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Abstract
We present a multi-disciplinary image-based blood flow perfusionmodeling of a whole
organ vascular network for analyzing both its structural and functional properties. We show
how the use of Light-Sheet FluorescenceMicroscopy (LSFM) permits whole-organmicro-
vascular imaging, analysis andmodelling. By using adapted image post-treatment workflow,
we could segment, vectorize and reconstruct the entire micro-vascular network composed
of 1.7 million vessels, from the tissue-scale, inside a* 25 × 5 × 1 = 125mm3 volume of the
mouse fat pad, hundreds of times larger than previous studies, down to the cellular scale at
micron resolution, with the entire blood perfusionmodeled. Adapted network analysis
revealed the structural and functional organization of meso-scale tissue as strongly con-
nected communities of vessels. These communities share a distinct heterogeneous core
region and a more homogeneous peripheral region, consistently with known biological func-
tions of fat tissue. Graph clustering analysis also revealed two distinct robust meso-scale
typical sizes (from 10 to several hundred times the cellular size), revealing, for the first time,
strongly connected functional vascular communities. These community networks support
heterogeneousmicro-environments. This work provides the proof of concept that in-silico
all-tissue perfusionmodeling can reveal new structural and functional exchanges between
micro-regions in tissues, found from community clusters in the vascular graph.

Author summary
New optical microscopy called light-sheet fluorescence microscopy (LSFM) allows for 3D
optical scan imaging of an entire tissue, at the micron scale, for reconstructing its
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complete microvascular bed. The 3D reconstruction of a vectorized vascular network can
display as many as 1.7 million vessels inside a 125mm3 volume of mouse fat tissue. This
3D reconstruction allows for vessel visualisation and also the complete virtual “dissection”
and analysis of the vascular bed. Described as a graph, the vascular network provides a
new tissue anatomy description, similar to city maps built on a road graph, showing struc-
tural clusters emerging as tissue “districts”. These clusters provide a new basis for lobule
description in fat tissue. Even more can be obtained from virtual perfusion simulated
inside the tissue by using in-silico modeling tools. This virtual perfusion reveals the func-
tional properties of the vascular network, such as perfusion fluxes, and exchanges between
clusters and infusion time (time for the blood to reach a site from the principal entry).

Introduction
A better understanding of organ function and dysfunction requires a better knowledge of mul-
tiple, complex, dynamic and spatially organized cell interactions inside the whole organ. These
interactions largely depend on the local oxygen tension and the supply of substrates brought
by microvasculature. All these elements define a set of interacting heterogeneous micro-envi-
ronments that are usually poorly characterized. Numerous works have used imaging to iden-
tify and define such micro-environment individually, but the global map of these subsets at the
scale of the whole organ is most often lacking. However, a fine understanding of integrative
liver functional anatomy at cell resolution has shown the interest of such an approach [1, 2].
This lack of whole-organ mapping is due to several technological bottlenecks ranging from
imaging to the treatment of large datasets. Indeed, achieving the description of the micro-envi-
ronment at the scale of the whole organ required the ability to image the whole tissue in its
depth at cell resolution, then digitizing and vectorizing the large dataset corresponding to the
image and finally to find a way to manage the dataset in order to draw the map and model of
its functioning.

The use of various microscopy techniques has led to considerable recent [3–11] and opens
the door to reconsider the functional anatomy of large tissue volume. Indeed, vascular struc-
tures provide structural information that is spatially extended (thus non-local) and graph-
based (hereafter graph refers to the graph-theory object), directly relevant to perfusion and
metabolic exchanges, for which an in silico tissue-scale analysis can bring significant under-
standing to tissue functions. Various studies have used large tissue imaging particularly in the
context of brain perfusion analysis [5–7, 12–14]. Furthermore, large-scale organization analy-
sis has already been pursued in the context of brain connectivity [15] to map functional cou-
plings between various areas. These studies infer structure/function properties of a given tissue
from the combination of cellular and micro-vascular imaging as well as perfusion modeling.

Recent developments in tissue preparation for the light-sheet fluorescence microscope
(LSFM) (i.e. clearing, staining, labeling [16–19]) are now offering new prospects for decipher-
ing supra-cellular organizations in tissues and revisiting the vasculature and functional anat-
omy of large tissue volume. The technique provides the ability to segment, detect, and quantify
biologically relevant structures and patterns, especially vessels [11, 20–22]. These recent devel-
opments also raise new challenges for digitizing and treating massive 3D data.

A first step was carried out by Kelch et al. [4], who analyzed the lymph nodes with a dedi-
cated and precise imaging of the microvascular structure as well as the topological organiza-
tion, albeit on a rather limited sample size. To further tackle the challenge of imaging whole
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tissue, the inguinal fat pad is a convenient (and relevant) environment and of major interest in
biomedical research.

Besides being easy to use and accessible, the fat pad can be cleared to image the whole tissue.
In addition, its key role in the pathophysiology of metabolic disorders associated with meta-
bolic regulation and energy storage crucially depends on perfusion [23, 24]. In this paper, we
present a multi-disciplinary, image-based, blood-flow perfusion system to model a whole-
organ (fat pad) vascular network for analyzing both its structural and functional properties.
We provide significant steps forward in three directions: 1) we describe how an entire micro-
vascular network of a large tissue can be imaged, segmented and reconstructed for a volume a
hundred time larger than that examined in previous studies [5, 13], 2) we examine the func-
tional role of microvascular perfusion by blood-flow modeling in the resulting network with
1.7 millions of vessels, and 3) we analyze the structural and functional organization of the tis-
sue by using network clustering techniques adapted to this biomedical context. From these
advances, a new picture of functional anatomy emerges, the significance of which is provided
in Discussion.

Material andmethods
Tissue preparation
The mice under study (6- to 8-week-old male C57BL/6J mice [Harlan Laboratories] on a 12-h
light/dark cycle with free access to food and water) were injected in vivo with retro-orbital rho-
damine-red–labeled Griffonia (Bandeiraea) and Simplicifolia Lectin I (Eurobio Abcys) to
achieve proper vessel labeling. At 30 min after in-vivo lectin injection, animals were anesthe-
tized by intraperitoneal injection of a ketamine/xylazine mixture and perfused intracardially
with 4% para-formaldehyde solution, then tissue was removed, oriented and post-fixed over-
night at 4˚C. Tissue was embedded in 1% agarose before being dehydrated by ethanol, then
cleared by incubation in benzyl alcohol-benzyl benzoate solution (BABB, 1:2 vol:vol ratio)
(Sigma Aldrich). A clear fat pad is illustrated in Fig 1a. All experiments complied with Euro-
pean Community Guidelines (2010/63/UE) and were approved by the French ethics
committee.

Light-sheet Fluorescence ImagingMicroscopy (LSFM)
Cleared samples were imaged on a custom LSFM based on cylindrical lens illumination with
488- and 561- nm lasers (Oxxius, France) and horizontal macroscope detection. The lens for
the formation of the light sheet was an f = 50mm cylindrical lens coupled with a slit aperture of
maximum 7mm opening to control the thickness and flatness of the illumination beam. The
resulting thickness of the light-sheet at the waist varies from 5 to 50µm depending on the slit
aperture. Thickness (T) was set to 35 µm to fit the largest field of view (FOV) at the lowest
magnification (i.e., 1.2X). The macroscope was a Nikon AZ100Mmacroscope with an air lens
of 2x magnification, providing an 8-fold zoom factor. The final magnification of 6.72x used
here yields an estimated 1.83 µm lateral resolution against an axial lightsheet extent of about
20µm. Imaging in clearing media was through a 2 mm glass wall of a polished cuvette. Rotation
of the sample was performed from below the sample, acting on the agarose block embedding
the sample, with a driving rotation stage (M116-DGH, Physik Instrumente, Karlsruhe,
Germany). Detection was performed with 50nm band-pass filters mounted in a filter wheel
(LB10, Sutter Instruments, Novato, CA, USA) and a SCMOS camera (ORCA Flash4.0, Hama-
matsu, Japan). Fig 1e illustrates the typical image of avascular network with voxel size of
0.967 × 0.967 × 2μm. The full tissue acquisition consisted of 28 tile images of 1500 × 2048 XY
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Fig 1. Original image and reconstructed network visualization. (a) The cleared fat pad tissue sample rotated vertically. (b) Schematic representation of
the macrocirculation: arteries (in red) and veins (in blue). Large red arrows indicate the flow directions associated with the main feeding artery inlet into
which (dimensionless) pressure p = 1 pressure is applied. The nearby large blue arrow also indicates the main draining vein outlet, with (dimensionless)
pressure is set to p = 0. All others secondary vein inlets and artery outlets of the network are indicated with smaller arrows. The location of the central
lymph node (LN) is illustrated by the yellow ellipse. Details of boundary conditions can be found in S5 Text. (c) Maximum intensity projection of the full
fat pad tissue imaged with an LSFM, the volume of which was* 25 × 5 × 1 mm3. (d) The vascular network extracted from the image (c) is based on
image deconvolution, segmentation and vectorization. The vascular graph has* 1.7.106 edges and* 1.2.106 nodes (cf. Fig 2a and 2b for definitions). (e)
Volume rendering of a small part highlighted in (c) for a small range of slices (for a total of* 250μmwidth) with, (f) the corresponding reconstructed
vascular graph. (g) and (h) are higher zoom levels of (e) and (f), respectively, highlighting the high resolution (0.96μm voxels width) needed for micro-
capillaries segmentation.

https://doi.org/10.1371/journal.pcbi.1007322.g001
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voxel resolution with variable depth (Z dimensions) from 400 to 1500 voxels, for a total of
*120GB raw 16-bit data. These tiles are stitched as described in [25].

Network extraction
First, tile images were interpolated in the Z direction with cubic splines so that voxels matched
an isotropic dimension of 0.967μmwidth and were then subdivided into 2563 voxel sized blocs
that could be processed simultaneously. Image deconvolution was then applied. The Richard-
son-Lucy (RL) algorithm was used to remove artifacts from light microscopy (e.g., [26]) and
has been found appropriate and accurate for LSFM deconvolution [27, 28] although computa-
tionally challenging. Without the use of beads, the efficient estimate of the point spread func-
tion (PSF) becomes challenging, especially when its shape varies for spatially inhomogeneous
light-sheet depth. Because we chose a large light-sheet depth and FOV, we considered a
spatially homogeneous PSF designed with a Gaussian shape for which its standard deviation
σ(z) = 11μm is related to the light-sheet depth (cf. section Light-sheet Fluorescence Imaging
Microscopy). More information about the choice of the PSF can be found in [29]. We then
used the RL iteration updates with a total variation regularization. Deconvoluted images were
then simply thresholded, and the resulting binary images were used for network extraction.
The spatial graph representing the vascular network was built according to the vectorization of
the binary image as described in [30]. Vessel center lines were extracted with an appropriate
homotopy preserving skeletonization method [30]. The graph Gv = (Vv, Ev) was then created,
where Vv, the set of nodes, was extracted from the branching-voxel and end-voxel, and Ev, the
set of edges, was between connected node-voxels of the vessel skeleton. An edge consists of a
chain of center-line voxels comprised between two nodes. Vessel radii were estimated follow-
ing [31]: for each segment-element and node (illustrated in Fig 1b), a sphere was expanded
until 10% of its volume was left outside the vessel shape in the binary image. Fig 1e illustrates
the network extracted from Fig 1d with tubular-like visualization in Avizo (FEI) software.
Once each of the 2563 voxels blocs was vectorized, networks were stitched according to global
coordinates found in the previous step and merged with a simple coupling procedure to obtain
the full network. Loose ends were connected by four successive Tensor Voting (TV) iterations
with different parameters, trying to connect small gaps at first, with 5µm as a reference dis-
tance and 30˚ as reference angle (cf. [30] for more details) and up to 30µm as reference dis-
tance and 45˚ at fourth iteration. The connections added represented ~5% of the total vascular
network edges. The quality of the skeletonization and reconnection procedures was quantita-
tively assessed in [32].

The above-described image processing is effective only on vessels and not macro-arteries
and veins because they present different morphologies and responses to the lectin labeling.
Capillary vessels (< 50µm) appear as filled near tubular structures, whereas arteries and veins
appear as non tubular empty structures. A few studies tackled the particular case of automatic
segmentation of such structures (e.g., [33, 34]), but we chose to manually segment these
macrovessels to ensure a reliable vascular tree and geometries, which are essential for realistic
flow simulations. Finally, the macrovascular network (illustrated in Fig 1) was merged with the
microvascular network by adding a junction vessel by using the tensor voting method [30] as
shown in Fig 1e, 1g and 1i. The resulting network was also carefully inspected along all large
vessels to check and verify the quality of the reconstructed network versus the initial grey-scale
image. This verified, all topological constraints needed for the modeling (Euler relation
between vertex-edge number, no self-loop of segment elements, etc.).

Let us also define various notations from the graph Gv. We denote its adjacency matrix A,
its degree matrix Dii ¼

PN
j¼1

Aij and the Laplacian matrix L = D − A.
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Edge and network resistance
The aspect ratio (radius divided by length) of vessels is small, on average (’ 1/8, on average),
which justifies use of a lubrication-based discrete network approach (cf. section Edge and net-
work resistance). The previously described vectorized network allows us to compute the
hydrodynamic resistance of each vessel, defined as the ratio of the flow rate to the pressure
drop applied in the vessel, formally the analog of the resistance in electric circuits. The Hagen-
Poiseuille law provides the relation between the resistance R, the flow rate Q and the pressure
drop Δp where the resistance is a function of the viscosity μ, the diameter D.

�
@p
@s
¼ RðsÞQ ¼

p

128

mðsÞ
D4ðsÞ

Q ð1Þ

To account for the effect on red blood cells to blood rheology, empirical models have been
proposed to described blood viscosity, first in vitro [35, 36], then in vivo [37] and more recently
in vivo, taking into account the effect of the endothelial surface layer [38]. In this work, we
used the latter scenario because in a comparative study, it was found to have the most relative
influence on resistance, pressure distribution and flow rate [13]. We also used an integrated
formula of resistance because it considers the local shape variations of the vessel. Resistance in
each vessel is thus defined as

R ¼
p

128

Z
mðsÞ
D4ðsÞ

ds
� �� 1

ð2Þ

The expression for viscosity μ can be found in [38, 46]. Given the resistance on each edge of
the vascular network, one can define the network resistance between every pair of vertices.
Based on [39], the resistance Rij between two vertices of index i and j is

Rij ¼
XN

k¼2

1

lk
jck;i � ck;jj

2
ð3Þ

where λk and ψk are respectively the eigenvalues and eigenvectors, respectively, of the Lapla-
cian L of the graph Gv for which the adjacency matrix A is weighted by vessel conductance.

Graph clustering
Graph clustering, also called community partitioning, aims to regionalize networks [40]. We
used a previously described method optimized for a large network [41]. The method maxi-
mizes the community features reflecting the density of edges between vertices inside commu-
nities as compared to edges between vertices in different communities. Considering vascular
networks, clustering can be applied to the unweighted graph Gv, denoted Gv = (Vv, Ev, w0)
as defined in section Network extraction, as well as an edge-weighted version of Gv, denoted
Gv = (Vv, Ev, wi), where wi is the weight function. We investigated four different edge weights,
that could be of interest for vascular graph analysis: w1 the Euclidean distance between the two
vertices connected by an edge, w2 the geodesic distance between the two vertices connected by
an edge, w3 the hydrodynamic resistance of an edge and w4 the hydrodynamic conductance.
Once the vascular graph Gv was clustered, we defined a new abstraction level of the vascular
network denoted Gwi

c ¼ ðVc;EcÞ as the adjacency graph of the communities found from Gv

with the weight function wi. Vc thus represents the communities and Ec the connections
between communities.
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Graph features
Graph theory is widely used to characterize structured networks in technological and transpor-
tation infrastructures, social relations, or biological systems (e.g., [15]). Here we focused on
characterizing the effect of communities inside graphs, Gwi

c , defined in section Graph cluster-
ing. We used two features: 1) the eigenvector centrality, which is a modified version of the
betweenness centrality [42] and gives high scores for vertices playing the most central role (i.e.,
those with the smallest farness from others), and 2) the Authority/Hub features designed in
[43] to discover authoritative and hub web pages on theWorld Wide Web concerning a topic
search.

To analyze the arterial/venous vascular organization on both the network and the commu-
nity scale, we computed arterial/venous domains based on generation numbers starting from
the arterial and venous macro-vascular networks (Fig 4g). Both of these macro-networks were
extracted from the full reconstructed network by traversing the vascular graph from every arte-
rial boundary condition, and also from every venous boundary condition, under the condition
that the mean vessel diameter is� 15μm. Then, starting from the vertices of the arterial macro-
vascular graph, we increased by one the generation number at severy vessel connected to those
nodes. The corresponding vertices of the vessels found were then looped on. Numbers were
further increased by one during each loop. This procedure was continued until no further ves-
sel was found. The very same algorithm was used starting from the venous macrovascular
graph. Because of the proximity of the arterial and venous macrovascular networks, the gener-
ation numbers from both networks were very similar (see S4 Text). Finally, we used the follow-
ing criterion to decide whether a vessel was part of the arterial or venous domain: if its
generation number starting from the arterial macrovascular network was greater than its gen-
eration number starting from venous macrovascular network, it was considered part of the
arterial domain. Otherwise, the vessel was considered part of the venous domain. At the com-
munity scale, we then computed the fraction of vessels that were part of the arterial domain.
The result is displayed in Fig 4g.

Flow modeling
The adopted discrete perfusion network is based on previously proposed microcirculation
models [44, 45]. These frameworks were previously used to model blood perfusion from
image-based network extraction [5, 12, 13]. Here we describe the main steps and modeling
issues.

The flux conservation applied at any vertex i with the set of its neighbor vertices is denoted
as J

X

j2J

Qij ¼ 0 ð4Þ

where Qij is the flow on an edge connecting vertices of i and j. From considering an integrated
local lubrication approximation ([13] for more details as well as reference therein), one can
provide a relation between the pressures at every vertex, which are is not associated with
boundary conditions

X

j2J

Cijðpi � pjÞ ¼ 0 ð5Þ

where Cij is the conductance of edge connecting vertices i and j and pi (resp. pj) the pressure
on vertex i (resp. j). For every other vertex, a pressure Dirichlet boundary condition is imposed
whose values will be discussed later.
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Applying these relation to every vertex of the graph gives the following system

Lp ¼ bD ð6Þ

where L is the Laplacian matrix of the vascular graph Gv with hydrodynamic conductance as a
weight, p is the vector of pressures to solve and bD is the vector of applied boundary condition,
which is zero whenever the index is an internal vertex and pD � Cij whenever the index is a
boundary condition.

The common framework for blood-flow network simulations considers also the variation
of hematocrit. The hydraulic conductance (or resistance) being a function of hematocrit, this
results in a coupled system of equations. For converging bifurcation, the mass conservation
law gives a set of equations and for diverging bifurcations, empirical models give the fraction
of hematocrit that will be convected in both daughter vessels. Reference [46] shows that hemat-
ocrit variation has a small effect on blood perfusion. Thus, we considered a constant hemato-
crit, with a value of 0.45 throughout the network.

A pressure Dirichlet boundary conditions is associated with any identified vertex corre-
sponding to a cut-open macrovessel edge. A careful analysis of the network architecture allows
for exhibiting a total of 26 macro-vascular vessels entering and leaving the tissue. Thus, 26
boundary conditions must be set for the flow modeling (see section Flow modeling for details).
We found a total of 26 macro-vessel edges, as illustrated in Fig 1a. Expert knowledge of the
macrocirculation of adipose tissue reveals that only one main inlet artery perfuses the tissue,
the location of which is known in this tissue (large red arrow in Fig 1a). Similarly, because the
feeding and draining vessels are associated in pairs, the corresponding vein is thus located
(large blue arrow in Fig 1a). The dimensionless pressures associated with these two main
inlets/outlets are defined as 1 and 0. Then every other boundary condition is considered as a
secondary outlet artery or a secondary inlet vein, as shown in Fig 1a. This feature is generic to
whole organ imaging because there are always various macrovessels in a given tissue, that are
unavoidably cut. To reduce the problem complexity, we imposed the same inlet vein boundary
condition (denoted α) and outlet artery boundary condition (denoted β) to every secondary
pressure boundary condition. To reduce the impact of perfusing inlet veins, we computed the
relative perfusion volume (relative to the perfusion domain) of the main inlet artery over the
sum of all perfusion volumes of every inlet vein. We chose α and β values to maximize this
ratio, which resulted in α = 0.35 and β = 0.3125. S5 Text summarizes the detail of perfusion
volume ratios for a large range of α, β values. Perfusion domains are sub-graphs of the micro-
vascular network, providing, from each entry, its (predominent)) basin of perfusion inside the
entire network. In brief, it is evaluated by using a spanning-three method, starting from each
entry, but restraining the sub-three extraction to predominant flux branches at each bifurca-
tion. For more details concerning the definition and computation of perfusion domains, refer
to [14].

We also investigated the effect of diameter variations that might occur due to segmentation
errors on blood flow exchange between communities. Overall, a few pairs of communities
ceased to exchange blood and the rest did so with a relative quadratic error up to 40%. More
details can be found in S8 Text.

Results
Tissue organization both at the macro and micro-circulatory scales
The macrovascular network (see section Network extraction for details about segmentation)
extracted from the inguinal fat pad (Fig 1a and 1b) follows the known main anatomical archi-
tecture of the tissue: a principal longitudinal (apex-groin) axis, bifurcating nearby the lymph
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node into a (upside-down) ‘T’ shape that leads to the major arterial and venous pair [47]. The
main macro-vascular artery inlet, associated with a main vein outlet, is located on the left of
the tissue and is responsible for the main perfusion. Image acquisition of the whole tissue (Fig
1c) and segmentation of its entire vascular network (Fig 1d) allow for quantifying microvascu-
lar networks at close to micron-scale resolution, that is, with several voxels per diameter (Fig
1e, 1f, 1g and 1h), with their associated local parameters (diameter, segment length, orienta-
tion, density, etc.). Indeed, these structural local parameters allow for a vectorized description
of the vessel (Fig 2a) and the corresponding vascular graph (Fig 2b). In contrast to many other
contexts in which graphs are found in nature (e.g. metabolism pathways, gene interactions,
ecology, etc.) or in practical applications (web-structure, social web, etc.), the local structure of

Fig 2. Vascular network statistics. (a) Schematic representation of the vectorized vascular network and (b) the corresponding vascular graph with
common key concepts in both cases. Note that vascular segments are turned into graph edges when the vascular network is mapped onto its graph
representation. (c) Data for vessel length and diameter. The average aspect ratio is found equal toD/2L* 1/8. (d) Histogram distribution of bifurcation
angles (cf. Fig 1b for angle conventions). (e) Local vascular density (volumetric ratio) distribution measured in the whole network according to four
elementary box size widths from 100μm to 400μm.

https://doi.org/10.1371/journal.pcbi.1007322.g002
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the graph Gv of microvascular networks is very simple: almost all bifurcations result from the
connection of two distinct vessels into a single one or vice-versa (Fig 1g and 1h). The vascular
graph can be manipulated by associating different graph weights wi (e.g. w0 as illustrated in Fig
1b), that is the scalar quantity associated with each edge connecting two nodes (i.e. bifurca-
tions) which is provided in order to consider different levels of relationships, weak or strong,
between elementary nodes.

Considering this framework, one can quantify key aspects of the micro-vascular network.
The aspect ratio (radius, divided by length) of vessels is small in average (’ 1/8, Fig 2c), so as
to justify the use of lubrication-based discrete network approaches (see Material and methods
section Flow modeling). The segment’s orientation distribution at bifurcations given in Fig 2d
displays two predominant configurations: a T-shape associated with quasi-aligned daughter
and parent branches (first mode of φ1 distribution and second shouldering of φ2 one), and a
Y-shape family one (second mode of φ1 distribution, first mode of φ2).

Now, considering the entire tissue, we first evaluated the vascular density inside boxes of
varying sizes (from 100μm to 400μm, Fig 2e, as in [29]). This evaluation produced variable
density distributions without the emergence of a homogeneous length-scale and thus revealed
strong heterogeneity. Similarly, the hydraulic resistance (see Material and methods subsection
Edge and network resistance and S1 Text) and the pressure distribution inside the vascular
network (S1 Text) display various heterogeneous scales. Hence, various vascular characteristic
scales emerge from our analysis, considering both geometrical properties (i.e. vascular density)
and hydrodynamic ones (i.e. hydraulic resistance and pressure distribution), the presence of
which highly suggests a meso-scale organization that we next investigated.

Structural units emerging from clustering analysis
Meso-scale vascular organization results from clusters of vessels related by a close proximity
(either from structural or functional relations). Graph clustering is an established technique
mostly used in computer science for applications in web networks, social networks, etc., which
allows for deciphering preferential information transfer between meso-scale entities. We
adapted it here for our vascular network as in [5].

At the local scale, the minimum unit of the vascular graph is a simple local binary tree (Fig
1b), but at a broader scale, this graph is much more complex, involving preferentially con-
nected units called communities (Fig 1f and 1h). Clustering methods are based upon finding a
graph partitioning (i.e. a separation of the graph into non overlapping units) that maximizes
the density of (weighted) edges between vertices inside communities as compared to edges
between vertices in different communities (cf. subsection Graph clustering). Hereafter we
refer to the result of the clustering partitioning of the vascular graph as communities.

We consider two classes of geometry and perfusion based family for weights wi associated
with vascular segment edges: class 1, structural associated with w0, w1, w2 for topological con-
nection (e.g. Fig 2b), Euclidean distance (Fig 2a) or curvilinear (Fig 2a) respectively; and class
2, a perfusion-related relation associated with w3 and w4 for the vessel’s resistance and conduc-
tance respectively. For each weight a different set of communities is obtained, with one result
for weight w0 exemplified in Fig 3a, 3b and 3c. We first focus on the results obtained with the
simplest weight, w0, for which the relation between entities is binary (1 for a connection, 0
otherwise).

Fig 3a illustrates the spatial extent of the communities, all having vascular segments with
homogeneous color. A zoom inside a sub-domain of the whole organ shows how structural
entities already appear to have variable density, as visualized by maximum intensity projection
(Fig 3b). The resulting graph communities spatially mapped into the vascular network with a
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Fig 3. Vascular graph clustering. (a) Community clustering applied to the vascular network by using an unweighted vascular graph
representation, w0. Color codes for community membership. (b) and (c) Image volume rendering and the vascular graph segmentation,
respectively, of a sub-volume (*100µm width) extracted in a dense and modular area of the tissue near the central lymph node (white
dotted rectangle depicted in (a)). (d) Schematic illustration of vascular communities; (e) structural community graph, with the number of
vessels connecting two communities as edges weights (5 and 1 here); and (f) bi-functional community graph with in/out fluxesQij as
edges weights. (g) Graph clustering of the communities for geometrical based weight (w2, curvilinear distance) and (h) perfusion based
weight (hydraulic resistance w3); the disks are located in community centers projected in the (x, y) plane with sizes coding for volumes
and color for vascular density (volumic ratio from 0% to 20%) illustrated with a cold-to-warm color scale. (i) Linear regressions of the
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different color for each community (Fig 3c) closely following the shape of these visible struc-
tures. This observation illustrates and validates the relevance and interest of community clus-
tering for detecting and isolating vascular structural entities. The community of vessels (Fig
3d) can be schematically represented as a graph, with adjacent communities linked by an edge
coding the number of vessels (structural community graph Fig 3e) or in/out fluxes (bi-func-
tional community graph Fig 3f). Such a structural community graph with weight w2 (curvilin-
ear distance) is illustrated in Fig 3i, in which the position of center of masses (by projection in
the 2D (x, y) plane), distances between communities, volumes, as well as vascular density are
also coded, revealing spatial heterogeneity of the vascular density distribution inside the tissue.
The large vascular density variations already revealed from the wide distribution of the vascu-
lar densities histogram of Fig 2e can now be much more precisely attributed to the presence of
structural entities, the spatial distribution of which is neither regular nor patterned. A clear
structural trend emerges from Fig 3g: the highest vascular densities (red and oranges circles)
are found in a core region, nearby the trajectory of the main feeding artery (shown on Fig 1b).
Fig 3h shows a similar trend for a perfusion based weight partitioning (w3 hydraulic resistance)
with about 10 times more communities and a much denser central region in terms of commu-
nity numbers. This larger number of communities found with functional weight is robust (less
than 1% variations) when taking into account the local blood flow orientation found in the
blood flow modeling, and performing the clustering onto the oriented graph with weight w3.
Furthermore, the number of connected vessels associated with the edge sizes of Fig 3g and 3h
reveals more heterogeneous couplings between structural communities (Fig 3g) as compared
with the smaller and more homogeneous couplings for functional communities (Fig 3h). This
difference between the two classes of weights suggests differences in interconnections of com-
munities, which we next examined.

To evaluate the connectivity of communities, in Fig 3i and 3j, for each community pair, we
computed the number of external connecting vesselsNev (e.g., for the communities of Fig 3d,
number of black edges) and plotted it against the number of internal vesselsNiv (e.g., for com-
munity #1 of Fig 3d, number of blue edges). The power law scaling of Nev against Niv, such as
the representation in Fig 3d, allows for delineating a zone of weak communities (i.e., strongly
connected ones) when the slope of the scaling is between 2/3 to 1 (larger than a surface to vol-
ume ratio) and strong ones when the slope is smaller than 2/3 (i.e., weakly connected nodes).
Additionally, strong communities are found when the slope of the scaling is less than 2/3 (both
slopes shown in Fig 3i). Considering the first class of geometry-based weights (w0, w1, w2), we
observe in Fig 3i that the number of vessels connected with external ones indeed scaled similar
to the number of internal links Niv of the community, in this case, Nev � N0:63�0:03

iv . With the
lower bound scaling for weakly connected units being a 2/3 power law, our results indicate
that structural clustering results in already quite strongly connected units. Considering the sec-
ond class of perfusion-based weights (w3 and w4), an even more significantly different scaling
is found (cf. Fig 3d), Nev � N0:27�0:01

iv , revealing very strongly connected perfusion communi-
ties. This very distinct behavior shows that clustering using structural weights (class 1: w0, w1,

scatter plot of number of vessels between each pair of communities Nev versus number of vessels in the community Niv (for each
community in (d), number of colored edges vs. number of black edges). Full lines are the linear regressions for each clustering weight wi.
w0 no weight (slope s = 0.61); w1 Euclidean distance (cf. Fig 2(a)) (s = 0.62); w2 curvilinear distance (cf. Fig 2(a)) (s = 0.66); w3 hydraulic
resistance (Cf. S2 Text) (s = 0.25); w4: hydraulic conductance (Cf. S2 Text) (s = 0.28). The gray curve is the result of Blinder et al. [5] with
s = 0.83. Dashed lines delimit the boundaries of weak communities (therefore having strong connections between units) with slopes
s = 2/3 and s = 1. Shaded areas are the standard errors associated with each regression. The linear regressions are normalized with zero
offset at the origin. (j) Non-normalized scatter plot for weight w0 with the associated linear regression in a solid line (other weights are
reproduced in S2 Text).

https://doi.org/10.1371/journal.pcbi.1007322.g003
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w2) or functional weights (class 2: w3 and w4) can reveal vascular units with distinct average
densities and sizes (S3 Text). We then investigated how these structural communities are func-
tionally coupled.

Vessel community perfusion coupling map
Here we consider functional perfusion distribution between communities. We focused on the
clustering results obtained from one structural weight (i.e., w2 associated with the curvilinear
distance defined in Fig 2a) because structural weights provide the most anatomic-relevant
information (compared to [47]). We analyzed the total perfusion exchange fluxes between a
given pair of communities (depicted in Fig 3h) denoting Qci ;cj

as the total flux from community
ci to cj, that is, Qci ;cj

¼
P

k2Kci ;cj
Qk, where Kci ;cj

is the set of vessels connecting communities ci
and cj, fluxQk being directed from ci to cj (Qcj;ci

is defined vice-versa). The robustness of the
perfusion modeling and total flux exchanges between communities to the quality of the seg-
mentation and possible errors in vessels vectorization is provided in S7 Text.

Computation of graph authority (cf. subsection Graph features for definitions) associated
with functional graph features (Fig 4a) reinforces the identification of a core region previously
found for structural properties (Fig 3i and S4 Text). Thus, blood perfusion confirms the spatial
organization of the graph communities. Furthermore, Fig 4a, 4b, 4c and 4d shows that the core
region strongly co-localizes with the largest perfusion exchanges where macrocirculation ves-
sels illustrated in Fig 1b are also present.

The perfusion dynamics (cf. S6 Text for more details) emphasize the significance of
core regions of the core region prerogatives, because Fig 4e and 4f shows that these central
communities are fed first, but also present heterogeneous filling times, that is, the time for a
community for its entire vascular bed to be perfused from the arterial entry. Also, similar het-
erogeneities of filling times are observed outside the core region. This observed heterogeneity
is related to the distinct and variable proximity of each community with the principal arterial
trunk.

Finally, one can also analyze the communities by their ability to drain perfusion from the
main arterial/venous trunk. To investigate this, we compute the arterial/venous domains based
on generation numbers starting from the arterial and venous macro-vascular networks (Cf S4
Text). In Fig 4g we represent the fraction of vessels that are closer (in terms of generation num-
bers) to the arterial than venous trunk. The core region already depicts a clear proximity to the
arterial trunk. This finding is consistent with the previous observations for this section, all
flow-related.

Discussion
Organ-scale supra-cellular exchanges represent crucial complex systems and have been poorly
studied. In this study, we show a sensible step forward in this direction with extensive analysis
of detailed perfusion at the tissue scale. Indeed, microvascular imaging, post-processing and
modeling present many challenges, associated with combining high-quality imaging, huge
data processing, and dedicated modeling issues. In this paper, we show that these challenges
can be overcome to provide an emerging picture of tissue structural and functional anatomy at
a whole-organ scale.

First, combining specific tissue-preparation techniques (clearing and sample positioning)
with a dedicated large-scale LSFM set-up [29] allowed for high-contrast vasculature imaging
with nearly terabyte-sized image mosaics that match the challenge of full organ segmentation
and analysis.
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Fig 4. Functional community network analysis. (a) Graph authority feature on the bi-functional (cf. Fig 3g)
communities graph. The color code, from white to dark green indicate small to large graph authority value. (b)
Identification of central area by selecting nodes with the authority graph authority feature (>0.04) core in red and
(<0.04) peripheral in black. (c) Histogram distribution of vascular densities in the region depicted in (b) using the
same color-code (mean vascular density is 0.06 for red, 0.02 for black), Kruskal-Wallis rank sum test: p-value< 0.0001.
(d) Intercommunity flows of region depicted in (b) using the same color-code. Mean flow inside (red) is 0.0079,
outside (black) is 0.0212, Kruskal-Wallis rank sum test: p-value> 0.05. (e) Bi-functional community graph (as defined
in Fig 3g) with edges colored and sized by the perfusion fluxes (two arrows per edges for in/out fluxes not always
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Second, we used image processing tools and pipelines (stitching, registration, deconvolu-
tion, binarization, skeletonization) with this massive volume of data for segmenting and vec-
torizing vessels, which resulted in a huge memory saving for the manipulation and analysis of
micro-vascular networks of 1.7 million vessels. The use of such pipelines provides sensible
structural measurements for the vessel’s geometries and shape, such as vascular density, vessel
length, orientation, micro/macro separation, spatial location, and arterial and venous territo-
ries, thereby providing an unprecedented precise picture of local heterogeneities and
couplings.

Third, we present how vessel vectorization can be sparsely manipulated within a graph net-
work by using clustering analysis techniques to reveal both structural and functional (i.e.,
blood flow related) units.

Biologically, the approach yields significant results to better understand the 3D topology of
organs. Two distinct—structural and functional—families of graph weights (w) were chosen
and yielded two classes of consistent results. Structural clustering, leading to what we call
structural communities, resulted in about 200 clusters, the largest also being the more con-
nected inside the center of the tissue, in the proximity of the principal feeding artery. We con-
sider now functional clustering, associated withfunctional communities. Functional clustering
provides about 10 times more clusters, which are smaller and denser in the central region,
with very rich inter-connections, and larger in the periphery, with much fewer connections.
The average volume of these clusters (found from the distribution mode of the cluster w3 vol-
ume provided in S3 Text equal to 6.10−4mm3) corresponds typically to 23 adipocytes (esti-
mated from the mean cell diameter of about 37μ (cf. S8 Text). The numbers of adipocytes per
cluster are of the order of magnitude of 13 ± 6, the mean adipocytes number found in double
labeling images (cf. S8 Text). Hence, functional clustering provides insights into the existence
of an intermediate level of functional unit inside large structural clusters. The unit might be
related to some vascular regulatory potential, as suggested by functional flow modeling.
Hence, functional clustering reveals the existence of an unexpected organization scale inside
large clusters. Consistent with our previous reports [47] [48], this finding clearly emphasizes
the heterogeneity of adipose tissue and its multiscale organization particularly for the oxidative
metabolism point of view that strongly depends on vasculature and perfusion.

Regarding the results associated with structural clustering, we found that determining the
proximity between vessels allowed for confirming the presence of large, well-connected struc-
tural units. These anatomical/structural clusters are heterogeneous, but are located in the
vicinity of the principal arterial trunk and the lymph node. Similar structural entities have
been described [47] by using different imaging modalities (i.e., confocal microscopy and epi-
fluorescent immunostaining). These entities have been found to concentrate adipocytes having
discriminant browning (ability to turn into brown fat) potential [47]. The biological analysis of
these entities was refined in [48] with micro-dissection and immuno-labeling showing differ-
ent expression levels of browning genes and mitochondrial apparatus in the core region as
compared with the periphery, but also strong heterogeneity in adipocyte browning abilities
within the core of the fat pad. As found in [47] and [48], here we reveal a central region located
near the lymph node where structural entities have been identified, and a peripheral region
with no particular structural units. Both central and peripheral regions were again found in

visible due to fluxes asymmetry). (f) Dynamics of perfusion at the community scale. The nodes are sized according to
the relative filling time of each community and are colored according to the fluid global time arrival (with a green-to-
red scale) with green nodes fed first and red ones last. (g) Arterial domains computed from generation numbers from
blue to red from 0 to 100% (100%means all vessels are closer to arterial macro-vascular network than to veneous one).

https://doi.org/10.1371/journal.pcbi.1007322.g004
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the clustering analysis described in the previous section, and some explicit examples of cluster-
ing segmentation allowed for distinguishing central and peripheral clusters. Furthermore, vari-
ous structural graph properties (such as centrality and authority) were strongly correlated with
local anatomic features (vascular density, vessel connections) as well as functional features
(total blood perfusion and exchange flux perfusion time). The primacy of these vascular-based
network parameters near the lymph node region is highly associated with the high browning-
gene expression found in [48], thus corroborating the well-described relationships between
vascularization and the browning process. Hence, we found a vascular-based body of evidence
for the existence of a central, well-perfused, strongly–connected and, highly-coupled region of
adipose tissue as opposed to the more unstructured, poorly-connected, peripheral organiza-
tion. Although a similar conclusion was raised previously [47], our study provides significantly
more quantitative, objective and functional evidence using a supplementary approach. One
significant outcome of this contribution is to show that the previously found enhanced local
browning ability of adipocytes cells coincides with preferential vascular fluxes and vascular
network clustering properties. This observation could suggest that the density of the vascula-
ture predicts the browning area. Furthermore this distinct structural regionalization was not
obtained from a direct visualization of a targeted cellular function but emerges from a non-
biased structural analysis of the micro-vascular organization itself. Therefore, it reflects an
emergent structural property of the network. Because both local cellular functions and vascular
structural organization provide similar qualitative patterns of organization, their biological
and metabolic relevance is strengthened. These new results also demonstrate that the vascular
density of clusters located near the central feeding macrovessels is much larger than in the
periphery, the vessel volume inside some clusters being as large as 20% of the total volume. As
compared with other organs such as the brain, with gray-matter vascular density being 2% to
3% in primates or rodents (cf. [29, 31] and references therein), such large vascular density is
significant. A similar vascular density is seen in only a few specific organs such as the kidney
or spleen [49]. Hence, these findings emphasize the relevance of microvascularization in the
metabolic and endocrine roles of adipose tissue.

In a broader context, the relevance of graph-based analysis associated with tissue-scale vas-
cular networks offers great potential for deciphering the presence of a micro-environment in
tissues as well as inter-compartment exchanges. This area was previously investigated in the
brain in the search for microvascular units [5], as possible echoes of neuronal units, such as
barrels in the somatosensory cortex. Nevertheless, this study did not find strongly connected
vascular communities in the cortex (i.e., no “graph-based vascular barrels”). This negative
result might result from the effect of finite sample edges associated with artificial blood-vessel
ends (i.e., free edges) resulting from physical sectioning of the organ. Being able to analyze the
reconstructed vascular network inside an entire tissue to circumvent this issue sheds new light
on organ functionalities. This analysis of adipose tissue revealed strongly connected vascular
units, also showing heterogeneous multi-scale functional couplings. Many endocrine organs
feature strongly localized specific metabolic functions. The possible coupling between these
functions via perfusion is poorly known. Our graph-based vascular approach offers great
potential to better estimate functional couplings and heterogeneities in these organs.

For the community clustering results associated with perfusion-oriented weight, we found
similarities and differences depending on structural weights. Our results in the fat pad signifi-
cantly differ from those in the brain [5], where no strong communities have been found: we
show the presence of vascular communities, the structure of which are strongly correlated with
perfusion modeling. Of note, the results of [5] consider a weight based on hydraulic resistance
with a different empirical viscosity model. In contrast to structural weights, use of functional
weights reveals new small-scale functional entities associated with a much smaller volume.
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Furthermore, these small clusters are strongly connected inside each other. This observation
might have future implications because it might be related to tissue remodeling scenarios.
Indeed, small-scale perfusion units could be versatile and flexible to structural changes for
angiogenesis. These small-scale units being much more numerous inside the large central clus-
ters might result from a preferential remodeling ability consistent with their attested browning
potential. Similar remarks could be raised in the peripheral region, where small-scale clusters
are much less dense and numerous, with no browning potential observed [47]. Thus, the para-
digm of isolated lobules [47, 50] as autonomous and disjoint metabolic functional entities in
adipose tissue must be clearly revised. Our analysis suggests rather various scales of communi-
ties that are clearly spatially and functionally distinct but strongly coupled. The physiological
relevance of such multiscale organization clearly requires defining the metabolic specifities of
adipocytes not only at the single cell level but also with respect to their location.

Considering the perfusion map estimated from modeling and analyzed within the struc-
tural clustering family, we note that the total perfusion fluxes entering or leaving any cluster
entity (the input flow exactly equals the output flow because of blood incompressibility) pro-
vide a first estimate of the metabolic dynamism of each entity. Our study shows for the first
time a very refined distribution and regionalized perfusion fluxes into the tissues.

As expected, we found that the central units associated with structural communities are
indeed those with the largest fluxes. Moreover, considering structural topological parameters
(centrality) in order to distinguish the center from the periphery, we found significantly differ-
ent perfusion rates in the central region than in the periphery (cf. S4 Text). This observation is
not so surprising because the central clusters are indeed located near the main feeding artery
so that some clusters are directly provided with blood. Nevertheless, this is not the case for
every cluster, so more complex flow patterns are responsible for the strong perfusion found in
various areas of the central region. Indeed, flow modeling also reveals important visible local
heterogeneities that have not been reported elsewhere. We also analyzed the metabolic cou-
pling between structural communities considering the perfusion flux between them but did
not find a significant difference in perfusion exchanges between communities in the central
region as in the peripherical region: this observation could be paraphrased with the urban met-
aphor, with no difference in exchanges between poor and rich neighborhoods. Our observa-
tions in the mouse fat pad might be due to the strong heterogeneity in perfusion exchanges in
both regions. Finally, when considering the perfusion time, i.e. the time for the blood to either
reach or fill a given cluster, clearly the central region is first fed by the principal arterial trunk.
Such result was totally unexpected because it was reasonable to believe that perfusion first
occurs in white fat then brings substrates relased by white adipocytes to brown/beige adipo-
cytes for their thermogenesis. The opposite order of perfusion gives rise to the issue of its
physiological relevance, which needs further investigations but is out of the scope of this man-
uscript. However, we can speculate about a putative role of brown/beige adipocytes upstream
of the fat pad to control oxygen tension and redox substrate supply to the white part, as
recently proposed in [51].

Conclusion
In conclusion, our study demonstrates the interest of new imaging and segmentation tools for
analyzing structural and functional organization in tissue. We believe the presented methods
as well as their technical improvements will be useful in many future biological and biomedical
tissue-oriented studies. This work provides the proof of concept that in-silico all-tissue perfu-
sion modeling can reveal new structural and functional exchanges between micro-regions in
tissues, found from community clusters in the vascular graph. It also illustrates how the
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combination of state-of-the-art LSFM imaging, huge image data post-processing and mathe-
matical modeling can be combined to reveal the intimate anatomy of tissues.
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30. Risser L, Plouraboué F, Descombes X. Gap filling of 3-Dmicrovascular networks by tensor voting.
IEEE Trans Med Imaging. 2008; 27(5):674–687. https://doi.org/10.1109/TMI.2007.913248PMID:
18450540
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