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Abstract 

Zero-mode waveguides (ZMW) nanoapertures milled in metal films were proposed to improve the 

FRET efficiency and enable single molecule FRET detection beyond the 10 nm barrier, overcoming the 

restrictions of diffraction-limited detection in a homogeneous medium. However, the earlier ZMW 

demonstrations were limited to the Atto 550 – Atto 647N fluorophore pair, asking the question 

whether the FRET enhancement observation was an artefact related to this specific set of fluorescent 

dyes. Here, we use Alexa Fluor 546 and Alexa Fluor 647 to investigate single molecule FRET at large 

donor-acceptor separations exceeding 10 nm inside ZMWs. These Alexa fluorescent dyes feature a 

markedly different chemical structure, surface charge and hydrophobicity as compared to their Atto 

counterparts. Our single molecule data on Alexa 546 – Alexa 647 demonstrate enhanced FRET 

efficiencies at large separations exceeding 10 nm, extending the spatial range available for FRET and 

confirming the earlier conclusions. By showing that the FRET enhancement inside a ZMW does not 

depend on the set of fluorescent dyes, this report is an important step to establish the relevance of 

ZMWs to extend the sensitivity and detection range of FRET, while preserving its ability to work on 

regular fluorescent dye pairs. 

 

 
 

Keywords : FRET, zero-mode waveguide, plasmonics, single molecule fluorescence, nanophotonics 

 

  

mailto:jerome.wenger@fresnel.fr


2 
 

Single molecule Förster resonance energy transfer (smFRET) is a highly sensitive approach to 

investigate intra and inter-molecular distances on the nanometer scale,1 revealing dynamic 

information about biomolecular structures and interactions.2,3  However, the energy transfer efficiency 

quickly vanishes when the donor-acceptor separation grows, making smFRET measurements highly 

challenging at distances above 10 nm.4,5 Extending smFRET to large biomolecular constructs requires 

the use of elaborated donor-acceptor constructs, and several strategies have been investigated using 

lanthanides,6–8 quantum dots,9,10 multi-color cascaded systems,11,12 gold nanoparticles quenchers,13–15 

metal-induced energy transfer,16,17 or multiple fluorophores.18–20 Because they do not rely on the 

organic fluorescent dyes pairs conventionally used in smFRET like Cy3-Cy5 for instance, these advanced 

approaches further complicate the sample preparation and data analysis. For many applications it 

would be desirable to extend the smFRET range using regular fluorophore pairs. 

Since the works by Purcell and Drexhage,21,22 it is established that the fluorescence emission decay rate 

is not determined only by the molecular structure, but also depends on the photonic environment 

surrounding the molecule. The presence of a mirror (or a more elaborated optical component) can 

affect the fluorescence decay kinetics and the fluorescence lifetime. In a conceptually similar fashion, 

the dipole-dipole interaction leading to FRET can also be influenced by the photonic environment in 

some cases.23–26 This opens a broad field of research using mirrors,27–31 microcavities,23,26,32,33 

nanoapertures,34–40 nanoparticles,41–48 nanogap antennas,49–53 or hyperbolic metamaterials.54,55 Tuning 

FRET with nanophotonics can potentially overcome the 10 nm barrier in diffraction-limited confocal 

microscopes while still using conventional fluorophore pairs. However, reaching an enhancement of 

the FRET efficiency requires a delicate balance between the FRET rate and the other donor radiative 

and non-radiative processes,47,48,51,55 while in many cases the FRET efficiency can end up being 

quenched by the nanophotonic element.27,33,48,50,51 

We have recently shown that nanoapertures milled in an opaque aluminum film (so called zero-mode 

waveguides ZMWs56,57) can improve the FRET efficiency and enable smFRET detection beyond the 10 

nm barrier.58 ZMWs are promising devices to perform smFRET on large biomolecular constructs with 

conventional dyes. However, the demonstration was so far limited to Atto 550 – Atto 647N FRET 

pairs.58 Both of these fluorescent molecules bear a positive charge after DNA labelling, and have been 

found to be quite hydrophobic.59,60 They bear also a higher affinity for glass or metal surfaces, which 

was observed for Atto 550 and Atto 647N dyes as compared to their cyanine or Alexa Fluor 

counterparts.59–62 Although care was taken in our previous work to properly passivate the ZMW 

surface,58,62 we cannot fully exclude that the observed enhanced FRET could be related to this specific 

choice of FRET pair from Atto dyes. 
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Here, we build on the methodology previously developed for smFRET inside a ZMW,58 and explore the 

enhancement of smFRET efficiency for the Alexa Fluor 546 – Alexa Fluor 647 donor-acceptor pair. This 

FRET pair, although spectrally quite similar to the Atto 550 – Atto 647N pair, has a markedly different 

chemical structure and behavior (Fig. 1a). Both Alexa 546 and Alexa 647 feature a negative charge once 

labeled to DNA, while the Atto 550 and 647N dyes have a positive charge. It was observed that these 

Alexa dyes are more hydrophilic than their Atto counterparts,59,60 and that the Atto 550 and 647N could 

induce surface adhesion of the DNA molecules while the Alexa 546 and 647 did not.62 To assess the 

relevance of ZMWs for smFRET enhancement, it is thus necessary to quantify their performance for a 

clearly different set of dyes than the Atto 550 – Atto 647N pair used so far.35,36,50,58 Our new 

measurements for Alexa 546 – Alexa 647 smFRET inside aluminum ZMWs demonstrate enhanced 

smFRET efficiencies at separations exceeding 10 nm, confirming the earlier conclusions drawn with the 

Atto dyes. The detailed characterization reported here is an important step to establish the relevance 

and validity of ZMWs to extend the FRET detection range. As additional advantage, all the smFRET 

measurements in the ZMWs are performed at 100 nM concentration, which is a thousand-fold more 

concentrated than the conditions typically used for confocal detection. This brings smFRET analysis 

closer to physiological concentrations.63,64  

 

 

Figure 1. (a) Chemical structures of Alexa and Atto fluorescent molecules used as FRET pairs. The red 

star indicates the DNA labeling site. (b) Experimental scheme of double stranded DNA molecules 

containing a single Alexa Fluor 546 (donor) and Alexa Fluor 647 (acceptor) FRET pair. The DNA is free 

to diffuse across the zero-mode waveguide (ZMW) volume where it experiences pulsed interleaved 

excitation with alternating green and red laser pulses. (c,d) The scanning electron microscope (SEM) 

images of the pattern with ZMWs and a single ZMW of 110 nm diameter milled in an aluminum film.  
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Results and Discussion 

The FRET sample consists of double stranded DNA molecules of 51 base pair length, labeled with a 

single Alexa 546 donor and a single Alexa 647 acceptor. The donor-acceptor distance is fixed to 30 or 

40 base pairs depending on the DNA construct (see Methods section for the detailed DNA sequences 

and sample preparation). These fluorescent dyes feature a different surface charge and hydrophobicity 

as compared to Atto 550 and Atto 647N. Alexa 546 and Alexa 647 bear a negative charge after covalent 

linking to DNA, whereas Atto 550 and 647N have a positive charge (Fig. 1a). A quantitative distinction 

between the hydrophobicity found for Alexa and Atto dyes can be done by comparing their distribution 

coefficient logD, with D denoting the ratio of the solute concentration in a nonpolar and a polar 

solvent. Positive values of logD indicate hydrophobicity (Atto 550 and Atto 647N have logD values of 

6.41 and 3.26 respectively), while negative values demonstrate hydrophilicity  (Alexa 546 and Alexa 

647 have logD of -1.43 and -4.26).60  

Our experiments monitor the FRET events stemming from individual molecules diffusing across the 

detection volume (Fig. 1b). To clearly quantify the FRET efficiency and avoid the issues related to 

incomplete fluorophore labelling, we implement pulsed interleaved excitation (PIE) using two 

alternating laser excitations to excite the donor and the acceptor dyes in a sequential manner.65,66 PIE 

allows to post-select the events corresponding to an active FRET pair where both dyes are fluorescent, 

and discard all the case where only the donor is present. 

The main difference as compared to a conventional diffraction-limited microscope is the use of zero-

mode waveguide (ZMW) nanoapertures to confine the light into attoliter volumes.56,57 The ZMWs used 

here are milled in a 100 nm thick aluminum film with a diameter of 110 nm (Fig. 1c,d). While the use 

of Atto 550 – Atto 647N dyes requires the ZMW to be passivated with a silane-modified polyethylene 

glycol in order to avoid surface adsorption of the DNA molecules,62 for Alexa 546 – Alexa 647 we find 

that similar results can be obtained with and without the surface passivation step. This additional 

advantage of the Alexa FRET pair further simplifies the experiment preparation.  

Figure 2 shows typical fluorescence time traces recorded with the confocal setup and with a 110 nm 

diameter ZMW. In order to ensure that the fluorescence bursts correspond to single molecules passing 

through the observation volume and to have a negligible probability to observe more than one 

molecule, we use a low concentration of the DNA sample: 100 pM for confocal and 100 nM for ZMW. 

Brighter detection events are directly obtained with the ZMW (Fig. 2d-f) as compared to the confocal 

reference (Fig. 2 a-c), which illustrates one specific advantage of the fluorescence enhancement 

occurring inside ZMWs as an improvement for the net detected fluorescence brightness.67 We analyze 

the total fluorescence time trace using fluorescence correlation spectroscopy (FCS) to compute the 
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temporal autocorrelation and estimate the average number of emitters and their average brightness. 

Following our previous studies,58,67 this quantifies the fluorescence brightness enhancement factor for 

isolated donor and acceptor molecules. For Alexa 546, we find a gain of 11.4 ± 0.9 in a 110 nm ZMW, 

while for Alexa 647, the enhancement is 15.9 ± 1.2. The fact that a higher enhancement is observed 

for the red dye is mostly related to the lower quantum yield of the dye (33% for Alexa 647 and 79% for 

Alexa 546), as low quantum yield emitters lead to the observation of higher enhancement factors.68 

 

 

Figure 2. Fluorescent time traces of single Alexa546-Alexa647 FRET pairs with 13.6 nm (40 base pairs) 

separation diffusing in the confocal setup (a-c) and in a 110 nm diameter ZMW (d-f) with 0.5 ms binning 

time. The traces (a,d) show the donor emission after donor direct excitation at 557 nm, the traces  (b,e) 

show the acceptor emission after acceptor direct excitation at 635 nm, and the traces (c,f) show the 

FRET emission (acceptor fluorescence) after donor excitation at 557 nm. The fluorescence 

enhancement in the ZMW directly leads to brighter detection events (d-f) as compared to the confocal 

reference (a-c) without any post-processing. 
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Using these fluorescence time traces (the total length is 120 s and accumulates over 2000 detection 

events), we apply the standardized smFRET analysis protocal detailed in Ref 1 (see Methods for details). 

After the PIE post-selection, we compute the FRET efficiency EFRET for each burst, taking into account 

the donor crosstalk, the acceptor direct excitation and the different quantum yields and detection 

efficiencies between the dyes. The influence of the ZMW is fully taken into account by calibrating the 

correction parameters for each ZMW independently. The aluminum ZMWs used here are optically 

weakly resonant components, which do not noticeably modify the fluorescence spectrum of the dyes. 

Therefore, as we detail in the Methods section, most correction parameters (for crosstalk and direct 

excitation) are unchanged in the ZMW as compared to the confocal case. 

 

 

Figure 3. Enhancement of the FRET efficiency between Alexa Fluor dyes inside a ZMW. (a,c) smFRET 

efficiency histograms measured in confocal configuration for Alexa546-Alexa647 FRET pairs with 40 

and 30 base pairs respectively (13.6nm and 10.2 nm). (b,d) Same as (a,c) recorded in a ZMW of 110 nm 

diameter. Black lines are numerical fits with a Gaussian distribution to determine average FRET 

efficiency (thick dashed line). The average FRET efficiency is indicated for each plot, and the error bar 

corresponds to one standard deviation of the average value estimate. 

 

Figure 3a,b compares the smFRET efficiency histograms for the Alexa 546 – Alexa 647 construct with 

40 base pair separation (corresponding to an average D-A distance of about R = 13.6 nm) for the 

confocal setup and the ZMW. For this D-A separation, which is about twice the R0 = 7.4 nm Förster 

radius for this FRET pair, the average FRET efficiency in the confocal case is only 3.8 % ± 0.3 %. To 
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estimate the uncertainty 𝜎𝑎𝑣𝑒𝑟𝑎𝑔𝑒 on the average FRET efficiency, we apply the classical formula 

𝜎𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  𝜎/√𝑁, where 𝜎 is the standard deviation of the Gaussian distribution fit and 𝑁 the total 

number of detected bursts (typically 2000). Using the Förster formula 1/(1+(R/R0)6) gives a 2.5% 

estimate for the average FRET efficiency in the confocal case for the 40 base pairs separation. However, 

this approach is limited by the uncertainties on both R and R0 and the assumption of perfectly random 

orientation for both dyes, which may not be fully verified by our real sample. Thanks to the optical 

confinement occurring in the ZMW, the FRET efficiency is improved up to 8.5 % ± 0.2 %  inside the 110 

nm ZMW. Moreover, the full statistical distributions are clearly different, and smFRET is better 

detected in the ZMW case thanks to higher average FRET efficiencies and narrower distributions. In 

the confocal case, the standard deviation of the Gaussian distribution (Fig. 3a,c) is 12%, while it is 

reduced inside the ZMW to 8% thanks to the higher fluorescence brightness. 

We also investigate shorter separations of 30 base pairs (D-A distance ~ 10.2 nm). As the acceptor is 

brought closer to the donor, the average FRET efficiency is increased to 7.8 % ± 0.3 %  in the confocal 

setup (Fig. 3c) and is further enhanced to 11.5 % ± 0.2 % in the ZMW (Fig. 3d). Computing the gains in 

the average FRET efficiencies brought by the ZMW, we find a gain of 2.2× (± 0.2)  for the 40 bp 

separation and 1.5x (± 0.1) for the 30 bp case. First, these values demonstrate that the ZMW can indeed 

improve the net detected FRET efficiency for Alexa FRET pairs, which is especially relevant at large D-

A separations exceeding 10 nm where confocal microscopes face their limit of detection. It was 

observed previously with nanoapertures,35 nanoantennas,50 and planar microcavities26 that the 

enhancement factors for the FRET rate were higher for the samples corresponding to the larger D-A 

separations. In other words, the influence of the nanophotonic structure is more pronounced when 

the D-A separation is larger. We retrieve this feature here. The main reason behind this is that the 

nanophotonic structure influence on the FRET rate is quite weak as compared to the FRET rate 

between two closely separated fluorescent dyes in a homogeneous environment. Therefore, one has 

to go to D-A distances greater than 10 nm so that the ZMW relative influence becomes more 

prominent.58 Second, we can compare the results for Alexa and Atto FRET pairs. For Atto 550 – Atto 

647N, our previous measurements indicated a gain of 2.9× (± 0.3)  for the 40 bp separation and 1.2x (± 

0.1) for the 30 bp case,58 which are quite comparable to the results found here with Alexa dyes despite 

their different chemical structures. This suggests that the smFRET enhancement inside ZMWs does not 

depend on the type of fluorescent dyes used.  

Independently of the FRET analysis in Fig. 3, the average FRET efficiency can also be assessed from the 

reduction of the donor lifetime due to the presence of the acceptor, using the formula EFRET = 1 – DA/D, 

where DA and D are the fluorescence lifetimes of the donor in presence and absence of acceptor 

respectively.2 This approach importantly provides an independent control on the estimated FRET 
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efficiencies, and does not require any separate calibration to account for donor crosstalk, acceptor 

direct excitation or quantum yield difference. Figure 4a shows the normalized fluorescence decay 

traces for the Alexa 546 donor in the confocal setup and in a 110 nm diameter ZMW, both with and 

without an Alexa 647 acceptor. Without any data processing, it is apparent on the fluorescence decays 

that the presence of the acceptor dye accelerates the donor decay dynamics. This provides a direct 

evidence for the occurrence of FRET and not of radiative energy transfer mediated by a propagating 

photon. The donor lifetime change due to the acceptor occurs only in FRET where the dipoles are 

coupled in the near field via evanescent waves. On the contrary, the donor lifetime is unchanged when 

the dipoles are coupled through radiative transfer, where the energy travels in the form of a 

propagating photon and can be funneled by the presence of a waveguide.69–72 The analysis of the traces 

in Fig. 4a quantifies the D and DA lifetimes used to compute the average FRET efficiency (Fig. 4b, see 

details in the Methods section). An excellent agreement is found with the results derived from the 

smFRET histograms in Fig. 3a,b, with a difference of less than 0.4 % for both the confocal setup and 

the ZMW. This further confirms the validity of our results. 

 

 

Figure 4. (a) Normalized donor fluorescence lifetime decay traces in confocal and in a 110 nm diameter 

ZMW. Black lines are fits for lifetime traces. For both ZMW and confocal cases, the presence of the 

acceptor (FRET case) further accelerates the donor decay dynamics, which is a clear signature for FRET. 

All fit details are summarized in Tab. 1 and in the method section. (b) Intensity-averaged fluorescence 

lifetimes deduced from the traces in (a), which allow an independent measurement of the average 

FRET efficiency based on the Alexa 546 donor lifetime reduction. 

 

While the various results demonstrate the FRET enhancement inside a ZMW of 110 nm diameter, we 

now investigate the influence of the ZMW diameter on the energy transfer between Alexa dyes. The 

same procedure as for Fig. 3 is applied for ZMW diameters ranging from 80 to 150 nm (Fig. 5a). A 
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gradual shift of the mean FRET efficiency is observed on the distributions, which is summarized as a 

function of the ZMW diameter in Fig. 5b. Here the 110 nm diameter used in Fig. 3 is near the optimum. 

Using a large diameter, the fluorescence enhancement decreases and the FRET results tend to retrieve 

the confocal values. Using a lower diameter, the quenching losses due to direct energy transfer to the 

metal increase, which compete with FRET to the acceptor dye and reduce the observed FRET efficiency. 

 

 

Figure 5. (a) smFRET efficiency histograms with ZMWs of different diameters. The DNA sample consists 

of Alexa546 donor - Alexa647 acceptor with 40 base pair separation similar to Fig. 3b. (b) FRET 

efficiency (left axis) and FRET efficiency gain (right axis) as a function of the ZMW diameter for 

Alexa546-Alexa647 with 40 base pair separation. The horizontal dashed line indicates the level found 

for the confocal reference. The error bar on the graph corresponds to two times the standard deviation 

on the mean FRET efficiency estimate. 

 

Conclusions 

Our data demonstrate here that the phenomenon of smFRET enhancement inside a ZMW is quite 

general and does not depend on the type of fluorescent dyes used. Performing smFRET measurements 

on Alexa 546 – Alexa 647 pairs, which feature a markedly different chemical structure, surface charge 

and hydrophobicity as compared to their Atto 550 – Atto 647N counterparts, we retrieve the same 

conclusions about the quantitative performance of ZMWs to enhance smFRET. Notably, we could 

achieve over a two-fold enhancement of the net detected FRET efficiency for dyes separated by more 

than 10 nm. This significantly improves the sensitivity and detection range of smFRET, while preserving 
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the ability to work on conventional fluorophore pairs. The only difference as compared to a classical 

confocal microscope concerns the replacement of the glass coverslip by a coverslip holding ZMW 

nanoapertures, which are easy to fabricate using various lithography techniques. The ZMW confine 

the detection volume to the attoliter range, enabling single molecule FRET detection at a 100 nM 

concentration. This 1000-fold higher concentration for smFRET than with a diffraction-limited confocal 

microscope is especially interesting for exploring protein-protein and protein-DNA interactions 

featuring lower affinities.63,64 It should be reminded that the Förster formula 1/(1+(R/R0)6) is only valid 

for a homogeneous medium and can no longer be applied directly in the vicinity of a nanophotonic 

structure. Inside a ZMW, both the R0 and the 1/R6 decay are affected. While the changes remains 

minimal for distances below 8 to 10 nm,35,36 some significant deviations can be found for D-A distances 

greater than 10 nm, where the FRET enhancement becomes important, as demonstrated in this work. 

Therefore, preliminary calibrations should be performed in order to enable relevant distance 

measurements using FRET in ZMWs (and this work contributes to it), but conceptually there is no 

reason why quantitative distance measurements would not be possible using FRET inside ZMWs. 

 

Methods  

Zero-mode waveguide fabrication. A 100 nm thick layer of aluminum is deposited on a clean glass 

coverslip by electron-beam evaporation (Bühler Syrus Pro 710).58 The deposition rate is 10nm/s at a 

chamber pressure of 5. 10-7 mbar.73 Individual ZMWs are then milled with a gallium-based focused ion 

beam (FEI dual beam DB 235 Strata) set at 10 pA current and 30 kV voltage. The gallium ion beam has 

a resolution of about 10 nm. ZMWs are cleaned by UV-ozone during 5 minutes and rinsed with water 

and ethanol to remove any organic impurities before the measurements. 

 

Alexa dyes FRET samples. The FRET sample consists of double stranded DNA with the forward strand 

being labelled with Alexa Fluor 546 (donor) and its complementary strand with Alexa Fluor 647 

(acceptor). The DNA strands are obtained from IBA life solution (Göttingen, Germany) and are HPLC 

purified. The forward strand sequence of the DNA is 5’-CCT GAG CGT ACT GCA GGA TAG CCT ATC GCG 

TGT CAT ATG CTG TTC AGT GCG-3’ where the thymine at position 44 is labelled with Alexa Fluor 546. 

The complementary reverse strand is 5’-CGC ACT GAA CAG CAT ATG ACA CGC GAT AGG CTA TCC TGC 

AGT ACG CTC AGG-3’ where the T base at position 47 is labelled with Alexa Fluor 647. In this 

configuration, we get a 40 base pairs separation between donor and acceptor dyes corresponding to 

approximately 13.6 nm. For the sample with 10.2 D-A separation (30 base pairs), the T base at position 

37 is instead labelled with Alexa Fluor 647. The forward and reverse strands are hybridized in a buffer 
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containing 5 mM Tris, 20 mM MgCl2, 5 mM NaCl at pH 7.5. First, the mixture is heated at at 90°C for 5 

minutes. Then the mixture is cooled down to room temperature for 3 hours. The concentration of 100 

pM and 100 nM is used for the smFRET measurements in confocal and in ZMWs respectively in a buffer 

containing 20 mM Hepes, 10 mM NaCl, 0.1% Tween 20 at pH 7.5. 

 

Experimental setup. The confocal microscope set up has been detailed in Ref. 58. Briefly, the Alexa 546 

donor is excited at 557 nm by a iChrome-TVIS laser (Toptica), and the Alexa 647 acceptor is excited at 

635 nm by a LDH laser diode (PicoQuant). Green and red pulses are alternating at 40MHz repetition 

rate in a PIE configuration,66,74 with 20 µW average power low enough to avoid fluorescence saturation 

or photobleaching on the diffusing dyes. Both lasers have linear polarizations which are set parallel to 

each other. No polarization selection is performed on the fluorescence detection. The microscope 

objective is a Zeiss C-Apochromat 63x, 1.2 NA water immersion objective used in epifluorescence 

configuration. For detecting donor and acceptor fluorescence, two MPD-5CTC avalanche photodiodes 

(Picoquant) are employed together with 50 µm confocal pinholes and spectral filters (donor 

fluorescence collection from 570 to 620 nm, acceptor fluorescence collection from 655 to 750 nm). 

The photodiode signals are connected to a HydraHarp400 single photon counting module (Picoquant) 

in a time-tagged time-resolved (TTTR) mode. The overall system timing resolution is 38 ps (full width 

at half maximum). 

 

FRET efficiency measurements. The procedure to compute the FRET efficiency histograms follows the 

standard approach in smFRET.1,74 First, we select the single molecule detection events and separate 

them from the background noise, applying a threshold criterion so that the sum of the signals in donor 

and acceptor channels exceeds 25 counts per ms for the ZMW (12 counts per ms for the confocal case). 

A second threshold is used to check the presence of the red dye upon the excitation by the red laser. 

We choose the value at 12 counts per ms in acceptor channel with red excitation (3 counts per ms for 

the confocal case due to the lower fluorescence brightness). We ensure that these levels have a 

negligible influence on the measured average FRET efficiencies.  

The FRET efficiency is then calculated as 1,58 

 
𝐸𝐹𝑅𝐸𝑇 =

𝑛𝐴
𝑔𝑟𝑒𝑒𝑛

− 𝛼𝑛𝐷
𝑔𝑟𝑒𝑒𝑛

− 𝛿𝑛𝐴
𝑟𝑒𝑑

(𝑛𝐴
𝑔𝑟𝑒𝑒𝑛

− 𝛼𝑛𝐷
𝑔𝑟𝑒𝑒𝑛

− 𝛿𝑛𝐴
𝑟𝑒𝑑) + 𝛾𝑛𝐷

𝑔𝑟𝑒𝑒𝑛 (1) 

where 𝑛𝐷
𝑔𝑟𝑒𝑒𝑛

 and 𝑛𝐴
𝑔𝑟𝑒𝑒𝑛

 the number of photons per each burst for donor and acceptor channel upon 

excitation by a green laser, 𝑛𝐴
𝑟𝑒𝑑 number of photons in red channel with the excitation by the red laser. 
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The numbers of photons are corrected for the background contribution in each channel. The 

background counts are measured by performing a separate experiment using the buffer solution only  

for the ZMW or the reference glass coverslip. The equation above contains correction factors for (1) 

the crosstalk α fraction of the donor emission collected in the acceptor detection channel, (2) the direct 

excitation δ of the acceptor by the green laser and (3) the correction parameter γ which accounts for 

the difference of the quantum yields of the dyes (φd, φa) and their detection efficiencies between 

channels (κd, κa).  

The crosstalk α is the ratio between the donor emission leaking into the acceptor channel as compared 

to the donor emission in the donor channel. The crosstalk is determined for DNA sample containing 

only the donor fluorophore: 𝛼 =
𝑛𝐴

𝑔𝑟𝑒𝑒𝑛

𝑛𝐷
𝑔𝑟𝑒𝑒𝑛. For all ZMWs diameters, the crosstalk remains nearly constant 

α=0.05 with slight variation for 100 and 150 nm at α=0.04.  We found a similar value for the confocal 

setup α=0.05. 

The direct excitation δ corresponds to the fraction of the acceptor fluorescence due to direct excitation 

by the green laser as compared to acceptor emission signal upon the red laser. This parameter is 

measured when a DNA sample containing only the acceptor dye is excited: δ =
𝑛𝐴

𝑔𝑟𝑒𝑒𝑛

𝑛𝐴
𝑟𝑒𝑑  . For the confocal 

reference, we find δ=0.11, which also does not change for ZMWs diameters except for the 80 nm ZMW 

where we have δ=0.08. 

The γ correction factor takes into account the differences in the fluorescence quantum yields (φd, φa) 

and the detection efficiencies (κd, κa): 𝛾 =
𝜅𝐴𝜙𝐴

𝜅𝐷𝜙𝐷
. For the Alexa 546-Alexa647 FRET pair in our confocal 

setup, we compute γconf=0.43 ± 0.02 from the knowledge of the fluorescence spectrum and quantum 

yield of each dye. The photodiode response is also accounted for in the calculation. Alternatively, the 

γ correction factor can also be estimated from the measured stoichiometry S,1 and the average 

fluorescence brightness per molecule CRMA
red and  CRMDO

green
 measured by FCS following the approach 

used in Ref. 58 : 

 
𝛾𝑐𝑜𝑛𝑓  =

S

1 − S
 

CRMA
red

 CRMDO
green (2) 

where CRMA
red is for red excitation of the acceptor dye and  CRMDO

green
 is for green excitation of the 

sample containing only the donor dye. Using the measured values of CRMA
red = 5000 counts/s for 

Alexa 647 DNA,  CRMDO
green

= 11000 counts/s for Alexa 546 DNA and S = 0.46, we find γconf=0.39 ± 

0.05, in good agreement with the 0.43 ± 0.02 calculated value. 
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For the ZMW, γ is modified due to the different enhancement factors of the donor and acceptor and 

is found as: 35,50,58 

 
𝛾𝑍𝑀𝑊 = 𝛾𝑐𝑜𝑛𝑓 ×

𝐸𝑛ℎ𝐶𝑅𝑀𝐴𝑂
𝑔𝑟𝑒𝑒𝑛

𝐸𝑛ℎ𝐶𝑅𝑀𝐷𝑂
𝑔𝑟𝑒𝑒𝑛 = 𝛾𝑐𝑜𝑛𝑓 ×

𝛿𝑍𝑀𝑊

𝛿𝑐𝑜𝑛𝑓
×

𝐸𝑛ℎ𝐶𝑅𝑀𝐴𝑂
𝑟𝑒𝑑

𝐸𝑛ℎ𝐶𝑅𝑀𝐴𝑂
𝑔𝑟𝑒𝑒𝑛 (3) 

where 𝐸𝑛ℎ𝐶𝑅𝑀𝐴𝑂
𝑔𝑟𝑒𝑒𝑛

 , 𝐸𝑛ℎ𝐶𝑅𝑀𝐷𝑂
𝑔𝑟𝑒𝑒𝑛

 are the fluorescence enhancement factors of the fluorescence 

count rate per molecule (CRM) for acceptor-only and donor-only samples upon a green excitation, and 

𝐸𝑛ℎ𝐶𝑅𝑀𝐴𝑂
𝑟𝑒𝑑 is for a red excitation. All the enhancement factors are assessed by fluorescence 

correlation spectroscopy for each ZMW diameter.67 We find γZMW for 80 nm, 90nm, 110nm, 150nm as 

0.45, 0.65, 0.6, 0.65 respectively. Except for the 80 nm ZMW (for which a significant fluorescence 

quenching is found), the γ correction factor does not vary much for ZMW diameters from 90 to 150 

nm. Contrarily to the case of Atto550-Atto647N FRET pair,58 for Alexa546-Alexa647 we find an increase 

of the γ correction factor in the ZMW as compared to the confocal reference (γZMW~0.65 while 

γconf=0.43). According to Eq. (1), a higher γ value will lead to a decrease of the FRET efficiency (by 

increasing the denominator in the fraction). The net FRET efficiency enhancement observed inside the 

ZMW (Fig. 3 and 5) shows that the gain in the acceptor emission 𝑛𝐴
𝑔𝑟𝑒𝑒𝑛

 is enough to compensate for 

the increased γ factor. 

 

Fluorescence lifetime analysis. In addition to the fluorescence burst analysis Eq. (1), the average FRET 

efficiency can be independently determined from the donor fluorescence lifetime data. We use the 

equation EFRET = 1 – DA/D, where DA and D are the fluorescence lifetimes of the donor in presence 

and absence of acceptor respectively. To determine DA and D, we fit the time correlated single photon 

counting (TCSPC) histograms (Fig. 4a) with a reconvolution taking into account the instrument 

response function (IRF), whose full width at half maximum was measured to be 38 ps. All the lifetime 

analysis is performed using the Symphotime 64 software (PicoQuant). For the FRET data in Fig. 4a, we 

use the same traces as for the intensity burst analysis in Fig. 2,3 leading to an average number of 

molecules in the detection volume around 0.1 (concentrations of 100 pM and 100 nM for the confocal 

and ZMW cases). For the donor only TCSPC data, we use 10 times higher concentrations (average 

number of detected molecules about 1) to achieve a better signal to noise ratio. As a consequence of 

the higher background contribution in the FRET cases, a peak at t = 0 is seen for the FRET TCSPC data. 

This peak corresponds to a sum of laser light scattering, metal photoluminescence and Raman 

scattering. This contribution is interpolated with a fixed 20 ps component (shorter than the 38 ps IRF 

resolution) to achieve a complete fitting of the TCSPC decay, but this contribution is then discarded for 

the lifetime analysis as it only corresponds to noise. The background and scattering contributions are 
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recorded by performing a separate experiment in the same conditions using only the buffer in the 

absence of DNA sample. For the TCSPC analysis, we ensure that more than 92% of the total detected 

photons are considered for the fits. The data for the confocal reference (FRET and donor only) are 

fitted with a single exponential decay (excluding the fixed 20 ps contribution from laser scattering). For 

the ZMWs, a biexponential function with fast and slow components provides a better fit with flat 

residuals. As observed previously for Atto dyes,58 the fast component converges towards values around 

400 ps for both the FRET and donor-only samples inside a 110 nm ZMW. All the fit parameters are 

summarized in Table 1. The tail seen for long delay times higher than 5 ns is only due to the background 

level, there is no supplementary long lifetime. In the ZMW case, the intensity-averaged lifetimes are 

used to compute the average FRET efficiency. We find empirically that these values provide a better 

match with the separate burst intensity analysis (Fig. 3) than the amplitude-averaged data. However, 

our claim of enhanced FRET efficiency in the ZMW is maintained for all the approaches (intensity-

averaged, amplitude-averaged or direct comparison between long lifetime components). 

 

Table 1. Results obtained from the numerical fit to the TSCPC histograms shown in Fig. 4a. In the case 

of a biexponential fit, τ1 and τ2 are the individual lifetimes of each component and α1 and α2 are their 

respective normalized amplitudes. τamp = (α1 τ1 + α2 τ2)/(α1 + α2) is the amplitude-averaged lifetime, while 

τint = (α1 τ1
2

 + α2 τ2
2)/( α1 τ1 + α2 τ2) denotes the intensity-averaged lifetime. The 20 ps scattering peak at 

t = 0 is not shown here. 

Condition Sample τ1/ns τ2/ns α1 α2 τint/ns τamp/ns 

Confocal D only 3.42 - 1 - 3.42 3.42 

 D-A 40bp 3.30 - 1 - 3.30 3.30 

ZMW 110nm D only 1.89 0.40 0.76 0.24 1.79 1.54 

 D-A 40bp 1.77 0.40 0.67 0.33 1.63 1.32 

 

Notes   The authors declare no competing financial interest. 
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