
HAL Id: hal-02538369
https://hal.science/hal-02538369

Submitted on 9 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software consolidation as an efficient energy and cost
saving solution

Alain Tchana, Noel de Palma, Ibrahim Safieddine, Daniel Hagimont

To cite this version:
Alain Tchana, Noel de Palma, Ibrahim Safieddine, Daniel Hagimont. Software consolidation as an
efficient energy and cost saving solution. Future Generation Computer Systems, 2016, 58, pp.1-12.
�10.1016/j.future.2015.11.027�. �hal-02538369�

https://hal.science/hal-02538369
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/2 2295

To cite this version:

Tchana, Alain-Bouzaïde and De Palma, Noel and Safieddine, Ibrahim and

Hagimont, Daniel Software consolidation as an efficient energy and cost saving
solution. (2016) Future Generation Computer Systems, 58. 1-12. ISSN 0167-739X.

Official URL:

https://doi.org/10.1016/j.future.2015.11.027

Open Archive Toulouse Archive Ouverte

Software consolidation as an efficient energy and cost saving solution
Alain Tchana a,∗, Noel De Palma b, Ibrahim Safieddine b, Daniel Hagimont a
a University of Toulouse, Toulouse, France
b University of Grenoble Alpes, Grenoble, France

Keywords:
Virtualization
Migration
Consolidation
Cloud

a b s t r a c t

Virtual machines (VM) are used in cloud computing environments to isolate different software. They
also support live migration, and thus dynamic VM consolidation. This possibility can be used to reduce
power consumption in the cloud. However, consolidation in cloud environments is limited due to reliance
on VMs, mainly due to their memory overhead. For instance, over a 4-month period in a real cloud
located in Grenoble (France), we observed that 805 VMs used less than 12% of the CPU (of the active
physical machines). This paper presents a solution introducing dynamic software consolidation. Software
consolidationmakes it possible to dynamically collocate several software applications on the same VM to
reduce the number of VMs used. This approach can be combined with VM consolidation which collocates
multiple VMs on a reduced number of physical machines. Software consolidation can be used in a private
cloud to reduce power consumption, or by a client of a public cloud to reduce the number of VMs used,
thus reducing costs. The solutionwas testedwith a cloud hosting JMSmessaging and Internet servers. The
evaluationswere performed using both the SPECjms2007 benchmark and an enterprise LAMP benchmark
on both a VMware private cloud and Amazon EC2 public cloud. The results show that our approach can
reduce the energy consumed in our private cloud by about 40% and the charge for VMs on Amazon EC2
by about 40.5%.
1. Introduction

Context and scope

In recent years, cloud computing has emerged as one of the best
solutions to host applications for companies or individual users.
For these cloud customers (hereafter called clients), its pay-per-use
model reduces the cost compared to using internal IT resources.
For cloud providers (hereafter called providers) one of the main
challenges is limiting energy consumption in their data centers.

∗ Corresponding author.
E-mail addresses: alain.tchana@enseeiht.fr (A. Tchana), noel.depalma@imag.fr

(N. De Palma), ibrahim.safieddine@imag.fr (I. Safieddine),
daniel.hagimont@enseeiht.fr (D. Hagimont).
In 2010, for example, data centers consumed approximately
1.1%–1.5% of the world’s energy [1]. Energy consumption can be
minimized by limiting the number of active physical machines
(PM) through sharing the same PM between several software
applications and providing dynamic software consolidation (filling
unused resources by grouping software). This helps to balance the
variable workload (Fig. 1 top presents an example of workload
variation at Facebook) due to the departure of some software.

In this paper, we considered an SaaS-based cloud model, such
as RightScale [4]. This type of cloud provides a fully customizable
environment, allowing clients, e.g. companies, to focus on applica-
tions. The SaaS provider offers a software catalog. Clients can select
an application and request its start in a virtualized data center. The
data center may belong either to the SaaS provider (private cloud),
or be part of a public cloud; alternatively it can be a mixture of the

22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
30

40

50

60

70

80

90

100

w
or

kl
oa

d
(%

)

20

18

16

14

12

10

8

6

4

2

0

A
vg

 %
C

P
U

Time

Fig. 1. Top: Typical server workload in Facebook data centers [2,3]. Bottom: Average CPU usage by VMs in Eolas1 data center over 4 months.
two (hybrid cloud). The SaaS provider is responsible for manag-
ing the clients’ software (scalability, highly-available, failover, etc.)
while efficiently managing resources to reduce data center costs:
power consumption when relying on its own private cloud, or re-
source charged for when using a public cloud.

Problem and approach

Advances in virtualization make transparent dynamic consol-
idation possible in the cloud. Based on this technology, the cloud
runs each software application on a separate virtualmachine (VM).
Many studies [5–8] have described algorithms providing software
consolidation through the consolidation of VMs. However, this ap-
proach is not sufficient since an infinite number of VMs cannot be
packed into a single PM, even when the VMs are underused and
the PM has sufficient computation power. Indeed, as argued by [9],
VM packing is limited by memory. In this paper, we therefore pro-
pose a solution consolidating software onto VMs. This solution is
complementary to VM consolidation. Rather than dedicating one
VM to each software, we propose that the same VM be shared
between several software applications. This will fill the gaps re-
maining inside the VM, as mentioned earlier. Fig. 2 illustrates the
benefits of this solution for VMs which are already at the mini-
mum size allowed by the cloud. Using our strategy frees 2 PMs,
while VMs consolidation alone only frees 1 PM. This strategy also
reduces the total number of VMs (from 4 to 2 in the illustration).
This is very important in a commercial cloud to reduce the charge
for VMs. Fig. 1 bottom shows the average CPU usage by 805 VMs
running on 66 PMs in a real virtualized cloud located in Grenoble
(France) over 4 months. Each peak on the curve represents a sig-
nificant variation in workload. For each VM, less than 12% of the
CPU is used, but by applying our approach a single VM can host the
workload of 8 VMs. This reduces the number of VMs running from
805 to about 101, and the number of active PMs from 66 to 9.

Contributions

Software consolidation raises twomain challenges that need to
be addressed:

1 http://www.businessdecision-eolas.com/.
• Software isolation. Isolation ensures that if a software appli-
cation fails it does not compromise the execution of another
software application, it also stops software from ‘‘stealing’’ the
resources allocated to another application.
• Software migration. Migration involves moving software from

its current node to another node without interrupting the
service offered by the software, and while avoiding Service
Level Agreement (SLA) violations on the migrated software.

In this paper we focus only on the live migration and consolidation
mechanisms. For software isolation, we rely on Docker [10].
Docker can package an application in a virtual container, that
runs processes in isolation. We present a solution to consolidate
software on VMs (Section 2) based on a Constraints Programming
(CP) solver. The gain of our approach is modeled in terms of
power and cost savings, while limiting the consolidation-related
risk to performance. The genericity of the solution allows the
integration of a range of live software migration mechanisms
since this operation is specific to software. We present a sample
migration for JMS messaging servers and LAMP servers (Section 3)
which are commonly and widely deployed in the cloud. We
evaluated our approach using the SPECjms2007 benchmark [11]
and an enterprise Internet application benchmark (Section 4) in
the context of an SaaS offering messaging and Internet software
on a private VMware cloud in our laboratory and on the Amazon
EC2 cloud. These evaluations showed that: (1) our approach results
in reduced power consumption and costs; and (2) the efficient live
migration algorithms implemented for JMSmessaging and Internet
web servers are viable. For the specific workload assessed, our
solution reduces the electricity consumption in our private cloud
by about 40% when software consolidation is combined with VM
consolidation. Running the same workload on Amazon EC2 leads
to a reduction in VMs charged of about 40.5%. The paper ends
by presenting related work in Section 5; a discussion about the
usability of the solution is provided in Section 6; and a conclusion
is provided in Section 7.

2. Software consolidation

Like VMs, software consolidation is an NP-hard [12] problem.
This section presents a solution that allows software consolidation
in the context of an SaaS platform.

A. Tchana et al. / Future Generation Computer Systems 58 (2016) 1–12 5
max

 
sucuri

max(vmu
j)


,

 
smcur
i

max(vmm
j)


,

 
socuri

max(vmo
j)


≤ X ≤ n,

(4)

where n is the current number of VMs.
Second, some VMs or software may be equivalent in terms

of resources or co-location constraints. If the resources offered
by a VM, vmi, are insufficient to host software sj, then they are
also insufficient to host any software sk which has the same
requirements. In addition, software sj cannot be hosted by any
other VM vmk having the same characteristics as vmi. With regard
to the co-location constraint, if a VM, vmi, runs software sj which
cannot be collocated with software sk, then vmi cannot host any
software of the same type as sk.

2.2.3. The RightConfiguration problem
For correct configuration, the solver only considers configura-

tions using the number of VMs determined by the first problem.
The reconfiguration operation likely to affect the software SLA is
live migration. The impact of this process could be a degradation
of the service offered by themigrated software. Three factors affect
livemigration: network utilization, remaining computation power
on both source and destination VM, and efficiency of the imple-
mentation of the live migration itself. Considering this, we call sIi
the function calculating the impact of migrating software si for a
given triplet of factors. Thus, if sei represents the current service
level provided by si before migration, then se

∗
i sIi is the service level

during migration. We define the cost of migrating a software si as
s∆i = sei − sei ∗ s

I
i . The correct configuration is the oneminimizing K ,

K =


s∆i , ∀ software si to be migrated (5)

while avoiding SLA violations:

sei ∗ s
I
i < sTi , ∀ software si to be migrated. (6)

3. Use cases

Thisworkwas conducted conjointlywith two industrial groups:
Scale Agent and Eolas. The former provides an implementation of
the JMS specification, while the latter is an SaaS provider offer-
ing Internet services. We used our solution to manage an SaaS of-
fering both a messaging service (such as IronMQ [16] and Ama-
zonSQS [17]) provided by Joram [18] software, and an Internet
service based on a LAMParchitecture. This section presents the two
use cases and the migration algorithms implemented. Migrating a
running software serving requests (which is the case for both JMS
and Internet servers) raises two main challenges that we had to
address:

• (C1) Avoid loss of requests and state during migration.
• (C2)Make themigrated software available and accessible on the

destination node aftermigration. This should be transparent for
the clients.

3.1. JMS messaging servers

3.1.1. Overview of the messaging software Joram
Joram incorporates a 100% Java implementation of JMS 1.1

(Java Message Service) specification. It provides access to a truly
distributed MOM (Message Oriented Middleware). Messages are
handled through specific data structures called destinations:
queue and topic. Fig. 4 presents how an application based on Joram
functions. To build a Joram application, the first step is to create
destinations, references of which must then be registered to a
directory (commonly the JNDI). Destinations are hosted by Joram
servers, and accessible using their IP addresses or DNS names. For
our use case, we assume that clients only use the DNS name of
the Joram servers in interactions. All Joram servers are accessible
via another Joram server. This ensures that all messages will be
delivered within a given time even when the destination server is
out for a short time. This creates an automatic recovery feature for
Joram applications.

3.1.2. Live migration of a Joram server
Joram ensures that any message will reach its addressee within

a configurable time window.We relied on this feature to complete
the initial part of the first challenge (C1). For the second part of
(C1), at runtime a Joram server keeps a persistence basis contain-
ing its entire state: processing messages, messages in transit, and
processed messages. Therefore, a Joram server can be made avail-
able with the same state on the destination node by copying this
basis from the source node to the destination node. With regard
to (C2), in contrast to live migration of VMs, where the migrated
VM keeps its IP address on the destination node, migrating soft-
ware results in a new IP address (the IP address of the destina-
tion node). How can remote clients be transparently informed of
this new address? In our system this is resolved by forcing clients
to use the DNS name when dealing with the Joram servers. Thus,
the accessibility of the migrated server is provided by (1) dynam-
ically updating the DNS server and (2) rebinding the JMS client to
the DNS server. This is transparent to the client because the JMS
client is implemented to automatically resolve new addresses after
several attempts. Algorithm 2 summarizes the live migration pro-
cess described above, the ‘‘naive’’ migration algorithm. Aswe show
in the evaluation (Section 4.2), immediate copy of the persistence
basis can have an important impact on the service offered by the
migrated Joram server when this file is very large. To avoid this
problem, we have optimized the algorithm to transmit the log file
block by block to the destination node (Algorithm 3). This opti-
mization was inspired by the copy-on-write mechanism used for
live VM migration. We customized the Joram implementation to
dynamically integrate and evolve its state at runtime when receiv-
ing new persistence information. A timer, which is triggered at the
beginning of the migration process, ends the copy to limit the du-
ration of thewhole process. This optimization is currently being in-
tegrated into the official implementation of Joram on the OW2 [18]
open source platform.

3.2. LAMP servers

3.2.1. Overview
Many Internet services provided in the cloud are based on

a LAMP architecture. This is a set of Linux machines running
Apache/PHP servers linked toMySQL databases. Eolas SaaS is based
on this architecture. In addition to this architecture, it uses a
HAProxy loadbalancer in front of Apache servers when several
Apache servers are needed. The MySQL-Proxy loadbalancer is
also used in front of a set of MySQL database servers. To cope
with sessions lost when an Apache server fails, Eolas stores all
user sessions on an NFS server. Our second use case follows this
architecture, as summarized in Fig. 5.

3.2.2. Live migration of LAMP servers
We present only the migration algorithm for the Apache

server. [19] proposes a live migration algorithm for MySQL servers
which could be easily integrated into our solution. It must be re-
membered that all Apache sessions are stored on the NFS server;
this facilitates conservation of its state after migration. The migra-
tion process is summarized by Algorithm 4.

Fig. 4. Basic functioning of an application running on Joram servers.
Fig. 5. The architecture of our Internet application.
Symbols:

- vmsrc : The source VM

- vmdest : The destination VM

Begin
1. Stop the software on vmsrc
2. Copy the Joram persistence basis
3. Start the software on vmsrc . Apply the state included in the

persistence basis
4. Update the DNS server
End
Algorithm 2: Live migration of a Joram server (Naive)

Symbols:

- As in Algorithm 2

Begin
1. Stop the software on vmsrc
2. Copy the first block of the Joram persistence basis
3. In background, launch copy of the remaining persistence basis

block per block.
4. Start the software on vmsrc . This instance will dynamically update

its state according to the receiving block.
5. Update the DNS server.
End

Algorithm 3: Optimization of Algorithm 2
Symbols:

- vmsrc : The source VM

- vmdest : The destination VM

Begin
1. Reconfiguration and reloading of the NFS server to make the session folder

accessible by vmdest
2. Mount the NFS session folder on vmdest
3. Configure and start Apache on vmdest
4. Reconfigure and reload HAProxy (hot reload) so that it considers

the Apache on vmdest
5. Stop Apache on vmsrc when it has no requests in execution
End

Algorithm 4: Live migration of an Apache server

4. Evaluations

We evaluated our solution to show the benefits of software
consolidation on topof VMconsolidation. These benefits are shown
in terms of energy and cost savings. The efficiency and scalability
of CSP-based consolidation methods were evaluated in [6,19]. As
mentioned in the previous section, the SaaS we considered offers
two applications: a JMS messaging application (with Joram) and a
web application (with LAMP). Before assessing the energy and cost
savings, we first evaluated the migration algorithms implemented
for the different software.

0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0 20 40 60 80 100 120 140 160 180 200

D
el

iv
er

y
tim

e
(m

s)

Time (s)

Benchmark with migration
Benchmark without migration

Fig. 6. Impact of migrating a Joram server.

4.1. Testbed overview

4.1.1. The cloud infrastructure
The cloud testbed integrates both a private and a public plat-

form. Our private cloud is a part of the Eolas data center. It is
composed of 8 DELL PowerEdge R510 equipped with Xeon E5645
2.40 Ghz processors (one with a 12-core CPU, and the others with
8-core CPU), 32 Gb memory and 2 NICs at 1 Gbps. They are con-
nected through a gigabyte network switch. The virtualized layer is
provided by VMware VCenter 5.1.0 (ESXi 5) with the VM consoli-
dation module DRS/DPM [20] enabled: a PM for the VCenter, a PM
with an NFS server to host VM images and user sessions, and 5 PMs
as ESXi to host VMs. The last PM hosts our system (including the
DNS server) and the agents simulating the Joram and web server
users. The cloud provides a single type of VM: 1 vcpu running at
2.4 GHz and 1 Gbmemory. The public used was Amazon EC2 in the
M1, medium VM, configuration.

4.1.2. Benchmarks
SPECjms2007 [11] was used to bench the Joram servers.

SPECjms2007 is the industry-standard benchmark for evaluat-
ing the performance of enterprise MOM servers based on JMS.
SPECjms2007 models the supply chain for a chain of supermar-
kets. The scenario offers a natural scaling of the workload, e.g. by
adjusting the number of supermarkets (horizontal) or by adapt-
ing the number of products sold per supermarket (vertical). Its
configuration parameter base sets the scalability factor. The sce-
nario includes seven interactions. Each interaction can use sev-
eral types of destinations (queues or topics) and run over several
steps. A scenario is organized in 3 phases: warm-up period (scaling
up), measurement period (constant message injection), and drain
period (last messages treated before the end of the benchmark).
SPECjms2007 defines the SLA for this scenario as follows: 90% of
messages should be delivered within 5 s. For our experiments we
used vertical scalability with base configured to 26 (generating up
to 135 destinations). For each type of interaction, a single Joram
server hosts all of its destinations. Thus, 7 servers are needed to
run a scenario. Among these servers, we consider the one host-
ing destinations for the statistics interaction (the HQ_SMStatsQ
queue) as the most representative (hereafter called the indicator)
for a scenario. This server is, in fact, the most solicited. Accord-
ingly, only the results relating to the HQ_SMStatsQ destination
will be presented. To simplify reading, we express a scenario as
follows: warm-up#measurement#drain#nbOfVMUsed. For all ex-
periments, each Joram server was configured to use one-tenth of a
VM as the minimum quota and a quarter as the maximum.

The second use case was based on real traces of the Internet
service offered by the Eolas SaaS. We played the traces with
M
ig

ra
tio

n
du

ra
tio

n
(m

s)

100000

200000

300000

400000

500000

600000

0

10000

20000

30000

40000

50000

60000

70000

0

A
vg

. m
sg

. d
el

iv
er

y
tim

e
(m

s)

MRU BM 3AM MM

Migration starting time during the benchmark

MRU BM 3AM MM

Migration starting time during the benchmark

Fig. 7. Comparison of the naive and the optimized migration algorithms.

the Neoload [21] load injector toolkit to submit the workload to
our LAMP servers. However, a synthetic load profile was used to
evaluate the impact of migration. Traces were only used for the
overall evaluation.

4.2. Impact of migrating a Joram server

To evaluate the impact of migrating a Joram server, we ran a
set of experiments (on both a private and a public cloud) with two
scenarios 300#1200#0#2: one requiring migration and the other
without migration. Migration consists of moving an indicator from
vm1 to vm2. Although the none-migrated Joram servers on the
source and destination VMs were not affected by the migration,
the migrated server was degraded during the migration, as shown
in Fig. 6. Thus,message delivery time on theHQ_SMStatsQ destina-
tionwas adversely affected bymigration on the private cloud using
the ‘‘naive’’ algorithm,withmessages being deliveredwithin about
7 s during migration while the migration itself takes about 8 s.

The benefit of the optimization of the migration algorithm
was evaluated by running the same experiment with optimization
(WO) and without optimization (WOO) while varying the migra-
tion time (which implies copying different Joram server log file
sizes). The process was assessed in the middle of the ramp-up pe-
riod (MRU), at the beginning of the measurement period (BM),
3 min after the measurement period (3AM), and in the middle of
themeasurement period (MM) (Fig. 7). Varying themigration time
during the experiment reveals how the two algorithms cope with
the increasing size of the migrated Joram server log file. The top
panel shows the duration of the migration process while the lower
panel shows the average delivery time for messages during the
migration. We can see that the optimized algorithm results in an
almost constant migration duration whereas the naive algorithm
results in an exponential increase in duration of migration. This is
caused by the fact that the migrated Joram server has to load its

Fig. 8. Impact of migrating an Apache server while simultaneously increasing the number of internet users.
entire state (the log file) at start time (on the destination VM) with
the naive algorithm. The time needed to load this state increases
with the size of the log file. This phenomenon is avoided by the op-
timized algorithm since logs are transmitted and loaded block by
block. These experiments also show that neither of the migration
algorithms leads to message losses, or state loss. The optimized al-
gorithm always respects the SLA, since the number of messages
delivered after longer than the prescribed time is negligible
throughout the scenario. This is not always the case with the naive
algorithm where the number of delayed messages increases with
the size of the log file. Running these scenarios onAmazon EC2 pro-
duced similar results, although the peak for the average delivery
time was higher.

4.3. Impact of migrating an Apache server

To evaluate the impact of migrating an Apache server, we
ran a set of experiments with different workloads. The migration
consists of moving the Apache server from its initial VM to another
VM (in our case the VM running the MySQL server). It must be
remembered that taking the new location of the migrated Apache
server into account requires reconfiguration and the reloading of
the HAProxy loadbalancer. This is the most crucial step because no
requests can be treated by the application during reloading. This
could lead to lost requests. We performed a set of experiments
while varying the number of Internet users to see if the number
of requests lost depended on the workload (Fig. 8). These results
show that with up to 25 simultaneous users (time t1, t2, and t3)
no requests are lost during migration. The consolidation algorithm
can be configured so that the systemwill discardmigrationswhere
requests have been lost. This strategy has been applied for the
remainder of the experiments describedhere. Fig. 8 also shows that
migration does not affect the application’s throughput or response
time. Throughout the experiment, the migration time is almost
constant, at about 40 s.

4.4. Power saving in the private cloud

4.4.1. Formalization
Software consolidation packs software onto a minimum num-

ber of VMs and terminates free VMs. This gives a greater VM
consolidation capacity in the virtualization layer. Thus, if com-
bined with a VM consolidation mechanism such as [6] or VMware
DRS/DPM [20], the cloud infrastructure could turn off some PMs to
reduce power consumption. The following linear power consump-
tion model of a PM at time t is widely used in the literature [22]:

Pi(Ui(t)) = Pmin
i + (Pmax

i − Pmin
i) ∗ Ui(t) (7)

E =


Ei, where Ei =
 t

0
Pi(Ui(x)) dx (8)
Pmax
i is the maximum power consumed by a PM when it is fully

used, Pmin
i is the power consumption when it is idle, and Ui is the

CPU utilization level. E is the total energy consumed by the cloud
infrastructure. Pi(Ui(t)) increaseswithUi(t), which depends on the
number of VMs and software applications running on the PM:

U(t) =
len(PMk)

i=1

P(vmi) (9)

with

P(vmi) =

len(vmi)
j=1

sutj +Ω, such that svmj = i (10)

len(PMk) is the number of VMs on PMk, and Ω is the VM overhead.
According to Eq. (9), relocating a service from one VM to another
VM is beneficial in terms of reducing power consumption when it
leads to a VM termination. In the worst case, this gain is t

0
(Pmax

− Pmin) ∗Ω dx (11)

in the best case (the VM running alone on its PM), it is the power
consumed by a PM which can be stopped.

The benefit of reducing the number of VMs from n to n′ is given
by the following formula:

nbPM−nbPM ′
i=1

Ei + (n− n′)
 t

0
(Pmax

i − Pmin
i) ∗Ω dx (12)

where Ei is the power which would have been consumed by the
PM Pi if not switched off; nbPM and nbPM’ are, respectively, the
number of PMs used to host n and n′ VMs.

4.4.2. Evaluation results
We simultaneously ran 15 SPECJms2007 and 6 LAMP scenar-

ios (up to 37 VMs) in two situations. In the first situation (noted
WSC (With Software Consolidation)) we ran the experiment with
both software and VM consolidation enabled, while in the second
situation (notedWOSC (WithOut Software Consolidation)) we dis-
abled software consolidation (but maintained VM consolidation).
The scenarios were configured to provide a varied workload over
30 h: a mix of constant, ascending and descending phases. Fig. 9
presents (1) the occupancy (in terms of the number of VMs) of each
PM in the private cloud, and (2) the number of PMs in use during
the 25 h of observation. We see that the first situation results in
3 PMs (PM2, PM3 and PM5) being freed, while 1 PM (PM2) was
freed in the second situation. As formalized in the previous sec-
tion, software consolidation definitively accelerates VM consolida-
tion. The bottom right curve in Fig. 9 shows that this improvement
represents an approximately 40% power savingwith this particular
workload.

C
os

t o
n

A
m

az
on

 E
C

2
($

)

Time (h)

Time (h)

N
b.

 o
f V

M
s

Fig. 10. Cost saving on Amazon EC2: (top) nb. of VMs per hour, (bottom) VMs charged.
what is called ‘‘stub domain’’.2 This is a lightweight VM which re-
quires very few memory (about 32 MB) for its execution. As our
solution, all these works try to minimize the footprint of a VM in
order to increase the number of VMs that can be collocated on top
of the same physical machine. Therefore, they result to the same
result in terms of energy saving. However, they do not minimize
the total number of VMs as we do in order to reduce VMs charged
for the clients when considering of a commercial cloud.
Impact of VM consolidation. Several research [31,32] have inves-
tigated the impact of consolidating several VMs on top of the
same host. This situation leads to resource contention/interference
which is the main origin of performance degradation. [33] stud-
ies the problem by characterizing workloads which can be collo-
catedwithout enough interference. [34] studied interferencewhen
collocating MapReduce applications. It proposes a tasks schedul-
ing strategy based on a performance prediction model in order to
minimize the impact of co-locating competitive tasks. [35] stud-
ied the effects of collocating different types of VMs under various
VM to core placement schemes in order to discover the optimal
placement for performance. We perform in this paper a number
of experiments in the same direction. [36] proposed a software
probe for detecting contention because hardware platform spe-
cific counters (usually used) are not always sufficient. [37] charac-
terized IO performance to study the impact of collocating several
software applications running on separate VMs on the same PM.
The conclusion of this paper is useful for users of our framework
since it could be used to define collocate-able software. [35] also
studied the impact of collocating VMs on the same PM and pro-
posed an interferencemetric and regressionmodel. Along the same
lines, [38]motivated the need to studyworkload consolidation and
provided aVMconsolidation framework. The objective of their sys-
tem was to organize all the VMs (or sets of users) in the cloud in
terms of groups of VMs that can share the same PM with negligi-
ble interference. [39] analyzed the trace of a real data center and
proposed a workload consolidation algorithm which avoids col-
location of non-collocate-able software on the same PM. Its con-
solidation algorithm also avoids SLA violations when a peak load

2 http://wiki.xen.org/wiki/StubDom.
occurs during migration. This was feasible in [39] because it stud-
ied a trace. [40] presents a technique to predict performance inter-
ference due to sharing a processor cache. This technique works on
current processor architectures and predicts degradation for any
possible placement. It can therefore be used to select themost effi-
cient consolidation pattern. The solution presented here takes the
impact of consolidation into account by organizing softwarewhich
would severely compete for the same resources. The solution we
present in this paper takes into consideration the impact of consoli-
dating competitive workload onto the same VM. The responsibility
is given to the provider. Recall that we consider in this paper SaaS
hosting centers. In this context, the provider well knows the ap-
plications he provides. Thus, he knows (e.g. through experiments)
which application or part of an application can be collocated with
which one, knowing that our solution provides a way to consider
these constraints.
VM consolidation algorithms. The research community made an
important contribution to workload consolidation through VM
consolidation using various heuristic algorithms. In our previous
work [5], we proposed a couple of this sort of VM relocation
and collocation algorithms. Likewise, [41] proposed a simple
VM consolidation algorithm which is similar to the First-Fit
Decreasing (FFD) heuristic [42], while [43] customized the FFD
algorithm to integrate the cost of live VM migration. [44] studied
a set of heuristics algorithms and proposed new versions of
heuristics when the VM migration cost was taken into account.
In these new versions, several experiments on real workloads
were performed. [45] presented a VM consolidation framework
considering cpu, memory, and IO resources. Its collocation
algorithm also considered network communication intensity
between VMs, and PM temperature. The VM placement algorithm,
a heuristic bin-packing algorithm, is not described. The network
communication intensity described by Beloglazov et al. [45] could
be integrated into our framework, but the temperature monitor is
not feasible since we do not measure the PM temperature. [46]
presents an adaptive heuristic for VM consolidation based on
analysis of past VM resource usage. A set of formalizations for
the VM placement problem is also provided. [47] also treats the
VMs consolidation problem using a heuristic algorithm which
minimizes the number of live migrations in the reconfiguration

plan. An SLA-aware VMs consolidation system is presented in [41].
Like with our proposal, it formalizes the problem of minimizing
the operating cost for a private cloud while also minimizing SLA
violations for services offered by software. Our formalization can
be extended by considering this work. [48] presents an energy-
aware VM placement and a consolidation algorithm. These are
specific to the snooze cloud platform [48]. The consolidation
algorithm is restricted to use in a homogeneous environment
and reuses elements from [47]. [49] consolidates tasks onto
VMs using a First-Fit algorithm. Only the basic formalization of
the problem is described, and no details are given about the
system. [50] presents a VM consolidation strategy based on a
predictive approach. Since the placement problem is NP-hard, it
is not possible to develop a solution running within an acceptable
time. [51] presents DejaVu, a consolidation system which takes
into consideration the interference between consolidated VMs.
Basedonhardware counters, it proposes ametric for characterizing
workloads which are collocatable. In this paper, we do not focus
on VM consolidation. We bring the same idea at software level
(software within VMs). Therefore, any VM consolidation algorithm
presented in this section can be applied to software consolidation.
In this paper, we base on a solver to resolve the problem.
Software consolidation. The main problem with previous solutions
is that they are limited by the footprint of the VMs consolidated
(they are all operating systems). Execution of a VM requires a
set of minimum resources, even if the application it runs is idle.
Thus,wepropose a solutionwhichdynamically packs software into
VMs to effectively use the overall VM resources while respecting
the individual requirements of the different software applications.
With current knowledge, [19] is the only previous work that
studies dynamic software consolidation on the same OS; however,
it does not rely on VMs. [19] focuses on the MySQL database
software and provides a live migration algorithm for that. This
algorithm can be plugged into our framework. [19] (as well
as Entropy [6]) describes a consolidation algorithm based on a
Constraint Satisfaction Problem (CSP) [14]. Thus, no previous study
has investigated software consolidation onto VMs. In this paper,
we developed a working prototype and showed that it can achieve
high VM utilization to provide cost- and power-saving benefits.

6. Discussion

The work presented in this paper does not re-invent the wheel.
We propose an effective transposition of VM consolidation (a
widely and commonly approved solution for energy saving in a
IaaS) into software consolidation. In addition to energy saving,
we show how this solution can be benefited (in terms of cost
saving) for public cloud customers (clients). As we argued in
the Introduction, a software collocation solution must provide
isolation mechanisms, which are the main advantages of VMs. We
claim in this paper that in some situations, the need of a full/strong
isolation as provided by VMs is not necessary. Some lightweight
solutions such as cgroup or chroot are sometimes sufficient.
For instance, when we consider a SaaS hosting center where
the provider well knows applications and is the only manager
of the infrastructure, the probability to have troubleshooting
coming from outside or from VMs is minimized. In this context,
consolidating software on top of the same VM makes sense.
Combining this with a traditional VM consolidation system will
increase the number of powered-off machines (which leads to
energy saving). Another use case concerns enterprises or individual
users who want to deploy their application within a public
commercial cloud. In this context, they need tominimize their VMs
charged. This is achieved by reducing the number of active VMs. As
for a SaaS provider, the enterprise or the individual user can rely on
our solution to do that.
Live migration is another important mechanism that should
be offered in order to support dynamic software consolidation.
This could be considered (in point of view of the user of
our framework) as the main drawback of our solution since it
requires the user to provide for each application component
the implementation of its live migration. This paper presents
various live migration implementations for JMS (integrated within
Joram [18] development branch and being tested for the coming
release) and Internet services, which are among themost deployed
applications on the internet. Also, the framework we introduce
in this paper is built such a way that the integration of new
live migration implementations (according to the considered
applications) is facilitated. Evaluations results we have obtained
both in our private cloud and Amazon EC2 show the viability of
our solution.

7. Conclusion

In this paper we proposed a solution to consolidate software
onto VMs to reduce power consumption in a private cloud and
the number of VMs charged for in a public cloud. We focused
on the algorithms for live migration and consolidation. Although
the proposed solution can integrate other live software migration
algorithms, we demonstrated that the algorithms were efficient
for JMS messaging and web servers. The consolidation algorithm
was inspired by Entropy, which treats VM consolidation based on
a Constraint Satisfaction Problem (CSP) approach. Evaluationswith
realistic benchmarks on a messaging and web applications SaaS
cloud showed that our solution (1) reduces the power consumedby
our industrial cloud partner by about 40%when combinedwith VM
consolidation, and (2) reduces the charge for VMs used on Amazon
EC2 by about 40.5%. Future work will include extended analysis of
how best to coordinate software consolidation on VMs with VM
consolidation on physical machines in order to further improve
power gains.

Acknowledgments

This work is supported by the French Fonds National pour la
Societe Numerique (FSN) and Poles Minalogic, Systematic and SCS,
through the FSN Open Cloudware project.

References

[1] Jonathan Koomey, Growth in data center electricity use 2005 to 2010, A report
by Analytics Press, completed at the request of The New York Times, August
2011 in http://www.analyticspress.com/datacenters.html (visited on April
2013).

[2] Ozlem Bilgir, Margaret Martonosi, Qiang Wu, Exploring the potential of CMP
core count management on data center energy savings, in: 3rd Workshop on
Energy Efficient Design 2011.

[3] Inkwon Hwang, Massoud Pedram, othy Kam, A study of the effectiveness of
CPU consolidation in a virtualized multi-core server system, in: ISLPED 2012.

[4] RightScale Cloud Management, in www.rightscale.com/ (visited on April
2013).

[5] Alain Tchana, Giang Son Tran, Laurent Broto, N. De Palma, Daniel Hagimont,
Two levels autonomic resourcemanagement in virtualized IaaS, in: FGCS 2013.

[6] FabienHermenier, Xavier Lorca, Jean-MarcMenaud, GillesMuller, Julia Lawall,
Entropy: a consolidation manager for clusters, in: VEE 2009.

[7] ZhenhuanGong, Xiaohui Gu, PAC: Pattern-driven application consolidation for
efficient cloud computing, in: MASCOT 2010.

[8] Hui Lv, Yaozu Dong, Jiangang Duan, Kevin Tian, Virtualization challenges: a
view from server consolidation perspective, in: VEE 2012.

[9] C. Norris, H. M. Cohen, B. Cohen, Leveraging ibm ex5 systems for break-
through cost and density improvements in virtualized x86 environments,
January 2011 (white paper) in ftp://public.dhe.ibm.com/common/ssi/ecm/en/
xsw03099usen/XSW03099USEN.PDF.

[10] Docker: www.docker.com (visited on September 2014).

[11] SPECjms2007: industry-standard benchmark for evaluating the performance
of enterprise message-oriented middleware servers based on JMS, in
http://www.spec.org/jms2007/ (visited on April 2013).

[12] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko, A.
Tantawi, Dynamic placement for clustered web applications, in: WWW 2006.

[13] N. Jussien, G. Rochart, X. Lorca, The CHOCO constraint programming solver, in:
OSSICP 2008.

[14] Frédéric Benhamou, Narendra Jussien, Barry O’Sullivan, Trends in constraint
programming, in: ISTE 2007.

[15] CLIF: http://clif.ow2.org/ (visited on September 2014).
[16] IronMQ: The Message Queue for the Cloud, in http://www.iron.io/mq (visited

on April 2013).
[17] Amazon Simple Queue Service (Amazon SQS), in http://aws.amazon.com/

sqs/ (visited on April 2013).
[18] JORAM: Java (TM) Open Reliable Asynchronous Messaging, in http://joram.

ow2.org/ (visited on April 2013).
[19] Carlo Curino, Evan P.C. Jones, Samuel Madden, Hari Balakrishnan, Workload-

aware database monitoring and consolidation, in: SIGMOD 2011.
[20] VMWare Distributed PowerManagement (DPM), TechnicalWhite Paper, 2010

in http://www.vmware.com/files/pdf/DPM.pdf.
[21] Neotys, NeoLoad: load test all web and mobile applications, 2012, October in

http://www.neotys.fr/.
[22] Anton Beloglazov, Jemal H. Abawajy, Rajkumar Buyya, Energy-aware resource

allocation heuristics for efficient management of data centers for Cloud
computing, Future Gener. Comput. Syst. 28 (5) (2012).

[23] Prateek Sharma, Purushottam Kulkarni, Singleton: System-wide page dedu-
plication in virtual environments, in: HPDC 2012.

[24] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren,
George Varghese, Geoffrey M. Voelker, Amin Vahdat, Difference engine:
harnessing memory redundancy in virtual machines, Commun. ACM Mag. 53
(10) (2010).

[25] Sean Barker, Timothy Wood, Prashant Shenoy, Ramesh Sitaraman, An
empirical study of memory sharing in virtual machines, in: USENIX ATC 2012.

[26] Lanzheng Liu, Rui Chu, Yongchun Zhu, Pengfei Zhang, Liufeng Wang, DMSS:
A dynamic memory scheduling system in server consolidation environments,
in: ISORC 2011.

[27] Tudor-Ioan Salomie, Gustavo Alonso, Timothy Roscoe, Kevin Elphinstone,
Application level ballooning for efficient server consolidation, in: EuroSys
2013.

[28] Soramichi Akiyama, Takahiro Hirofuchi, Ryousei Takano, Shinichi Honiden,
MiyakoDori: Amemory reusingmechanism for dynamic VM consolidation, in:
CLOUD 2012.

[29] Nadav Amit, Dan Tsafrir, Assaf Schuster, VSwapper: A memory swapper for
virtualized environments, in: ASPLOS 2014.

[30] Dong Li, Surendra Byna, Srimat Chakradhar, Energy-aware workload consoli-
dation on GPU, in: ICPPW 2011.

[31] Lingjia Tang, JasonMars, Neil Vachharajani, Robert Hundt, Mary Lou Soffa, The
impact of memory subsystem resource sharing on datacenter applications, in:
ISCA 2011.

[32] George Kousiouris, Tommaso Cucinotta, Theodora Varvarigou, The effects of
scheduling, workload type and consolidation scenarios on virtual machine
performance and their prediction through optimized artificial neural net-
works, J. Syst. Softw. 84 (8) (2011).

[33] YounggyunKoh, RobKnauerhase, Paul Brett,Mic Bowman, ZhihuaWen, Calton
Pu, An analysis of performance interference effects in virtual environments, in:
ISPASS 2007.

[34] Xiangping Bu, Jia Rao, Cheng-Zhong Xu, Interference and locality-aware task
scheduling for MapReduce applications in virtual clusters, in: HPDC 2013.

[35] Indrani Paul, Sudhakar Yalamanchili, Lizy K. John, Performance impact of
virtual machine placement in a datacenter, in: IPCCC 2012.

[36] Joydeep Mukherjee, Diwakar Krishnamurthy, Jerry Rolia, Chris Hyser,
Resource contention detection and management for consolidated workloads,
in: IM 2013.

[37] Ajay Gulati, Chethan Kumar, Irfan Ahmad, Storage workload characterization
and consolidation in virtualized environments, in: VPACT 2009.

[38] Vatche Ishakian, Raymond Sweha, Jorge Londono, Azer Bestavros, Colocation
as a service: Strategic and operational services for cloud colocation, in: NCA
2010.

[39] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, Ravi Kothari,
Server workload analysis for power minimization using consolidation, in:
USENIX ATC 2009.

[40] Sriram Govindan, Jie Liu, Aman Kansal, Anand Sivasubramaniam, Cuanta:
Quantifying effects of shared on-chip resource interference for consolidated
virtual machines, in: SOCC 2011.

[41] Hadi Goudarzi, Mohammad Ghasemazar, Massoud Pedram, SLA-based
optimization of power and migration cost in cloud computing, in: CCGRID
2012.

[42] Silvano Martello, Paolo Toth, Knapsack Problems: Algorithms and Computer
Implementations, John Wiley & Sons, 1990.
[43] R. Suchithra, N. Rajkumar, Efficient migration—a leading solution for server
consolidation, Int. J. Comput. Appl. 60 (18) (2012).

[44] Tiago C. Ferreto, Marco A.S. Netto, Rodrigo N. Calheiros, César A.F. De Rose,
Server consolidation with migration control for virtualized data centers,
Future Gener. Comput. Syst. 27 (8) (2011).

[45] Anton Beloglazov, Rajkumar Buyya, Energy efficient resource management in
virtualized cloud data centers, in: CCGRID 2010.

[46] Anton Beloglazov, Rajkumar Buyya, Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers, Concurr. Comput.
Pract. Exper. 24 (13) (2012).

[47] Aziz Murtazaev, Sangyoon Oh, Sercon: Server consolidation algorithm using
live migration of virtual machines for green computing, IETE Tech. Rev. 28 (3)
(2011).

[48] Eugen Feller, Cyril Rohr, DavidMargery, Christine Morin, Energymanagement
in IaaS clouds: A holistic approach, in: CLOUD 2012.

[49] Ching-Hsien Hsu, Kenn D. Slagter, Shih-Chang Chen, Yeh-Ching Chung,
Optimizing energy consumptionwith task consolidation in clouds, in: IS, 2012,
ISSN: 0020-0255.

[50] JasonMars, Lingjia Tang, RobertHundt, Kevin Skadron,Mary Lou Soffa, Bubble-
Up: increasing utilization in modern warehouse scale computers via sensible
co-locations, in: MICRO 2011.

[51] Nedeljko Vasic, Dejan Novakovic, Svetozar Miucin, Dejan Kostic, Ricardo Bian-
chini, DejaVu: Accelerating resource allocation in virtualized environments,
in: ASPLOS 2012.

Alain Tchana received his Ph.D. in Computer Science in
2011, at the IRIT laboratory, Institute National Polytech-
nique de Toulouse, France. Since November 2011 he is
a Postdoctor at University of Grenoble (UJF/LIG). He is a
member of the SARDES research group at LIG laboratory
(UJF/CNRS/Grenoble INP/INRIA). His main research inter-
ests are in autonomic computing, Cloud Computing, and
Green Computing.

Noel De Palma received his Ph.D. in Computer Science
in 2001. Since 2002 he was Associate Professor in com-
puter science at University of Grenoble (ENSIMAG/INP).
Since 2010 he is professor at Joseph Fourier University. He
is a member of the ERODS research group at LIG labora-
tory (UJF/CNRS/Grenoble INP/INRIA), where he leads re-
searches on Autonomic Computing, Cloud Computing and
Green Computing.

Ibrahim Safieddine is a Ph.D. student in ERODS team
within the LIG (Laboratoire d’Informatique de Grenoble).
His research interests are cloud computing, autonomic
management systems and green computing.

Daniel Hagimont is a Professor at Polytechnic National
Institute of Toulouse, France and a member of the IRIT
laboratory, where he leads a group working on operating
systems, distributed systems andmiddleware. He received
a Ph.D. from Polytechnic National Institute of Grenoble,
France in 1993. After a postdoctorate at the University of
British Columbia, Vancouver, Canada in 1994, he joined
INRIA Grenoble in 1995. He took his position of Professor
in Toulouse in 2005.

