenomics and systematics in Pseudomonas[END_REF][START_REF] Garrido-Sanz | Genomic and genetic diversity within the Pseudomonas fluorescens complex[END_REF], 2017). MLSA has enabled the discrimination of the Pseudomonas aeruginosa and Pseudomonas fluorescens lineages [START_REF] Garrido-Sanz | Genomic and genetic diversity within the Pseudomonas fluorescens complex[END_REF]. The P. fluorescens lineage is divided into the P. fluorescens complex and the P. syringae, P. lutea, P. putida, P. anguilliseptica and P. straminea groups. Described as being the most complex [START_REF] Loper | Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions[END_REF][START_REF] Garrido-Sanz | Genomic and genetic diversity within the Pseudomonas fluorescens complex[END_REF], the P. fluorescens complex comprises nine subgroups including P. fluorescens, P. jessenii, P. corrugata, P. koreensis, P. fragi, P. mandelii, P. gessardi, P. chlororaphis, and P. protegens subgroups. Besides their strong strain-to-strain diversity, fluorescent pseudomonads belonging to the P. fluorescens complex are of notable interest as they contain biocontrol strains that produce potent secondary metabolites, including cyclic lipopeptides (CLPs) [START_REF] Loper | Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions[END_REF];Olorunleke et al., 2015a;[START_REF] Garrido-Sanz | Genomic and genetic diversity within the Pseudomonas fluorescens complex[END_REF], 2017).

CLPs are bacterial metabolites composed of a cyclic oligopeptide lactone ring linked to a fatty acid tail (Raaijmakers et al., 2006;[START_REF] De Maeyer | Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol[END_REF]. They possess surfactant activity and can cause destruction of microbial membranes, leading to death of bacteria, fungi, oomycetes and viruses [START_REF] Geudens | Membrane interactions of natural cyclic lipodepsipeptides of the viscosin group[END_REF]. CLPs produced by Pseudomonas spp. can act as biocontrol agents against several plant pathogens both in in vitro and in vivo conditions This article is protected by copyright. All rights reserved. (Zachow et al., 2015;Raaijmakers et al., 2006;Olorunleke et al., 2015a;Olorunleke et al., 2015b;[START_REF] Michelsen | Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil[END_REF]Ma et al., 2016a;Ma et al., 2016b).

Cocoyam (Xanthosoma sagittifolium (L.) Schott), a monocot tropical tuber crop, is widely cultivated in some parts of Africa, Asia and the Pacifics with Nigeria, Cameroon and Ghana as major producing countries (Purseglove, 1972;[START_REF] Agbede | Nutrient availability and cocoyam yield under different tillage practices[END_REF]. Besides containing high amounts of proteins, fats and essential vitamins, cocoyams are a rich source of carbohydrates and serve as a staple food for over 400 million people in the tropics [START_REF] Djeugap | Effect of compost quality and microbial population density of composts on the suppressiveness of Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon[END_REF].

However, cocoyam production is seriously hampered by the root rot disease caused by the oomycete, Pythium myriotylum, accounting for yield losses of up to 90% in West and Central Africa [START_REF] Djeugap | Effect of compost quality and microbial population density of composts on the suppressiveness of Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon[END_REF]. Xanthosoma spp. originate from tropical America. In Africa, cocoyam landraces are believed to be introduced by the Portuguese and or West Indian missionaries [START_REF] Boakye | Utilizing cocoyam (Xanthosoma sagittifolium) for food and nutrition security: A review[END_REF]. They are distinguished by the color of the peeled cormels resulting in red (2n=26), white (2n=26) and yellow (2n=52) varieties. Of these three varieties, the yellow does not tuberculize and the white cocoyam is often preferred due to its high yield and good taste. In Cameroon and most other West African countries, there are only two commercially cultivated varieties which are vegetatively propagated: the preferred white cocoyam, which is more susceptible to the cocoyam root rot disease (CRRD), and the red cocoyam which appear to be field tolerant against CRRD (Perneel et al., 2007).

In previous years, biological control has been proven to be a viable management option for CRRD. Pseudomonas aeruginosa PNA1, isolated from the chickpea rhizosphere in India [START_REF] Anjaiah | Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn 5 derivatives toward Fusarium spp. and Pythium spp[END_REF], was shown to efficiently suppress cocoyam root rot by the production of the antibiotics phenazine-1-carboxylic acid (PCA) and phenazine-1-carboxamide (PCN)
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(Tambong and Höfte, 2001). Moreover, phenazines and rhamnolipid-biosurfactants, produced by P. aeruginosa PNA1, were shown to act synergistically in the control of Pythium root rot on cocoyams (Perneel et al., 2008) .

However, there are some serious drawbacks to the use of P. aeruginosa PNA1 because of its pathogenicity to humans [START_REF] Kumar | Friend or foe: Genetic and functional characterization of plant endophytic Pseudomonas aeruginosa[END_REF]. In search of a safe alternative, a targeted isolation and screening of healthy red and white cocoyam rhizosphere in Cameroon for potential biocontrol agents yielded 40 fluorescent Pseudomonas strains. Seven of these isolates showed biocontrol activity against CRRD and were exclusively obtained from the red cocoyam rhizosphere [START_REF] Adiobo | Variation of Pythiuminduced cocoyam root rot severity in response to soil type[END_REF]. Two of these isolates (Pseudomonas sp. CMR12a and CMR5c), are closely related to the P. protegens and P. chlororaphis subgroups [START_REF] Flury | Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics[END_REF] and showed excellent biocontrol against CRRD (Perneel et al., 2007). CMR12a produces phenazines and two cyclic lipopeptides namely orfamides and sessilins (D'aes et al., 2014). These metabolites have been shown to be vital in the biological control capacity of CMR12a (Olorunleke et al., 2015b;[START_REF] Hua | The involvement of phenazines and cyclic lipopeptide sessilin in biocontrol of Rhizoctonia root rot on bean (Phaseolus vulgaris) by Pseudomonas sp. CMR12a is influenced by substrate composition[END_REF]. Phenazines and CLPs produced by CMR12a were demonstrated to play a role in the suppression of CRRD (Oni et al. in press). These results led us to hypothesize that the red cocoyam rhizosphere is an untapped reservoir of CLP-producing Pseudomonas strains towards CRRD. In this study, we characterized 138 Pseudomonas isolates previously obtained from the rhizosphere of healthy red and white cocoyam plants in Cameroon. We wanted to determine whether the taxonomic affiliation and cyclic lipopeptide diversity of Pseudomonas isolates was dependent on plant genotype.

Materials and methods

Isolation of fluorescent Pseudomonas strains

In view of our hypothesis, a targeted Pseudomonas isolation strategy was adopted.

Pseudomonas isolates were obtained from the rhizosphere of two and a half to three month old healthy cocoyam plants that were grown in three different fields (located in the Boteva, Ekona and Maumu villages) in the South-West province of Cameroon. From each location, 10 red and 10 white cocoyam plants were sampled giving a total of 60 plants. To isolate fluorescent Pseudomonas, roots were crushed in 0.85% sterile saline solution and autoclaved sand. Crushed roots were serially diluted and aliquots were plated on King's B agar (King et al., 1954) medium plates. Plates were incubated at 28 °C for 48 h and periodically examined under UV light. One hundred and thirty-eight fluorescent Pseudomonas isolates were randomly selected, purified and stored at -80 °C in 20% glycerol. Sixty Pseudomonas isolates were obtained from the rhizosphere of red cocoyams while 74 isolates were obtained from the white cocoyam rhizosphere. Strains isolated from the red and white cocoyam variety were designated with COR-and COW-prefixes, respectively. For our current study, these isolates were taken from -80 °C collection and streaked on King's B (KB) medium and incubated at 28 °C overnight. Supplementary Table S1 shows a list of strains used in this study and their characteristics.

DNA-based phylogenetic analyses

The MLSA approach has been reported to be a robust method for the taxonomical inference of the Pseudomonas genus (Mulet et al., 2010;[START_REF] Gomila | Phylogenomics and systematics in Pseudomonas[END_REF][START_REF] Garrido-Sanz | Genomic and genetic diversity within the Pseudomonas fluorescens complex[END_REF]. Using colony PCR, two housekeeping gene regions, rpoD [START_REF] Mulet | An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples[END_REF] 

and rpoB

This article is protected by copyright. All rights reserved. [START_REF] Frapolli | Multilocus sequence analysis of biocontrol fluorescent Pseudomonas spp. producing the antifungal compound 2,4diacetylphloroglucinol[END_REF] were amplified for each bacterial strain. rpoB primers produced a single amplicon with the Pseudomonas strains tested. For rpoD, some isolates did not give bands, so we designed optimized primers rpoD1F/rpoD1R (Supplementary Table S2).

Sequences of representative type strains within the Pseudomonas genus together with some CLP-producing Pseudomonas isolates were retrieved from the GenBank (Supplementary Table S3). Sequence alignment was carried out using MUSCLE [START_REF] Edgar | MUSCLE: multiple sequence alignment with high accuracy and high throughput[END_REF] in the software package MEGA6 (Tamura et al., 2013). The tree was inferred by Neighbor Joining and confidence analysis was ensured using 1000 bootstrap replicates with P. aeruginosa as outgroup. Individual rpoB and rpoD trees were initially generated after which a concatenated tree combining the aligned partial sequences of both genes was carried out using the same method. Unique sequences generated during this study were submitted to Genbank and accession numbers are listed in Supplementary Table S1.

Characterization of surfactant-producing Pseudomonas isolates

After assessing growth at 37 °C, two isolates were considered to be potential human pathogens and therefore excluded from further biosurfactant analysis. The initial screening step for biosurfactant production for all 138 isolates was by the use of the drop collapse assay [START_REF] Jain | A drop-collapsing test for screening surfactant-producing microorganisms[END_REF].

Swarming motility and white line-in-agar experiments were performed for all biosurfactantproducing isolates according to previously described methods (D'aes et al., 2011, 2014).

Structural diversity of Pseudomonas sp. biosurfactants

To characterize the Pseudomonas sp. surfactants by high-pressure liquid chromatography (HPLC), all isolates were cultured in 5 ml of KB broth under shaking conditions at 28 °C for 24 h after which cultures were centrifuged at 10,000x g for 10 min. Filter sterilized supernatants were dissolved in methanol. Analytical LC-MS data of the various compounds were collected on an 1100 Series HPLC with an type VL ESI detector (Agilent Technologies) equipped with an analytical Luna C18 (2) reversed-phase column (250x4.6 mm, 5 µm particle size; Phenomenex, Torrance, CA). An elution gradient of H 2 O/CH 3 CN (100:0 to 0:100 over 20 min) was applied at a flow rate of 1 mL min -1 .

For final CLP purification, seed cultures of Pseudomonas strain were grown in 5 ml KB broth contained in glass tubes and placed in a rotary shaker for 24 h at 28 °C. Subsequently, for each CLP-producing strain, this was inoculated in 2 L flasks containing 400 ml KB broth at 150 rpm for 24 h. Pseudomonas supernatant was collected after centrifugation at 10 000 g for 10 min, acidified to pH 2 with 6 N hydrochloric acid and kept overnight at 4°C, causing the CLPs to precipitate. After centrifugation at 10 000 g for 10 min, crude CLPs were extracted from the precipitate using methanol. The organic phase was evaporated at room temperature to obtain crude CLP extracts. For each CLP, crude extracts were injected into a Prostar HPLC device (Agilent Technologies) equipped with a Luna C-18(2) preparative RP-HPLC column (250x21.2 mm, 5 µm particle size) for separation of the individual CLP analogues. An elution gradient of H 2 O/CH 3 CN (25:75 to 0:100) was applied at a flow rate of 17.5 mL min -1 , while the column temperature was kept at 35°C. To ensure an optimal separation of the peptides, a 20 minute gradient was used for WLIP, lokisin and putisolvin, while a 15 or 25 minute gradient was used for entolysin and xantholysin, respectively. NMR measurements were performed on a Bruker Avance III spectrometer operating at 1 H and 13 C frequencies of 500.13 and 125.76 MHz, respectively, and equipped with a BBI-Z This article is protected by copyright. All rights reserved.

probe. The sample temperature was set to either 298.0 K or 328.0 K as indicated. High precision 5 mm NMR tubes (Norell, Landisville, NJ) were used. Acetonitrile-d3 (99.96%), and dimethylformamide-d7 (DMF) (99.50%) were purchased from Eurisotop (Saint-Aubin, France). 1 H and 13 C chemical shift scales were calibrated by using the residual solvent signal using TMS as secondary reference. 2D spectra measured for structure elucidation included a 2D 1 H-1 H TOCSY with a 90 ms MLEV-17 spinlock, 2D 1 H-1 H NOESY and off-resonance 1 H-1 H ROESY with 200 ms mixing times, and gradient-selected 1 H-13 C gHSQC and gHMBC optimized for an 8 Hz n J CH coupling constant. Standard pulse sequences as present in the Bruker library were used throughout. Typically, 2048 data points were sampled in the direct dimension for 512 data points in the indirect dimension, with the spectral width set to 11 and 110 ppm along the 1 H and 13 C dimensions, respectively. The 1 H-13 C HMBC spectra were measured with a 200 ppm 13 C spectral width. For 2D processing, the spectra were zero-filled to a 2048x2048 real data matrix. Before Fourier transformation, all spectra were multiplied with a squared cosine bell function in both dimensions or a sine bell in the direct dimension for gHMBC. All spectra were processed using TOPSPIN 3.5 pl2.

Biological activity by CLP-producing Pseudomonas isolates

In order to assess the biological activity of CLP-producing Pseudomonas isolates, plant experiments were conducted in an unsterilized potting soil (Structural; Snebbout, Kaprijke, grown on KB plates for 24 h at 28 °C, and collected in sterile saline solution (0.85%). The optical density (OD) of bacterial suspensions was recorded at 620 nm after which a final concentration of 3x10 6 CFU g -1 soil was mixed with the substrate. The inoculated substrate was incubated at 28 °C for 48 h prior to experimental setup. P. myriotylum NGR03 isolate [START_REF] Kieu | To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a[END_REF] was cultured on potato dextrose agar (PDA) at 28 °C for 5 days.

Mycelial mats were cut in pieces with a sterile scalpel, collected in sterile saline (0.85 %), and blended with a homogenizer Ultra Thurrax (VWR, Leuven, Belgium). Inoculum concentration was quantified using a hemacytometer (Marienfeld, Lauda-Koenigshofen, Germany), and 1250 P. myriotyum propagules g -1 soil were added to the substrate (Oni et al., 2019).

Cocoyam plant material was propagated by tissue culture as described by [START_REF] Anjaiah | Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn 5 derivatives toward Fusarium spp. and Pythium spp[END_REF] and acclimatized in potting soil two weeks prior to the experiment. The experimental set up was a completely randomised design with five plants per treatment, including a healthy and a diseased control. Before transplanting, roots were dipped for one minute in a 3 x 10 6 CFU ml -1 bacterial suspension in sterile saline solution whereas control plants were dipped in sterile saline. Plants were grown in a controlled-growth chamber at 25 °C, RH = 60%, 16 h photoperiod and were watered once in two days. After seven days, disease severity was scored for each leaf using the following scale: 0 = healthy, no yellowing; 1 = < 50% leaf surface area is yellow; 2 = > 50% leaf area is yellow; 3 = 100% leaf yellowing and 4 = dead leaf. The experiment was repeated at least once (Oni et al., 2019).

Bacterial root colonization was assessed for all five cocoyam plants per treatment. Roots were crushed using sterile mortars and pestles in sterile saline solution (0.85%).
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Subsequently, serial dilutions of crushed suspension were plated on KB agar plates and incubated at 28°C. Bacterial colonies were counted after 24 to 36 h and for each treatment, colonies were compared with plated controls. Data were log10 transformed before statistical analysis.

In vitro microscopic inhibition of P. myriotylum using purified CLPs

The antagonistic activity of Pseudomonas sp. CLPs against P. myriotylum was conducted under in vitro microscopic conditions. Sterile microscopic glass slides were covered with a thin, flat layer of water agar (Bacto agar; Difco) and placed in a plastic Petri dish containing moist sterile filter paper (Olorunleke et al., 2015b). An agar plug (diameter = 5 mm) taken from an actively growing Potato Dextrose Agar (PDA) plate of P. myriotylum was inoculated at the center of each glass slide. Stock solutions (10 mM) of CLPs were initially made in DMSO while subsequent dilutions were made using sterile MilliQ water. Two droplets (15 µl each) of CLP solution were placed at two sides of the glass slide (about 2 cm from the Pythium plug). Concentrations of CLPs tested ranged from 10 to 100 µM for four replicates each while diluted DMSO controls were included. All plates were incubated for four days at 28 °C. Microscopic slides were assessed for hyphal leakage and branching under an Olympus BX51 microscope. Furthermore growth diameter of mycelia was recorded for each treatment and replicates. Percentage inhibition of P. myriotylum by each CLP and for each concentration was determined and expressed relative to the mycelial growth in the control. 

Results

Pseudomonas strains were isolated from the roots of healthy red, white and hybrid cocoyam plants grown in several fields in Cameroon. Samples were collected from three villages situated in the South-West province of Cameroon namely Boteva, Ekona and Maumu. This is a tropical region with annual rainfall up to 3000 mm [START_REF] Adiobo | Variation of Pythiuminduced cocoyam root rot severity in response to soil type[END_REF]. Sixty Pseudomonas isolates were obtained from the rhizosphere of the red variety whereas 74 isolates were collected from the roots of the white cocoyam variety (Table S1). Four other isolates that were obtained from roots of a hybrid variety were also included in this present study.

Taxonomic affiliation of Pseudomonas spp. isolated from red and white cocoyams

An MLSA tree was built using concatenated partial sequences of rpoD and rpoB genes from type and biocontrol strains retrieved from NCBI together with 138 fluorescent Pseudomonas isolates obtained during this study (Figures 1A and 1B). This tree showed the association of our strains with the P. fluorescens complex, P. aeruginosa (collapsed) and P. putida groups.

Strains used in this study had COW-and COR-prefixes denoting those obtained from the white and red cocoyams, respectively. All test isolates were positioned within three welldefined nodes with bootstrap supports higher than 97% over 1000 replicates.
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In line with the Pseudomonas spp. classification [START_REF] Garrido-Sanz | Genomic and genetic diversity within the Pseudomonas fluorescens complex[END_REF], 2017) our strains clustered with various groups within the P. fluorescens complex. Isolates situated within this complex predominantly clustered with the P. koreensis group (21 isolates) while fewer isolates clustered within the P. fluorescens, P. jessenii and P. corrugata groups (Figure 1A).

Additionally, our results show three new groups which appear to belong to the P. fluorescens complex and were designated as U1, U2 and U3 (Figure 1A). For the P. putida group, although several of our isolates were closely related to already described type isolates such as P. entomophilia L48T, P. soli F-279208T, P. monteilli and P. japonica, a sizable number (55 isolates) formed separate clades and appear to be new species (Figure 1B). A detailed overview of the phylogeny of our strains is given in Supplementary Table S1.

Relationship between plant genotype and Pseudomonas taxonomy

At the Pseudomonas group level, results of Fishers' exact test statistics showed no significant difference between the taxonomic affiliations of strains collected from the red and white cocoyams (data not shown). More so, some unique isolates obtained from the white cocoyam were genetically similar with those obtained from the red cocoyam and vice-versa (Figure 1A and 1B). However, we observed that all isolates situated within the U1 and U2 subgroups (Figure 1A) were obtained from the red cocoyam, while all isolates of the U3 subgroup were obtained from white cocoyam. More so, isolates from all other clades within the P.

fluorescens complex and P. putida group were present on both genotypes (Figures 1A and1B) (Table S4).

Biosurfactant characterization reveals structurally new cyclic lipopeptides
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Drop collapse assay showed that about 50% of isolates tested produced biosurfactants (Supplementary Table S1). Furthermore, CLP production was verified by LC-MS while for nine CLPs (entolysin, lokisin, putisolvin, WLIP, xantholysin, N1, N2, N4 and N8), full NMR characterization was also done. Based on retention time of the different CLPs, masses and swarming patterns, we could group all isolates into 13 different producers. Figure 2 shows representative chromatograms for some of these isolate types. One major peak was present in all strains, accompanied by minor peaks representing natural variants of the major compound.

These minor forms most likely result from the fact that the non-ribosomal peptide synthetases responsible for CLP production exhibit a certain degree of flexibility in selecting the free amino acids [START_REF] Gerard | Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats[END_REF]. One isolate, COR18, appears to produce two different CLPs designated N5 and N7.

Using MS and NMR analysis we identified five CLPs that are already described in literature characterization of representative strains that make different CLPs, isolates which gave a similar CLP mass and retention time were assigned to be producers of similar CLPs.

Furthermore, test-isolates showed variable swarming patterns on 0.6% LB soft agar such that strains producing similar CLPs appeared to swarm alike (Figure 4). Some of our surfactants were rare (lokisin, N2, N5, N6 and N7), some moderately present (WLIP, N3, N4, N8 and entolysin) and the rest were abundant (xantholysin, putisolvin and N1) (Figure 5A).

Relationship between plant genotype and CLP diversity

Although no significant relation was found between the plant varieties and their associated Pseudomonas taxonomic diversity, we observed a relationship between the former and CLP diversity (Figure 5A). In general, the red cocoyam appears to harbor a more diverse spectrum of CLP types (Figure 5A), since eleven CLP types could be found on the red cocoyam, while seven types were found on the white cocoyam. Furthermore, about 50% of isolates obtained from each genotype produce CLPs.

Relationship between CLP diversity and Pseudomonas taxonomy.

A significant association was found between Pseudomonas species affiliation and type of CLPs produced (Figure 5B). For instance, xantholysin, WLIP, putisolvin, entolysin, and N8

were only associated with the P. putida group, while N1, N2, N3, N4, N5, N6, N7 and lokisin were exclusively associated with the P. fluorescens complex (Figure 5B).

At the group level, most CLPs were exclusive to specific clades. For example, within the P.

fluorescens complex, N1 was only produced by isolates situated in the P. koreensis group, N2

and N3 was exclusive to the U3 subgroup whereas N4 was only produced by isolates
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belonging to the U2 subgroup (Figure 1A). Entolysin and putisolvin were produced by isolates situated in specific clades within the P. putida group. WLIP producers, however, were found dispersed in two different clades (Figure 1B) (Supplementary Table S1).

Characterisation of Cocoyamide A (N1), a new cyclic lipopeptide

The new CLP N1 that was significantly associated with the P. koreensis group was given the name cocoyamide A and fully characterized by NMR (Figure 6) (Supplementary Figure S6).

Based on its molecular weight (1393.8 Da), it was initially assumed that N1 was an analogue of putisolvin II (1393.8 Da). However, detailed NMR analysis revealed that the cocoyamide A consists of a 3-hydroxydecanoic acid linked to a peptide chain involving 11 amino acids:

four leucines, one asparagine, two glutamines, two isoleucines and two serines (Figure 6) (Supplementary Figure S6). The presence of a 3-hydroxydecanoic acid could be established as described in the Supplementary Methods. The amino acid sequence (HDA-Leu1-Asn2-Gln3-Ile4-Leu5-Gln6-Ser7-Leu8-Leu9-Ser10-Ile11) was confirmed by the analysis of a 2D

1 H-1 H ROESY spectrum, while an 1 H 13 C gHMBC established the lactone bond between the Ser7 side-chain and the Ile11 residue by observing a 3 J HC cross-peak between the Ser7 S10).

Biological activity of representative CLP-producing isolates and purified CLPs against Pythium-mediated CRRD

Eleven representative CLP-producing Pseudomonas isolates, each producing a different CLP, were tested for disease suppressiveness against CRRD. All strains exhibited strong biocontrol
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activity and one isolate, the entolysin producer COR5, displayed 100% pathogen control (Table 1). Additionally, all strains tested were well established in their capacity to colonize cocoyam roots (Table 1). Subsequent microscopic analysis showed that 10 to 100 µM concentrations of purified entolysin, lokisin, WLIP, xantholysin, putisolvin, cocoyamide, N2 and N8 caused growth inhibition and interacted with the mycelia of P. myriotylum to cause either extensive branching or lysis (Figure 7A, Figure 7B). At all concentrations tested, cocoyamide, N2, N8 and lokisin resulted in hyphal lysis whereas this was the case for WLIP, entolysin, putisolvin and xantholysin at concentrations of 25 and 50 µM. At concentrations of 10 and 100 µM, these compounds caused extensive hyphal branching, except for WLIP where there was no clear effect at 10 µM. A dose-dependent effect of CLPs was observed for entolysin and putisolvin but not for the others (Figure 7A).

Discussion

Myriads of biotic and abiotic factors are considered to be influencers of structural and functional diversity of microbial communities in the rhizosphere [START_REF] Berg | Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb[END_REF][START_REF] Berg | Unraveling the plant microbiome: Looking back and future perspectives[END_REF].

One of these is the plant genotype which is known to drive microbial selection via root morphology and exudation [START_REF] Berg | Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[END_REF][START_REF] Hartmann | Plant-driven selection of microbes[END_REF]. It was hypothesized that the red cocoyam genotype selects for specific fluorescent pseudomonad This article is protected by copyright. All rights reserved.

In our present study, taxonomic characterization of 138 fluorescent pseudomonads obtained from the rhizosphere of red and white cocoyam varieties in three different fields in Cameroon, showed a clustering of our isolates mainly within two Pseudomonas taxonomic divisions namely the P. fluorescens complex and the P. putida group. Based on the phylogenetic tree generated, our isolates clustered into seven groups within the P. fluorescens complex (P. fluorescens, P. jessenii, P. corrugata, P. koreensis, U1, U2 and the U3 (sub)groups). In general, the taxonomic affiliation of our isolates did not appear to differ with variety since strains obtained from the red and white cocoyam were found in almost all clades. However, we did observe that all isolates situated in the U1 and U2 groups originated from the red cocoyam rhizosphere suggesting that certain Pseudomonas groups/isolates may exclusively colonize the red cocoyam variety. A similar observation was recorded for all isolates in the U3 group which originated from the white cocoyam rhizosphere. For two separate studies, using culture-independent methods, the genetic variants of more than eight Arabidopsis thaliana accessions were shown to select for different rhizobacterial assemblages (Micallef et al., 2009a;Micallef et al., 2009b).

Our results about high Pseudomonas diversity on cocoyam roots in Cameroon are consistent with a recent study to characterize Pseudomonas isolates obtained from a sugarcane field in a tropical Brazilian soil (Lopes et al., 2018). Phylogenetic analyses of 76 isolates obtained from bulk soil and the sugarcane rhizosphere revealed their affiliation mainly to the P. fluorescens complex (57 isolates) and P. putida group (19 isolates). More than 50% of the isolates situated in the P. fluorescens complex belonged to the P. koreensis group, a couple of isolates in the P. jessenii group while the rest represented two new subgroups designated sub-clades
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X and Y (Lopes et al., 2018). A sequence comparison between our isolates and those from Brazil showed the clustering of isolates of both locations together within the P. koreensis, P.

jessenii and U2 (sub)groups. Thus, our U2 subgroup appears to correspond to the sub-clade X recently described by Lopes and colleagues. The enormous Pseudomonas diversity displayed by the cocoyam rhizosphere in Cameroon corroborates the findings (Lopes et al., 2018) that tropical soils are a reservoir of unexplored Pseudomonas diversity, especially containing new subgroups within the P. fluorescens complex and new species in the P. putida group.

Considering the overlap of some of our Pseudomonas groups with those reported in Brazil only, findings of this study strengthens the possibility of endemism of soil fluorescent

Pseudomonas in specific geographical locations of the world [START_REF] Cho | Biogeography and degree of endemicity of fluorescent This article is protected by copyright. All rights reserved. Pseudomonas strains in soil[END_REF].

Previous extensive studies to assess the diversity of fluorescent pseudomonads in the rhizosphere of several crops revealed the presence of isolates characterized as belonging to the P. fluorescens biovars on sugar beet rhizosphere (Nielsen et al., 2002), P. putida group isolates on black pepper (Tran et al., 2008) and P. fluorescens-related isolates on oilseed rape and strawberry [START_REF] Berg | Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[END_REF]. However, drivers of this observed diversity remain unclear.

With respect to CLP diversity, 11 out of 13 CLPs discovered during this study were produced by Pseudomonas isolates obtained from the red cocoyam variety whereas seven different CLPs were produced by white cocoyam rhizospheric isolates. Although we did not find a clear cut effect of cocoyam variety on Pseudomonas spp. diversity, our findings suggest that the red cocoyam rhizosphere support more diverse CLP producers which might have implications towards observed field tolerance to the cocoyam root rot disease earlier reported

This article is protected by copyright. All rights reserved.

( [START_REF] Adiobo | Variation of Pythiuminduced cocoyam root rot severity in response to soil type[END_REF]. A previous study revealed that total soluble carbohydrates are higher in the red cocoyam (10 µg glucose/mg fresh weight) as compared with the white variety (3 µg glucose/mg fresh weight) (Omokolo et al., 2005). Besides amino acid and proline levels are also slightly higher in the roots of the red cocoyam. These differences could drive a selectivity of the microbial community/isolates associated with the rhizosphere of the different cocoyam genotypes.

During this study, diverse Pseudomonas genotypes were obtained which produce diverse

CLPs. In a previous study, comparable frequencies of up to 60% CLP-producing pseudomonads comprising eight structurally different CLPs were isolated from the sugar beet rhizosphere in Denmark although this could go lower depending on soil type (Nielsen et al., 2002). Such high frequencies of CLPs in Danish soils were attributed to the loamy sandy nature of the soils. However, in our study, this does not seem to be the case since for example, Boteva soils predominantly contained silt [START_REF] Adiobo | Variation of Pythiuminduced cocoyam root rot severity in response to soil type[END_REF]. An understanding of factors driving CLP diversity in the rhizosphere remains highly challenging and requires further research.

Thirteen CLP types were characterized during this study namely xantholysin, entolysin, WLIP, lokisin, putisolvin and eight novel ones designated cocoyamide A (N1), N2, N3, N4, N5, N6, N7, and N8. Xantholysin production was previously reported in a banana rhizosphere isolate, P. putida BW11M1 [START_REF] Li | The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptides[END_REF] from Cameroon. WLIP production has been reported for several Pseudomonas isolates belonging to the P. putida and P. fluorescens groups (Rokni-Zadeh et al., 2012, 2013).

Recent studies aimed at indexing and mapping the diversity of metabolites produced by 260

Pseudomonas strains of ecologically diverse origins reported the common occurrence of WLIP and xantholysin producers (Nguyen et al., 2016). Putisolvin I and II have been described from P. putida PCL1445, isolated from a site polluted with aromatic hydrocarbons [START_REF] Kuiper | Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms[END_REF] and also from P. putida 267, a black pepper rhizosphere isolate from

Vietnam [START_REF] Kruijt | Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267[END_REF]. Lokisin-producing isolates were previously described from the sugar beet rhizosphere in Danish soils (Nielsen et al., 2002), with antagonistic activity against Rhizoctonia solani and Pythium ultimum. More so, another lokisin producer was previously isolated from a soilless system in Sweden [START_REF] Hultberg | Suppression of disease in This article is protected by copyright. All rights reserved. tomato infected by Pythium ultimum with a biosurfactant produced by Pseudomonas koreensis[END_REF] and showed antagonism against P. ultimum on tomato. Unfortunately, the exact taxonomic position of all these producers is not known as genome information is not publicly available. Interestingly, a gacA + gene derivative of P. fluorescens Pf0-1 strain, a soil isolate from the United States that clusters with the P. koreensis group, produces an unknown CLP whose amino acid composition is similar to that of cocoyamide A [START_REF] Loper | Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions[END_REF]. In our work, cocoyamide producers were specifically associated with the P. fluorescens complex and were found in the 

Conclusion

In summary, our study suggests that plant genotype may drive CLP diversity rather than species diversity. The Pseudomonas population is taxonomically diverse on both cocoyam varieties. However, on the basis of the available samples, which is a subset of cocoyam bacterial community, it appears that the plant genotype might have an effect on Pseudomonas-derived CLP pattern. The red cocoyam rhizosphere appears to select for isolates that produce a more diverse CLP spectrum than the white cocoyam rhizosphere. We also provide evidence that most CLP types are associated with specific taxonomic groups (Table 2). Thus, a proper taxonomic assignment of surface active Pseudomonas isolates may already give an indication about the type of CLP they produce. It remains to be investigated, however, whether CLP diversity is a key factor in the field tolerance of the red cocoyam variety to the CRRD. Moreover, the influence of soil quality on taxonomic and CLP diversity of Pseudomonas spp. should not be ignored and is the subject of our current research. Finally, this study shows the potential of several CLP-producing isolates in the biological control of plant pathogens. Fluorescent pseudomonads, especially those belonging to the P. fluorescens complex, are already in commercial use against several plant diseases. Thus, our study presents a rich collection of strains producing potent metabolites that can contribute to current and emerging markets for the commercialization of Pseudomonas biocontrol agents.

This article is protected by copyright. All rights reserved. COW-isolates were obtained from white cocoyam, COR-isolates from red cocoyam. All R isolates except R124 come from Brazil (Lopes et al., 2018). CLP-producing isolates are colour-coded. N1, N2, N3, N4, N5, N6, N7 and N8 are new CLPs discovered during this study; xantholysin, entolysin, WLIP, lokisin and putisolvin are previously reported CLPs that are also produced by some isolates characterized within this study. Previously reported N1, entolysin and xantholysin-producing strains are colour-coded circles of blue, light green and dark green, respectively. A) Shows isolates belonging to the P. fluorescens complex and associated strains which were grouped. The P. putida and P. aeruginosa groups were collapsed. B) Shows isolates belonging to the P. putida group while the P. fluorescens complex and P. aeruginosa group were collapsed. This article is protected by copyright. All rights reserved.
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CLPs were fully characterized by NMR except for N3, N5, N6 and N7 which is in progress.

Full characterization data will be published elsewhere. 

  Belgium) and sand mixture in a 70/30 ratio (Oni et al., 2019). Pseudomonas spp. COR51 (xantholysin), COR5 (entolysin), COW10 (WLIP), COR10 (lokisin), COR19 (putisolvin), COW5 (N1), COW8 (N2), COW3 (N3), COR33 (N5), COR35 (N8) and COR58 (N4) which produce eleven representative CLPs, were used. To prepare bacterial inoculum, strains were This article is protected by copyright. All rights reserved.

  Percentage inhibition was calculated according to the following formula:(Growth diameter of untreated control -Growth diameter of treated control) X 100Growth diameter of untreated controlThis article is protected by copyright. All rights reserved.Data obtained were analyzed using Tukey's posthoc tests via SPSS. The bioassay was conducted twice and figures were generated to represent the percentage inhibition of P.myriotylum by varied concentrations of purified CLPs. Furthermore, representative pictures of mycelial damage due to interaction with CLPs are shown.

  including xantholysin-like, entolysin-like, amphisin-like (lokisin), putisolvin-like and viscosin-like (WLIP) CLPs with molecular weights (MW) of1775.8 Da, 1721.0 Da, 1353.8 Da, 1393.6 Da, and 1125.6 Da, respectively (Figure2) (Figure3) (Supplementary TablesS5-S9, Supplementary FiguresS1-S5). Detailed characterization of these known CLPs is given in the Supplementary Results section. Furthermore, our study revealed eight new CLPs designated N1, N2, N3, N4, N5, N6, N7 and N8, four of which were fully characterized by NMR. Main peaks of N1, N2, N3, N4, N5, N6, N7, and N8 featured MW values of 1393.6 Da, 1397.6 Da, 1065.3 Da, 1562.9 Da, 1550.6 Da, 1124.4 Da, 1719.8 Da, and 2331.3 Da, respectively (Figure 2). CLPs possessing similar masses could be differentiated on the basis of retention time and swarming motility pattern of the corresponding strain. Following NMR This article is protected by copyright. All rights reserved.

  populations which could contribute to observed field tolerance towards the cocoyam root rot disease caused by Pythium myriotylum (Perneel et al., 2007). Although only 40 isolates were tested in this previous study, antagonism against P. myriotylum was shown by the red cocoyam isolates only.

  and in P. soli, isolated from a soil sample collected from Spain (Pascual et al., 2014). So far, entolysin biosynthesis has only been reported for one strain, P. entomophilia L48 T (Vallet-Gely et al., 2010). Interestingly, these strains belong to the same taxonomic groups as the xantholysin and entolysin producers This article is protected by copyright. All rights reserved.

P

  . koreensis and U1 groups. The discovery of cocoyamide A has important implications for the screening and characterization of novel CLPs produced by bacteria. The fact that the molecular weight of cocoyamide A and putisolvin II are identical indicates that both CLPs cannot be discriminated based on mass spectrometry alone. Therefore, when a biosurfactant with a known mass is found, additional characterizations using genome mining, NMR and/or This article is protected by copyright. All rights reserved. MS/MS spectroscopic analysis should be performed before conclusions are made regarding CLP identity. Such enormous diversity and abundance of CLP producers observed in our study, point to crucial ecological roles of these metabolites in their native soils. Further research could elucidate the role of these CLPs in disease suppression as it has previously been demonstrated for Pseudomonas sp. CMR12a (D'aes et al., 2011; Olorunleke et al., 2015b; Hua and Höfte, 2015).Our biological control and CLP bioactivity data indicate that these CLPs interact with the mycelium of P. myriotylum by causing hyphal leakage or extensive branching. Previous studies showed that purified orfamide A can interact with the mycelium of Rhizoctonia solani leading to increased branching(Olorunleke et al., 2015b). Whether the difference in mode of action of the various CLPs is related to the structural differences between them still remains to be investigated. Moreover, the observed dose-dependence of only entolysin and putisolvin of all CLPs tested is striking and further raises the question about structure-function relationships of CLPs. Since all CLPs showed effective antagonism against P. myriotylum mycelium during in vitro tests and representative CLP-producing isolates further displayed excellent suppression of the cocoyam root rot disease in vivo, the abundance of these CLPs in the soil suggests that they may contribute to disease suppression towards P. myriotylum.Perneel et al. 2008 previously demonstrated a synergistic interaction between phenazines and rhamnolipid biosurfactants in the suppression of P. myriotylum on cocoyams. In the future, there will be a need to not only quantify CLP production in vivo but also to assess the direct This article is protected by copyright. All rights reserved.interaction of the various CLPs with P. myriotylum in soils by the use of pure compounds and/or CLP mutant strains.
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 1 Figure 1. Phylogenetic analyses of 138 Pseudomonas isolates using the concatenated
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 2 Figure 2. HPLC chromatograms showing major CLPs produced in liquid culture by
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 3 Figure 3. Chemical structure of the five previously described CLPs namely: xantholysin,
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 4 Figure 4. Swarming motility of representative CLP-producing isolates. Ento: entolysin;
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 5 Figure 5. CLP analyses based on plant genotype and Pseudomonas taxonomic diversity
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 6 Figure 6. Chemical structure of the newly discovered cocoyamide A.
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 7 Figure 7. Effect of purified CLPs on P. myriotylum. A) Inhibitory interaction between

  concentrations. Bars with different letters are significantly different according to the Tukey's tests (P = 0.05). Table below the bars represent the presence (+) or absence (-) of hyphal lysis and hyphal branching following exposure of P. myriotylum mycelium to varying concentrations of CLPs; B) Effect of CLPs on P. myriotylum mycelium. i) P. myriotylum control; ii) Hyphal lysis and leakage; iii) Hyphal distortion and branching. Scalebars represent 10 µm.

  

  

  

Table 1 .

 1 Cocoyam root rot disease index and root colonisation by CLP-producing Pseudomonas strains and the corresponding CLPs produced. Disease symptoms were evaluated at 7 days post-infection by scoring leaves. The experiment was repeated twice while data analysis was expressed as Percent Disease Index. Bars indicated with the same letters was not statistically different after subjecting values to Kruskal Wallis and Mann Whitney non-parametric tests (p=0.05).

	Strain	CLPs produced	Disease	Population density of
	(Pseudomonas sp.)		Index a	test bacteria b
			(%)	(in log CFU g-1 of fresh
				roots)
	Healthy control	-	0.0 a	-
	Diseased control	-	77.3 c	-
	COW5	Cocoyamide (N1) 18.3 b	8.19 ± 0.3 bc
	COW8	N2	15.8 b	8.44 ± 0.2 cd
	COW3	N3	3.7 b	9.30 ± 0.2 cd
	COR58	N4	10.6 b	7.63 ± 0.4 a
	COR33	N5	7.5 b	7.18 ± 0.4 a
	COR35	N8	10.0 b	7.83 ± 0.1 a
	COR10	Lokisin	10.8 b	8.18 ± 0.2 b
	COR5	Entolysin	0.0 a	7.96 ± 0.3 ab
	COR19	Putisolvin	6.2 b	9.17 ± 0.3 cd
	COW10	WLIP	15.0 b	8.12 ± 0.3 ab
	COR51	Xantholysin	23.3 b	8.28 ± 0.3 bc

a b Root colonisation capacity was determined by sampling 5 cocoyam roots per treatment. Data from two experiments was log transformed before analysis and pooled. Values with different letters are significantly different according to Tukey's test (p= 0.05).

Table 2 .

 2 Association of CLPs produced by Pseudomonas spp. from the cocoyam rhizosphere with taxonomic group and plant genotype *significant at p<0.05 according to Fisher exact statistics.

		Taxonomic	Plant
	CLP	group	genotype
	N1	fluorescens*	both
	N2	fluorescens	white
	N3	fluorescens	white*
	N4	fluorescens	red
	N5	fluorescens	red
	N5+N7	fluorescens	red
	N6	fluorescens	red
	N8	putida	red
	Xantholysin putida*	both
	WLIP	putida*	both
	Entolysin	putida*	red
	Lokisin	fluorescens	red
	Putisolvin	putida	red
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