
HAL Id: hal-02538359
https://hal.science/hal-02538359

Submitted on 9 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event algebra for transition systems composition
Application to timed automata
Elie Fares, Jean-Paul Bodeveix, M Filali

To cite this version:
Elie Fares, Jean-Paul Bodeveix, M Filali. Event algebra for transition systems composition Application
to timed automata. Acta Informatica, 2018, 55, pp.363-400. �10.1007/s00236-017-0302-9�. �hal-
02538359�

https://hal.science/hal-02538359
https://hal.archives-ouvertes.fr


OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent 

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/2  2304  

To cite this version: 

Fares, Elie  and Bodeveix, Jean-Paul  and Filali, Mamoun  Event algebra 
for transition systems composition Application to timed automata. (2018) Acta 
Informatica, 55. 363-400. ISSN 0001-5903.  

Official URL: 

https://doi.org/10.1007/s00236-017-0302-9     

Open  Archive  Toulouse  Archive  Ouverte



Event algebra for transition systems composition 
application to timed automata 

Elie Fares1 • Jean-Paul Bodeveix1G) · Mamoun Filali2 

Abstract Formal specification languages bave a lot of notions in common. They ail intro

duce entities usually called processes, offer similar operators, and most importantly define 

tbeir operational semantics based on labelled transition systems (LTS). However, eacb lan

guage defines specific syncbronizing and/or memory structures. For instance, in CSP, the 

syncbronization is defined between identical events, while in CCS and in syncbronization 

vectors-based views it is defined respectively between complementary events or between 

possibly different events. In tbis paper, we aim at capturing some similarities of 

specification languages by defining a label-based formai framework for reasoning on LTS, 

their seman-tics and related properties. Firstly, we define a higb-level synchronization 

mechanism in the form of an abstract label structure and identify some properties. Theo, we 

introduce oper-ators for composing and transforrning label structures, study tbeir intrinsic 

properties and explore bow label structure properties propagate. Secondly, we introduce a 

LTS-based bebav-ioral framework. We tben lift the label structure composition and 

transformation operators to the LTS level and establish LTS-related properties derived from 

tbose of tbeir underlying labelled structures. Thirdly, we consider extended transition 

systems, more specifically timed automata, as LTS built on top of specific labelled 

structures. Tbeir semantics is reconstructed by applying operators of our framework on the 

syntactic LTS, whicb allows the direct proof of some semantic properties such as 

compositionality. 

1 Introduction 

For the past tbree decades, specification languages such as CSP [32], CCS [29], LOTOS [25], 

µ, CRL [21], Altarica [6], and BIP [7] have proven valuable in the specification and design 

of concUITent and distributed systems. The behavioral aspects of these languages share a 

common base since they all define their operational semantics in terms of labelled transition 

systems.Yet, the difference lies in the synchronizing structure of the labels of these systems. 
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For example in CSP the synchronization is defined between two identical events, while in 
CCS and in synchronization vectors-based views, it is defined respectively between comple-
mentary events or between possibly different events. Through the years, the basic versions of 
some of these languages have been extended by time, memory, and priority notions. Accord-
ingly, other formalisms have emerged in order to model the semantics of these extensions. For 
example, we can cite Alur and Dill’s timed automata [4] and Henzinger et al’s timed transition 
systems [22] that both capture the time addition or the semantic model of [35] used to model
priorities. However, even though the rules of the composition operations of these formalisms 
are the same in nature (synchronous and asynchronous rules), each formalism is specified 
with specific sets of rules, maybe because of the specific attributes that come with each 
formalism. A distinct composition operation is then introduced for each defined formalism.

In this paper, we aim at capturing some similarities of specification languages by providing 
a semantic framework for system composition. For this purpose, we introduce a high-level 
synchronization mechanism in the form of a label structure. It is equipped with a composition 
operator which encapsulates the specific composition laws of each language and would 
further serve as a parameter of the behavioral framework. Thanks to the separation between 
the composition laws and the behavioral framework, the latter, which is based on LTS, offers 
a unique LTS composition which is reused to define syntactic composition of timed automata 
and a compositional semantics.

The idea of a label structure or similar constructs is not new since it appears in earlier 
studies [12,24,26–28,34]. In [12,26–28], the label composition operator appears under a 
functional form (the same as ours, see Label Structure: Sect. 2) but the authors do not go 
beyond this definition. They simply use it in order to model the composition, whether it is 
blocking or not, of multiple labels. Their work is not intended to build a whole framework 
around label structures. In [24,34], it appears under a relational form. In these latter studies, 
the authors are interested in reaching generic semantic rules for process calculi behavioral 
operators (prefix, choice, …). This is orthogonal to our goal that consists in reaching a label-
based composition framework for specification languages. In Sect. 4, we cover the link of 
our work with existing work.

Our contribution can be viewed from two perspectives. One way to see this work is as an 
abstraction of the composition of different behavioral formalisms via a separation of the label 
composition laws of each language and a reuse of the LTS composition. In fact, depending 
on the language, the label structure is defined and instantiated differently. Using the common 
framework, one would then proceed by giving the semantics of other behavioral operators of 
the specification language in question. Another way to see our label structure and their associ-
ated operations is as a generalization of the composition functions given and used in [26,27]. 
Indeed, we show how such abstract composition functions (or label structures in our terms) 
may be implemented and instantiated to simulate existing synchronization mechanisms at 
the LTS level. Moreover, in order to ease the proofs of properties about label structures, we 
propose composition and transformation operators which preserve the considered properties. 
Some of these operators are then lifted to the LTS level. This allows the conversion of a LTS 
over one label structure to a LTS over another label structure while preserving some proper-
ties. This mechanism is illustrated on the timed automata (TA) theory where we show how 
TA semantics can be reconstructed using operators provided by our framework. In addition 
to behavioural formalisms, semantic properties can also be derived from properties of our 
LTS and label structure operators. This is illustrated by proving product compositionality on 
two variants of timed automata, which highlights the originality of the proposed approach. 
Furthermore, all the results presented here have been formalized and verified using the proof 
assistant Coq [33].



This work is a revised and extended version of [20]. Namely, we revise some of our
definitions and properties, we add some others, and we extend our theorems, propositions
and corollaries with their corresponding proofs. Other proofs are also given in the appendix
section. This revision is in general a more self-contained work. It offers the reader a more
readable work thanks to the simplification that comes with the revised definitions.

The rest of the paper is organized as follows. In the second section, we start by defining
label structures along with their properties of interest. Then, we propose operations for
composing and transforming label structures. We study their own properties as well as the
preservation of label structure properties. In the third section, we introduce labelled transition
systems on top of label structures and define our behavioral framework which reuses the label
structure notions. The fifth section is dedicated to the representation of timed systems and
their semantics by Labelled Transition Systems over suitable label structures. Section five
proposes a general framework used to attach a semantics to extended transition systems. We
conclude the paper in the sixth section.

2 Label structure
We first introduce basic mathematical notions that will be used throughout this paper. Then,
we define label structures, give some examples associated to usual process calculi, define
operators on label structures, state properties and study their preservation.

2.1 Basic mathematical notions

Some mathematical notions and notations will be used throughout this paper. We summarize
them here:

– Given two sets A and B, their disjoint union will be denoted as A+B. We write a• and •b
to denote respectively the application of the left and right injection on an element a ∈ A
and b ∈ B, resulting in an element of A + B, also denoted A• ∪ •B. As a consequence,
for any set A, A• = {a• | a ∈ A} and •A = {•a | a ∈ A}. The _• and •_ annotations
denote respectively the left and right embedding of A and B inside the disjoint union.
Furthermore, injections may be omitted when A and B are disjoint.

– Given two sets A and B, we denote by A ↔ B � 2A×B the set of relations between A
and B. Given two relations R1 ∈ A1 ↔ B1 and R2 ∈ A2 ↔ B2, we introduce the sum
and product operators over relations as:
R1 ⊕ R2 = {(x•, y•) | (x, y) ∈ R1} ∪ {(•x, •y) | (x, y) ∈ R2}
R1 ⊗ R2 = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R1 ∧ (x2, y2) ∈ R2}

– Given two sets A and B, we denote as A � B the set of partial functions from A to B.
Given a partial function f ∈ A � B, we will consider its domain dom( f ) ⊆ A and its
range ran( f ) ⊆ B. For a subset S ⊆ A, f [S] denotes the set of images by f of elements
of S ∩ dom( f ).

– Given two structures S = 〈A, oA〉 and T = 〈B, oB〉, a (partial) morphism from S to T
is a (partial) function f from A to B that commutes with the operators of the structure:
if oA and oB are binary, we should have ∀x, y ∈ A · f (x oA y) = f (x) oB f (y) when
both expressions are defined.

– A partial order is a binary relation which is reflexive, antisymmetric and transitive. If R1

and R2 are partial orders, their sum1 (R1 ⊕ R2) and their product (R1 ⊗ R2) are partial
orders.

1 not their union.



– Given a partially ordered set S, the join of a ∈ S and b ∈ S is, when it does exist, the
least upper bound of {a, b} in S. A join semilattice is a partially ordered set where each
pair of elements has a join.

2.2 Label structures

Definition 1 (Label Structure) A label structure is a tuple 〈L , ��〉 where L is a set of labels
and (��: L × L � L) is a partial binary composition operator (called the fusion operator)
over L.

The function is partial because some compositions may be blocked since �� describes exclu-
sively synchronous compositions. The asynchronous aspects are covered later (see LTS
composition). Our composition then models the following cases:

1. A successful synchronization between l and l ′ that results in l �� l ′ ∈ L .
2. A blocking synchronization between l and l ′: (l, l ′) /∈ dom(��).

Let the reader not confuse our label structure with other event structuring propositions, namely
with the event structures [15]. Event structures model the occurrence of events during the
system execution via the introduction of a causal dependency relation and a conflict relation
between the events. In our case, we introduce a label structure which models the way the
labels (i.e., events) are statically composed.

Definition 2 (Commutativity of a Label Structure) Given a label structure LS = 〈L , ��〉,
LS is said to be commutative if its composition operator �� is commutative. Formally, LS is
commutative if for any l1, l2 ∈ L , we have:

(l1, l2) ∈ dom(��)⇒ (l2, l1) ∈ dom(��) ∧ l1 �� l2 = l2 �� l1

Definition 3 (Associativity of a Label Structure) Given a label structure LS = 〈L , ��〉, LS is
said to be associative if its composition operator �� is associative. Formally, LS is associative
if the following conditions are satisfied for any l1, l2 and l3 ∈ L:

1. (l1, l2) ∈ dom(��) ∧ ((l1 �� l2), l3) ∈ dom(��) ⇔ (l2, l3) ∈ dom(��) ∧ (l1, (l2 ��

l3)) ∈ dom(��). This means that independently of the composition order, both expres-
sions are defined at the same time.

2. (l1, l2) ∈ dom(��) ∧ ((l1 �� l2), l3) ∈ dom(��) ⇒ ((l1 �� l2) �� l3) = (l1 �� (l2 �� l3)).
This means that independently of the composition order, both expressions lead to the
same result.

A Coq transcript of the definition of a label structure, its commutativity and its associativity
are given in Appendix A.

Definition 4 (Unital Label Structure) Given a label structure LS = 〈L , ��〉, LS is said to be
unital if there exists an element τ (said to be neutral) such that:

1. (τ, τ ) ∈ dom(��)

2. ∀l ∈ L · (τ, l) ∈ dom(��)⇒ τ �� l = l
3. ∀l ∈ L · (l, τ ) ∈ dom(��)⇒ l �� τ = l

Note that due to the partiality of the �� operator, a label structure can have several neutral
elements.

Unital label structures will be used to define the extensions of the �� operator to the 
cartesian product (see ¶2.6.3).



2.3 Label structure examples

Basic CSP Synchronizing Structure. Here we model the case of the completely synchronous
composition of CSP. For C a set of communication ports, a synchronizing structure on C is
the label structure:

SyncCSP = 〈C, (c1, c2) �→ c1 if c1 = c2〉

The synchronization of two ports of the set C is only defined when these two ports are the
same. Otherwise events interleave.

CCS Synchronizing Structure. For C a set of events, C = {c | c ∈ C}, τ /∈ C ∪ C , the CCS
label structure is represented as follows:

SyncCCS = 〈C ∪ C ∪ {τ }, {(c, c) �→ τ | c ∈ C} ∪ {(c, c) �→ τ | c ∈ C}〉
Time Label Structure. For Δ a time domain, e.g., non negative real numbers, natural numbers,
etc., we introduce the time structure T S on the domain Δ. Its composition operator is only
defined between identical time labels δ and returns the label itself.

T S = 〈Δ, (δ1, δ2) �→ δ1 if δ1 = δ2〉

We can note that time label structures on a non-empty domain are unital with any element
as neutral. Furthermore, we can remark that this definition is exactly the same as CSP label
structure. In fact, they differ with respect to sequential composition, which is not addressed
in this paper.

Modal Label Structure. Modal transition systems, as defined by [8] for example, introduce
may and must modalities. These modalities are significant with respect to refinement: a must
transition must be preserved while a may transition may be removed. Here, we consider the
product of modalities. It is defined as follows: Thus, the corresponding label structure is

‖ must may

must must may
may may may

defined by:

M M =
〈
{may, must},

(
must, must �→ must
m1, m2 �→ may if m1 �= must ∨ m2 �= must

)〉

Resource Label Structure. In the same way, we can manage additive resource consumption
as it is modelled in process calculi such as PARS [30] or ACSR [16]. For instance, in ACSR,
labels are partial finite maps from a set of resources R to a time domain Δ. Composition is
the union of the maps and is defined if domains are disjoint:

RSC = 〈R �→ Δ, (r1, r2) �→ r1 ∪ r2 if dom(r1) ∩ dom(r2) = ∅〉



Table 1 Label structure properties

Property Definition Examples

Idempotence ∀l ∈ L · (l, l) ∈ dom(��

) ∧ l �� l = l
SyncCSP , T S

Unique composition ∀l1, l2 ∈ L · (l1, l2) ∈
dom(��)⇒ ∀l ∈ L · ((l1 ��

l2), l) /∈ dom(��)

∧(l, (l1 �� l2)) /∈ dom(��)

SyncCCS

Diagonality ∀l1, l2 ∈ L · (l1, l2) ∈
dom(��)⇒ l1 = l2

SyncCSP , T S

2.4 Additional label structure properties

In addition to associativity and commutativity, our label structure may enjoy other properties.
Table 1 defines some of the properties frequently used in this paper. The process calculi CSP
and CCS and timed transition systems provide examples of label structures satisfying these
properties.

Remark. The unique composition is a sufficient condition for composition associativity.
We denote by ACI the conjunction of the associativity, commutativity and idempotence

properties. A label structure satisfying the ACI property is seen as a join semilattice where
�� is interpreted as the join operator and the partial order relation is introduced as l ≤ l ′ �
(l, l ′) ∈ dom(��) ∧ l �� l ′ = l ′.

The ≤ relation will be used to relate required actions, e.g., by a client and actual actions,
executed, e.g., by a server. The partial order allows the synchronous composition of several
client requests with the server. Such a use is illustrated in Sect. 2.7.2.

Proposition 1 (Join semilattice) Given an ACI label structure, the associated ≤ relation is
a partial order and �� corresponds to a partial supremum for ≤.

This well-known property is easy to establish as shown by the following proof sketch. To
ease the reading, the fact that calls to �� are defined is not discussed but directly comes from
the definitions of ACI and ≤.

– Reflexivity: l ≤ l ≡ l �� l: true thanks to Hypothesis I.
– Antisymmetry:

l1 ≤ l2 ∧ l2 ≤ l1
⇒ l1 �� l2 = l2 ∧ l2 �� l1 = l1
⇒ l1 = l2 thanks to Hypothesis C.

– Transitivity:

l1 ≤ l2 ∧ l2 ≤ l3
⇒ l1 �� l2 = l2 ∧ l2 �� l3 = l3
⇒ l1 �� l3 = l1 �� (l2 �� l3) = (l1 �� l2) �� l3 = l2 �� l3 = l3
thanks to Hypothesis A.



2.5 Operators and properties over sets of labels

Given a label structure LS = 〈L , ��〉, we define some operations and properties over sets of
labels of LS. The notations and names we use recall those usually used in the context of the
cartesian product. They are needed to express sufficient conditions for the associativity of the
composition of labelled transition systems (Theorem 2) and to define stability (Definition 7).

Definition 5 (Set Projection) Given a set S ⊆ L , we define its left and right projections as:2

S↓1 = {l1 ∈ L | ∃l2 ∈ L · (l1, l2) ∈ dom(��) ∧ l1 �� l2 ∈ S}
S↓2 = {l2 ∈ L | ∃l1 ∈ L · (l1, l2) ∈ dom(��) ∧ l1 �� l2 ∈ S}

Definition 6 (Set Extension) Given a set S ⊆ L , we define its left and right extensions as:

S↑1 = {l1 �� l2 | l1 ∈ S ∧ l2 ∈ L ∧ (l1, l2) ∈ dom(��)}
S↑2 = {l1 �� l2 | l1 ∈ L ∧ l2 ∈ S ∧ (l1, l2) ∈ dom(��)}

Note that none of the usual results for the cartesian product about projection and exten-
sion hold here. In the following, we introduce a property called stability which introduces
hypotheses on the previous operators.

Definition 7 (Stability of a set of labels) Given a set of labels S ⊆ L and LS a label structure
we say that:

– S is p-stable over LS if S↓1⊆ S and S↓2⊆ S,

– S is e-stable over LS if S↑1⊆ S and S↑2⊆ S
– S is stable over LS if S is both p-stable and e-stable over LS.

This property will be used to express sufficient conditions for the associativity of LTS
parallel composition operator (see Theorem 2).

2.6 Composition of label structures

We define the product and the sum of two label structures and the option operator. The product
operation builds new labels as pairs of the composed labels. For example, this is used when
composing synchronization and memory access labels. Unlike the product operation, the
labels of the sum operation are defined over the union of the composed labels. This is used
when composing synchronization and time labels to specify that only one of the events may
occur. The option operator introduces a neutral element within the label structure. It will be
used to embed a label into a product type, the missing argument being the neutral element of
the option type.

2.6.1 Product of label structures

The aim of the product of label structures is to define composite labels. In the following,
we build composite labels from synchronization labels and memory operations. Using the
same mechanism, it would be possible to attach may/must modalities to existing labels (the
structured labels of [8]), or weights and probabilities, as in [17].

2 The set projection could also be defined as S↓1= fst[��−1 [S]] where fst(a, b) = a.



In order to introduce the product label structure, we need to define the �� operator on these
elements. It applies the fusion operator of the two label structures on composable elements.
More precisely:

〈L , ��〉 ⊗ 〈L ′, ��
′〉 = 〈L × L ′, ��p〉

where ��p is defined as follows:
((l1, l ′1), (l2, l ′2)) �→ (l1 �� l2, l ′1 ��

′ l ′2) if (l1, l2) ∈ dom(��) ∧ (l ′1, l ′2) ∈ dom(��′)

The domain of ��p is thus the direct product of dom(��) and dom(��′).
A transcript of the modelling of the product operation in Coq is given in Appendix B.

2.6.2 Sum of label structures

The aim of the sum of label structures is to introduce labels that are either labels from one
label structure or from the other. Given 〈L , ��〉 and 〈L ′, ��

′〉, their sum ranges over the disjoint
union L+ L ′. The join operator is defined on sum labels if they both originate from the same
set of labels. In this case, the corresponding join operator is applied. Formally, the sum is
defined as:

〈L , ��〉 ⊕ 〈L ′, ��
′〉 =

〈
L + L ′,

(
(l1•, l2•) �→ (l1 �� l2)• if (l1, l2) ∈ dom(��)

(•l ′1, •l ′2) �→ •(l ′1 ��
′ l ′2) if (l ′1, l ′2) ∈ dom(��′)

)〉

A transcript of the modelling of the sum operation in Coq is given in Appendix C.

2.6.3 Optional label structure

The aim of the option operator over label structures is to introduce an optional label τ which
will play the role of a neutral element for the product. In fact, a label becomes optional
if it provides the τ element which is supposed not belonging to L . Given a label structure
LS = 〈L , ��〉, the label structure LSτ is defined as:

〈L ∪ {τ }, ��τ 〉
where ��τ is defined by:

(l, l ′) �→ l �� l ′ if (l, l ′) ∈ dom(��)

(τ, τ ) �→ τ

(τ, l) �→ l if l ∈ L
(l, τ ) �→ l if l ∈ L

The domain of ��τ is thus defined as:

dom(��τ ) = dom(��) ∪ ({τ } ×  L) ∪ (L × {τ }) ∪ {τ, τ }
Remark. The optional label structure is unital with τ as a neutral element.

2.6.4 Preservation of ACI properties

Proposition 2 (Preservation of ACI) Given  LS  and  LS′, if L S and L S′ satisfy one of the 
ACI properties then L S ⊕ LS′, LS ⊗ LS′ and L Sτ satisfy this same property.



As an example, we give a sketch of the proof of the ACI preservation by the ⊕ operator.
Given the two label structures LS and LS′ supposed to be respectively A, C or I, we prove
the corresponding property on their sum.

– LS ⊕ LS′ associativity: given l1, l2, l3 such that (l1 �� l2) �� l3 exists, they must all be a
left embedding or all be a right embedding. The result directly comes from the A property
of either LS or LS′.

– LS⊕LS′commutativity: given l1, l2 such that l1 �� l2 exists, both must be a left embedding
or both a right embedding. Then we get the result from the C property of either LS or
LS′.

– LS⊕LS′idempotence: l �� l -defined as l- is either a left embedding or a right embedding
and LS and LS′ have the I property. Then, the product is l.

2.7 Label structure transformations

We introduce morphisms between label structures as partial functions from labels to labels
which have some additional properties selected to help proving compositionality results on
transformations of transition systems (Paragraph 3.2). These results will eventually be used
to establish properties about the semantics of timed automata. A label structure transfor-
mation is a homomorphism between label structures. We start by giving the definition of a
transformation. Then we show instances of such transformations that will be used later to
define the semantics of timed automata (Sect. 5.2).

Definition 8 (Transformation) A transformation f between two label structures LS1 =
〈L1, ��1〉 and LS2 = 〈L2, ��2〉 is defined as a partial morphism f from LS1 labels to LS2

labels.

As label composition and label transformation are partial, a transformation is characterized
by the three following conditions:

– the composition of two transformable labels is transformable: ∀l, l ′ ∈ dom( f ) · (l, l ′) ∈
dom(��1)⇒ l ��1 l ′ ∈ dom( f )

– the images of composable labels are composable: ∀l, l ′ ∈ dom( f ) · (l, l ′) ∈ dom(��1)

⇒ ( f (l), f (l ′)) ∈ dom(��2).
– composition and transformation commute: ∀l, l ′ ∈ dom( f ) · (l, l ′) ∈ dom(��1) ⇒

f (l ��1 l ′) = f (l) ��2 f (l ′).
We write f : LS1 � LS2 to denote such a transformation. We now introduce two other

properties which are not satisfied by all the transformations we will consider (Paragraph
2.7.1). These properties are sufficient conditions for some equalities between labelled tran-
sition systems. They are for example among the conditions of Theorem 3 and Corollary 5
of page 21 which express that label structure transformations lifted to labelled transition
systems commute with parallel composition.

Definition 9 (Reverse composability) We say that a transformation f : LS1 � LS2 is
reverse composable, denoted r_composable( f ), if when transformed labels are composable,
source labels are also composable:

∀l, l ′ ∈ dom( f ) · ( f (l), f (l ′)) ∈ dom(��2)⇒ (l, l ′) ∈ dom(��1)

Definition 10 (Reverse compatibility) We say that a transformation f : LS1 � LS2 is
reverse compatible with a set of labels S of LS1 if when two labels have the same image,
they are both in S or both outside S:

∀l1l2 · f (l1) = f (l2)⇒ (l1 ∈ S ⇔ l2 ∈ S)



Note that reverse compatibility with any set is trivially satisfied by injective transforma-
tions.

2.7.1 Basic transformations

Given two label structures LS1 and LS2, we define label structure transformations which
are used to embed a label into a sum of labels, destruct a label sum, and extend a label to
a pair of labels. These transformations will be used to define timed automata semantics in
Sect. 5.2: user defined labels will be extended by memory access and time information, which
requires the embedding of the original label in the larger structure. After composition with a
controller, supplementary information is removed using projections.

Extensions (as well as projections) are not defined as done usually: they are partial and
only defined when only one of the elements of the product is present. These transformations
are given in the following table:

Name Notation Signature Definition Rev. compo.

Identity
id 1 LS � LS l �→ l yes

Embedding
I nl ↑l LS1 � LS1 ⊕ LS2 l �→ l• yes
I nr ↑r LS2 � LS1 ⊕ LS2 l �→ •l yes

Retraction
Outl ↓l LS1 ⊕ LS2 � LS1 l• �→ l yes
Outr ↓r LS1 ⊕ LS2 � LS2

•l �→ l yes
Extension

Extl ↑lτ LS1 � LS1 ⊗ LS2 l �→ (l, τ ) yes
Extr ↑τr LS2 � LS1 ⊗ LS2 l �→ (τ, l) yes

Projection
Pr jl ↓lτ LS1 ⊗ LS2 � LS1 (l, τ ) �→ l no
Pr jr ↓τr LS1 ⊗ LS2 � LS2 (τ, l) �→ l no

Option
Opt ↑⊥ LS � LSτ l �→ l yes
Opt−1 ↓⊥ LSτ � LS l �→ l if l ∈ LS yes

where τ is supposed to be a neutral element of LS1 or LS2, supposed to be unital.
It is not difficult to see that the transformation properties (see Definition 8) are satisfied

by the transformations we have defined. Note that all these transformations are injective over
their respective domain. This property also holds for the projections because they are only
defined if one projection of the couple is τ . All these transformations, except projections, are
also reverse composable. In order to convince the reader we pick the left retraction and show
that it is a transformation.

Proof Given two label structures LS1 and LS2, we consider the operator o �↓l of signature
LS1 ⊕ LS2 � LS1 and l, l ′ ∈ dom(o) such that l ��LS1⊕LS2 l ′ is defined. By the definition
of the sum of label structures, l and l ′ must both be left embeddings of labels of LS1 : l = l1•
and l ′ = l ′1

•, and l1 ��1 l ′1 is defined. We must show the three properties of transformations:

– l ��LS1⊕LS2 l ′ = (l1 ��1 l ′1)
• ∈ dom(o).

– l1 ��1 l ′1 is defined.
– o(l ��LS1⊕LS2 l ′) = o(l) ��1 o(l ′): they are both equal to l1 ��1 l ′1. ��

Since the three properties are satisfied, the left retraction is a label structure transformation.



2.7.2 Adding communication

This transformation gives a send/receive marker to a label structure. Thus, for each label c,
the transformed label structure has the two complementary labels c! (sending mark) and c?
(receiving mark). Given the label structure 〈L , ��〉, we denote by L ! (resp. L?) the set of L
labels suffixed by the send (resp. receive) marker.

The intuition behind the proposed definition is that the server performs at least the actions
requested by a client and that multiple requests originating from several clients can be com-
bined. This mechanism can be used to perform independent memory accesses concurrently.
It is illustrated when giving a semantics for Timed Automata (Sect. 5.2).
The communication label structure 〈L , ��〉!? is thus defined as:3

〈L , ��〉!? =
〈

L ! ∪ L?,

⎛
⎜⎜⎝

(l1!, l2!) �→ (l1 �� l2)! if (l1, l2) ∈ dom(��)

(l1!, l2?) �→ l2? if l1 ≤ l2
(l1?, l2!) �→ l1? if l2 ≤ l1
(l?, l?) �→ l?

⎞
⎟⎟⎠

〉

Remark 1 Other semantics can be given to the product such as a broadcast semantics. The
corresponding fusion operator would propagate the send annotation:

(l1!, l2!) �→ (l1 �� l2)! if (l1, l2) ∈ dom(��)

(l1!, l2?) �→ (l1 �� l2)! if (l1, l2) ∈ dom(��)

Proposition 3 (Preservation of the ACI property) Given an ACI label structure LS, its trans-
formation LS!? is also ACI. More precisely, commutativity and idempotence are preserved.
Associativity is preserved if LS is commutative.

Associativity is not straightforward. About 40 cases are generated by the proof assistant,
depending on the send/receive nature of labels. Furthermore, commutativity (present in the
ACI hypothesis) must be assumed and properties of the lattice structure associated to the ≤
relation are also used.

New transformations can now be defined, which add or remove send or receive anno-
tations to labels. Removing communications is defined as partial to ensure the satisfaction
of transformation properties. Furthermore, for the r Recv operator, we suppose that LS is
idempotent.

Name Notation Signature Precondition Definition

Add Communication
aSend ↑! LS � LS!? l �→ l!
aRecv ↑? LS � LS!? LS diagonal, idempotent l �→ l?

Remove Communication
rSend ↓! LS!? � LS l! �→ l
rRecv ↓? LS!? � LS LS idempotent l? �→ l

In the following, we use the fact that aSend satisfies injectivity, domain stability and
reverse composability.

3 l ≤ l ′ is defined by l ≤ l ′ � (l, l ′) ∈ dom(��) ∧ l �� l ′ = l ′ in Sect. 2.4.



2.7.3 Composition of transformations

We define here three composition operators over label structure transformations:

Op Signature Resulting transformation

_ ◦ _

(tr1 : LS1 � LS2)

(tr2 : LS2 � LS3)

→
LS1 � LS3

l �→ tr2(tr1(l)) if
l ∈ dom(tr1)∧
tr1(l) ∈ dom(tr2)

_⊕ _

(tr1 : LS1 � LS′1)

(tr2 : LS2 � LS′2)

→
LS1 ⊕ LS2 � LS′1 ⊕ LS′2

{
l1
• �→ tr1(l1)• if l1 ∈ dom(tr1)

•l2 �→ •tr2(l2) if l2 ∈ dom(tr2)

_⊗ _

(tr1 : LS1 � LS′1)

(tr2 : LS2 � LS′2)

→
LS1 ⊗ LS2 � LS′1 ⊗ LS′2

(l1, l2) �→ (tr1(l1), tr2(l2)) if
l1 ∈ dom(tr1)∧
l2 ∈ dom(tr2)

We note here that the transformation properties are satisfied by the resulting functions.
Furthermore, these composition operators also preserve the injectivity of their arguments.

Proposition 4 (Property preservation by composition). Stability (see Definition 7) of the
transformation domain, injectivity and reverse composability (see Definition 9) are preserved
by the three composition operators.

As an example, we sketch the proof of the preservation of the stability of the transformation
domain by the _⊕ _ high level transformation.

Proof Given two transformations tr1 : LS1 � LS′1 and tr2 : LS2 � LS′2 having stable
domains, we show that the domain of tr1 ⊕ tr2 is stable. We need to prove left and right
p-stability at one hand and e-stability at the other. We only consider the left case:

– (left p-stability): We need to prove that l ∈ dom(tr1⊕tr2) ↓1: there exists l ′ ∈ dom(tr1⊕
tr2) such that l ��LS1⊕LS2 l ′ is defined and belongs to dom(tr1⊕ tr2). We must show that
l ∈ dom(tr1⊕tr2). As l ��LS1⊕LS2 l ′ is defined, l and l ′ are either both a left embedding or
both a right embedding. The two cases are symmetric. So we consider the left case: l = l1•
and l ′ = l ′1

•. As l ��LS1⊕LS2 l ′ = l1 ��LS1 l ′1
• ∈ dom(tr1⊕ tr2), l1 ��LS1 l ′1 ∈ dom(tr1).

As the domain of tr1 is p-stable, l1 ∈ dom(tr1). Thus, l ∈ dom(tr1 ⊕ tr2).
– (left e-stability): We need to prove that l ∈ dom(tr1⊕tr2) ↑1: there exists l ′ ∈ dom(tr1⊕

tr2) and l ′′ such that l ′ ��LS1⊕LS2 l ′′ is defined and l = l ′ ��LS1⊕LS2 l ′′. We must show
that l ∈ dom(tr1 ⊕ tr2). As l ′ ��LS1⊕LS2 l ′′ is defined, l ′ and l ′′ are either both a left
embedding or both a right embedding. The two cases are symmetric. So we consider
the left case: l ′ = l ′1

• and l ′′ = l ′′1
•. As l ′1 ∈ dom(tr1) which is e-stable, we have

l ′1 ��LS1 l ′′1 ∈ dom(tr1). Thus, l ∈ dom(tr1 ⊕ tr2).

��

3 Behavioral framework

This section introduces Labelled Transition Systems (LTS) associated to a given label struc-
ture, which can be seen as the type (in λ-calculus terms) of the LTS family. Then, we 
define



operations on LTS such as parallel composition and renaming by application of label transfor-
mations. These definitions, together with related properties, form the behavioral framework
that is built on top of the label structure framework.

3.1 Labelled transition systems (LTS)

In this paragraph, we introduce labelled transition systems and their properties. After recalling
the usual definition of a bisimulation relation which is an equivalence relation used to compare
two LTS, we introduce the so-called upto-bisimulation which allows a dynamic renaming
that operates depending on the required label.

Definition 11 (Labelled Transition System) Given a label structure LS = 〈L , ��〉, a labelled
transition system L over LS is defined as a tuple 〈Q, Q0 ⊆ Q, T ⊆ Q × L × Q〉 where
Q, Q0, T denote respectively the sets of states, initial states, and transitions. We denote by

LT SLS the set of LTSs over LS. We write q
l→ q ′ for an element (q, l, q ′) of T . Furthermore,

we define the alphabet of L ∈ LT SLS – denoted as αL – as the set of labels that are actually

used by the transitions of L: αL = {l ∈ L | ∃q, q ′ · q
l→ q ′ ∈ T }.

Definition 12 (LTS Diagonality, Idempotence and Determinism) A LTS is said to be diagonal
(resp. idempotent) if the restriction of its label structure to the LTS alphabet is diagonal (resp.

idempotent, see Sect. 2.4). A LTS is said to be deterministic if whenever q
l→ q ′ and q

l→ q ′′
then q ′ = q ′′. In the rest of the paper, this set of LTS properties will be named DID.

Definition 13 (Simulation) Given La = 〈Qa, Q0
a, Ta〉 and Lc = 〈Qc, Q0

c, Tc〉, a relation
R ⊆ Qc × Qa defines a simulation between Lc and La , which is denoted as Lc �R La iff:

1. ∀q0
c ∈ Q0

c ∃q0
a ∈ Q0

a such that (q0
c , q0

a ) ∈ R

2. ∀qc, q ′c, qa, l if qc
l→ q ′c and (qc, qa) ∈ R, ∃q ′a ∈ Qa such that qa

l→ q ′a and (q ′c, q ′a) ∈
R.

Two LTSs L and L′ are said to be bisimilar through the relation R ⊆ Q × Q′, denoted as
L �R L′, if L �R L′ and L′ �R−1 L. We simply write L � L′ if L �R L′ for some R.
Furthermore, we say that L and L′ are state-bisimilar if transition labels are not required to
match: in condition (2.), we do not require abstract and concrete labels to be identical (here
to l).

However, some behavioral equivalence results presented in this paper (see Sect. 5.2.5)
relate transition systems with non-matching label elements. They are related by an≤ relation
between possibly under-specified memory access orders. So, we introduce simulation-upto
which declares explicitly the relation between labels. Upto-simulation is frequently used in
development environments such as Event-B [1] where it is possible to rename events and to
declare an arbitrary relation between event parameters during the refinement process.

Definition 14 (Simulation-upto) Given La = 〈Qa, Q0
a, Ta〉 and Lc = 〈Qc, Q0

c , Tc〉, the

relations R ⊆ Qc×Qa and
→
R ⊆ L× L define a simulation upto between Lc and La , which

is denoted as Lc �
→
R
R La iff:

1. ∀q0
c ∈ Q0

c ∃q0
a ∈ Q0

a such that (q0
c , q0

a ) ∈ R

2. ∀qc, lc, q ′c, qa if qc
lc→ q ′c and (qc, qa) ∈ R, ∃la ∈ L , q ′a ∈ Qa such that qa

la→ q ′a and

(q ′c, q ′a) ∈ R and (lc, la) ∈ →R .

As for bisimulation, we introduce a notation for upto-bisimulation by L �→RR L′.



3.1.1 LTS composition

Given two LTSs defined over 〈L , ��〉, a subset S ⊆ L denoting the allowed synchronization
results, and two subsets, Al ⊆ L and Ar ⊆ L denoting respectively the left and right inter-
leaving labels, the label composition function �� is extended to a LTS composition function
Al〈��

S
〉Ar as follows:

〈Q1, Q0
1, T1〉 Al〈��

S
〉Ar 〈Q2, Q0

2, T2〉 = 〈Q1 × Q2, Q0
1 × Q0

2, T 〉

where the set T is defined by the following rules:

q1
l1→T1 q ′1 q2

l2→T2 q ′2 (l1, l2) ∈ dom(��) ∧ (l1 �� l2) ∈ S

(q1, q2)
l1�� l2−−−→T (q ′1, q ′2)

Sync

q1
l1→T1 q ′1 l1 ∈ Al

(q1, q2)
l1→T (q ′1, q2)

InterleavingL
q2

l2→T2 q ′2 l2 ∈ Ar

(q1, q2)
l2→T (q1, q ′2)

InterleavingR

S can be omitted when it is equal to L . 〈��〉 is the fully synchronous composition operator.
We also introduce the 〈��

S
〉 notation to designate Sc〈��

S
〉Sc

where transitions with labels not in

the synchronisation set are made asynchronously.
We can cite two specializations of the LTS composition function:

– CSP generalized parallel operator. P1 A‖B P2 � P1
A\B〈 ��

A∩B
〉B\A P2

– CSP interface parallel operator. P1‖
S
P2 � P1

Sc〈��
S
〉Sc

P2

– CCS parallel operator. P1 | P2 � P1
L〈��
{τ }
〉L P2 where C is the set of channels and

L = C ∪ C ∪ {τ }.
Remark 2 (Internal product) We could also define an internal LTS product inspired by sep-
aration logic [24]: as we have attached a structure to labels, we could attach a structure to
states and allow state decomposition. The product rule could then be rewritten as follows,
where the ��s and ��l operators are defined respectively on states and labels:

q1
l1−→T1 q ′1 q2

l2→T2 q ′2 (q1, q2) ∈ dom(��s) (l1, l2) ∈ dom(��l ) (q ′1, q ′2) ∈ dom(��s)

q1 ��s q2
l1��l l2−−−−→T q ′1 ��s q ′2

ISync

Theorem 1 (Bisimulation Compatibility) Given four LTSs L1, L′1, L2, and L′2 defined over
the same label structure LS, if L1 and L2 are bisimilar upto R and L′1 and L′2 are bisimilar
upto R′ then their respective parallel compositions are bisimilar upto the relational product
of R and R′ (defined in Paragraph 2.1):

L1 �R L2 ∧ L′1 �R′ L′2 ⇒ L1
Al〈��

S
〉Ar L′1 �R⊗R′ L2

Al〈��
S
〉Ar L′2

This theorem states that bisimulation is a congruence for the LTS product. It allows us to 
substitute a LTS by a bisimilar one. It is mainly used to establish the compositionality of the



semantics of timed automata (see Sect. E in the Appendix). It is in fact an instance of the
general theorem of [37] which sets a generic framework to prove congruence theorems for
various LTS composition operators.

Proof Suppose L1 �R L2 and L′1 �R′ L′2.
We need to prove L1

Al〈��
S
〉Ar L′1 �R⊗R′ L2

Al〈��
S
〉Ar L′2 which can be divided into two

simulation relations: L1
Al〈��

S
〉Ar L′1 �R⊗R′ L2

Al〈��
S
〉Ar L′2 (1) and L2

Al〈��
S
〉Ar L′2 �R′⊗R

L1
Al〈��

S
〉Ar L′1 (2). In the following we will only show the proof of (1). The proof for the

other direction (2) is similar.
First, we note that the initial case is trivial. With respect to the inductive case, take a

transition (q1, q ′1)
l→ (r1, r ′1) of L1

Al〈��
S
〉Ar L′1 and states (q2, q ′2) of L2

Al〈��
S
〉Ar L′2 such that

(R ⊗ R′)((q1, q ′1), (q2, q ′2)). Given the LTS product rules, we have three cases:

– left case: l ∈ Al and (q1
l→ r1) is a transition of L1 and q ′1 = r ′1. As L1 �R L2

and R(q1, q2), there exists r2 such that R(r1, r2) and (q2
l→ r2) in L2. Thus, with

r ′2 = r2, we have that (q2, q ′2)
l→ (r2, r ′2) is a transition of L2

Al〈��
S
〉Ar L′2 with (R ⊗

R′)((r1, r ′1), (r2, r ′2)).
– right case: it is the symmetric case.

– synchronous case: l ∈ S can be written l = l1 �� l2 with (q1
l1→ r1) a transition of L1

and (q ′1
l2→ r ′1) a transition of L′1. As L1 �R1 L2 and R(q1, q2), there exists r2 such

that R(r1, r2) and (q2
l1→ r2) in L2. As L′1 �R′ L′2 and R′(q ′1, q ′2), there exists r ′2 such

that R′(r ′1, r ′2) and (q ′2
l2→ r ′2) in L′2. We can rebuild the synchronous product of the

two transitions to get (q2, q ′2)
l1⊗l2−−−→ (r2, r ′2) which is a transition of L2

Al〈��
S
〉Ar L′2 with

(R ⊗ R′)((r1, r ′1), (r2, r ′2)). ��
The next result concerns the synchronous composition of LTS where transitions of the

product are the transitions that can be synchronously performed by the two LTS. The synchro-
nization set can be restricted to labels belonging to the alphabet of both LTS if the stability
condition holds.

Proposition 5 (Synchronous Composition) Given two LTSs L1 and L2 defined over the
same label structure LS, we have L1〈��〉L2 � L1〈��

S
〉L2 if S is stable over LS, αL1 ⊆ S, and

αL2 ⊆ S.

Proof We show that the two LTS are bisimilar for the identity relation, which makes the
initial case trivial. We now consider the inductive case:

– Suppose we have s −→l s′ in L1〈��〉L2. The composition is purely synchronous. Thus,

there exists s1, s2, s′1, s′2, l1 and l2 such that l = l1 �� l2, s = (s1, s2), s′ = (s′1, s′2),
s1 −→l1 s2 in L1 and s1 −→l2 s2 in L2. As αLi ⊆ S, we have li ∈ S. As S is stable
over LS, we have l1 �� l2 ∈ S. So, we get a synchronous transition for L1〈��

S
〉L2.

– Suppose we have s −→l s′ in L1〈��
S
〉L2. Three cases should be considered. However,

asynchronous transitions are impossible as they should be labelled by elements of L\S
which do not exists in L1 and L2. Remains the synchronous case. The corresponding
transition is a transition for L1〈��〉L2. ��



Commutativity and associativity of the composition operator can now be stated. They are
defined modulo the bisimulation relation.

Proposition 6 (Commutativity of Al〈��
S
〉Ar ) Given two LTSs L1 and L2 defined over the same

label structure LS, we have L1
Al〈��

S
〉Ar L2 � L2

Ar〈��
S
〉AlL1 if LS is commutative.

Proof First, we introduce the refinement relation: it maps (q1, q2) to (q2, q1), which makes
trivial the initial case. The two directions for proving bisimilarity being symmetric, we only
consider one of them. A transition of L1

Al〈��
S
〉Ar L2 is either asynchronous or synchronous.

In the asynchronous case, we have a transition of L1 with a label in Al , or a transition of
L2 with a label in Ar . They are present in L2

Ar〈��
S
〉AlL1. In the synchronous case, we have a

transition with a label l1 �� l2 ∈ S with li ∈ Li . As l1 �� l2 = l2 �� l1, we get a transition of
L2

Ar〈��
S
〉AlL1. ��

In Theorem 2, we state a general associativity result. We are aware that the theorem has
numerous conditions and is not easy to use in practice. That is why we give weakened variants
of the theorem with much simpler and reduced conditions.

Theorem 2 (Associativity of Al〈��
S
〉Ar ) Given a label structure LS = 〈L , ��〉, label sets

Al1 ,Ar1 , Al2 , Ar2 , S1, S2 ⊆ L, and LTSs L1,L2, and L3 over LS. If LS is associative and
A′l1 , S′1, A′r1

, A′l2 , S′2, A′r2
are such that the following conditions are satisfied:

S1 ∩ (S2 ∩ ran(��))↑2⊆ S′2 S1 ∩ Ar2 ↑2⊆ S′2 S′2 ∩ (S′1 ∩ ran(��))↑1⊆ S1
S′2 ∩ A′l1 ↑1⊆ S1 (S1 ∩ (S2 ∩ ran(��))↑2)↓1⊆ S′1 S1 ∩ Al2 ↑2⊆ S′1 ∩ A′l2

(S1 ∩ Ar2 ↑2)↓1⊆ A′l1 S2 ∩ ran(��) ∩ Ar1 ⊆ S′2 (S2 ∩ Ar1)↓1⊆ A′r1

(S′2 ∩ (S′1 ∩ ran(��))↑1)↓2⊆ S2 (S′2 ∩ A′l1 ↑1)↓2⊆ Ar2 S′2 ∩ A′r1
↑1⊆ S2 ∩ Ar1

S′1 ∩ ran(��) ∩ A′l2 ⊆ S1 (S′1 ∩ A′l2 )↓2⊆ Al2 A′r2
= Ar1 ∩ Ar2

Al1 = A′l2 ∩ A′l1 Ar1 ∩ Al2 = A′r1
∩ A′l2

then we have:

L1
Al1〈��

S1

〉Ar1 (L2
Al2〈��

S2

〉Ar2 L3) � (L1
A′l1〈��

S′1
〉A′r1L2)

A′l2〈��
S′2
〉A′r2 L3

The Coq script stating this property can be found in Appendix D. It is not difficult by itself
but rather long: about 120 proof steps (mainly hypothesis uses) are needed.

Proof First, we introduce the refinement relation: it maps tuples (s1, (s2, s3)) to ((s1, s2), s3),
which makes trivial the initial case. We now give the proof for one of the numerous
cases of the step refinement. Consider a transition (s1, (s2, s3)) −→l (s′1, (s′2, s′3)) of
L1

Al1〈��
S1

〉Ar1 (L2
Al2〈��

S2

〉Ar2 L3). Among the different ways of obtaining that transition, take the

one where we have applied the synchronous rule for Al1〈��
S1

〉Ar1 and the right asynchronous

rule for Al2〈��
S2

〉Ar2 , which means: l = l1 �� l3, l ∈ S1, l3 ∈ Ar2 and L1 and L3 have made a

move. Now we must build a transition of (L1
A′l1〈��

S′1
〉A′r1L2)

A′l2〈��
S′2
〉A′r2 L3 whereL1 andL3 move,

which means we must apply the left asynchronous rule for A′l1〈��
S′1
〉A′r1 and the synchronous rule



for A′l2〈��
S′2
〉A′r2 : we must have l1 ∈ A′l1 and l ∈ S′2. This is true because (S1 ∩ Ar2 ↑2)↓1⊆ A′l1

and S1 ∩ Ar2 ↑2⊆ S′2. More precisely, l1 is a right argument (belonging to Ar2 ) of a product
resulting in an element of S1. Thus, it belongs to (S1 ∩ Ar2 ↑2)↓1. In the same way l is an
element of S1 and results from the product of some element with an element of Ar2 . ��
Remark We could have taken stronger and more readable hypotheses such that Ar2 ⊆ A′l1
and S1 ⊆ S′2 but we have chosen to enlighten the brute proof obligations extracted from the
proof.

About associativity proofs. It has to be noted that proving associativity for LTS-based parallel
composition is known to be a difficult task. In [11] flawed proofs of invalid results are reported
and an associativity proof for a variant of timed automata is detailed and appears to be very
tedious: 13 toplevel cases are considered and are technically hard. In the same way, in [18],
25 subcases are considered.

Furthermore, a more advanced study of sufficient conditions for ensuring the associativity
of LTS composition operators can be found in [18]. For example, the associativity of the
choice and parallel operators of CCS are consequences of their general theorem. However, the
framework also has limitations. For example, it does not apply for the CSP parallel operator.
Actually, our proofs are ad hoc. Our main concern was to exhibit lemmas associated to the
hard or the repeated parts of the proof that can be reused for similar theorems. With respect
to such proofs, [18] deals with the shape of the proof tree resulting from the format of the
rules. It should however be possible to integrate it into our proposal.

Proposition 7 (Idempotence of 〈��〉) Given a label structure LS = 〈L , ��〉 and a LTS L over
LS, if L is DID (Diagonal, Idempotent and Deterministic) then L〈��〉L � L.

Proof Given a LTS L supposed to be diagonal (H0), idempotent (H1) and deterministic
(H2), we prove that (L〈��〉L) �R L where R = {((q, q), q) | q ∈ Q}. For i ∈ {1, 2}, let

(q, q)
l→ (q ′1, q ′2) be a transition of L〈��〉L: (q, q)

l→ (q ′1, q ′2) implies q
li→ q ′i , l = l1 �� l2.

By H0 we know that (l1, l2 ∈ dom(��)⇒ l1 = l2), by H1, l1 �� l2 = l1 and by H2, q ′1 = q ′2.

Let q
l→ q ′ be a transition of LLS , we compose q

l→ q ′ with itself: q
l→ q ′, q

l→ q ′, l ��

l = l implies (q, q)
l→ (q ′, q ′) since by H1 we know that l �� l = l. ��

Remark If we drop the deterministic hypothesis, the result is false. Consider a diagonal and
idempotent label structure of support {l1, l2, l3}. Figure 1 describes a transition system T and
the synchronous product with itself, which is not bisimilar.

3.1.2 Weak variants of the associativity property

The following corollaries are direct instances of theorem 2.

Corollary 1 (CCS Associativity) The CCS parallel composition operator is associative.

CCS parallel composition (defined on the associative commutative label structure 〈L =
C ∪ C ∪ {τ }, c �� c �→ τ 〉 is obtained as L〈��

{τ }
〉L . Thus A-sets are the full set and S-sets are

the singleton {τ }, which makes the conditions of Theorem 2 satisfied.





The first statement of corollary 3 is an associativity schema corresponding to the weak
associativity theorem of the CSP generalized parallel operator [32], where 〈��

S
〉 corresponds

to the CSP parallel operator ‖
S
. The assumptions added in our context are satisfied by the label

structure associated to CSP.
The second statement of corollary 3 is obtained through the lemma stating the following

property:

αL1 ⊆ S ⇒ L1〈��
S
〉L2 � L1

∅〈��
S
〉ScL2

which means that if labels of the LTS L1 are in S, it never runs asynchronously.

3.2 LTS transformations

The label structure of a LTS may be changed in a composition such as making local a global
event (CSP hide) or changing its name (CSP renaming operator). Here, we consider LTS
labels transformations to be a lifting of label structure transformations to LTS. This amounts
to rename LTS labels by using the label structure transformation.

Definition 15 (LTS Transformation) Given two label structures LS1 and LS2, and a label
structure transformation f : LS1 � LS2, we define the LTS transformation [ f ]: LLS1 →
LLS2 as:

[ f ]〈Q, Q0,→1〉 � 〈Q, Q0,→2= {(q, f (l), q ′) | l ∈ dom( f ) ∧ (q, l, q ′) ∈→1}〉
Proposition 8 (Compatibility with bisimulation) Given LS1 = 〈L1, ��1〉, LS2 = 〈L2, ��2〉,
two LTSs L1 and L2 both over LS1, and a transformation f : LS1 � LS2, L1 � L2 ⇒
[ f ](L1) � [ f ](L2).

This result is straightforward but useful to allow reasoning by equivalence rewriting.
The following theorem states sufficient conditions for a LTS transformation to commute

with parallel composition. Two sets of conditions are given: one which only depends on the
transformation and the other which depends on labels used by the transition systems.

Theorem 3 (Transformation Compositionality) Given LS1 = 〈L1, ��1〉, LS2 = 〈L2, ��2〉,
two LTSs L1 and L2 both over LS1, Al , Ar , S subsets of L1, and a transformation f : LS1 �
LS2 such that:

1. f is reverse compatible with the sets Al , S and Ar ,
2. either dom( f ) is stable over LS1, or αL1 ∪ αL2 ⊆ dom( f ).

then we have:

[ f ](L1
Al〈��

S
〉Ar L2) � [ f ](L1)

f (Al )〈 ��

f (S)
〉f (Ar )[ f ](L2)

Proof We only sketch the proof of the synchronous case. Given LS1, LS2, LLS1 , and L′LS1
,

we prove that the two sides are bisimilar through the identity relation. The proof is based
on showing that each transition of the first system can be found in the second system and
vice-versa. It is depicted in the following implications which can be read from bottom to
top and vice-versa, and from left to right and vice-versa. The main points of this proof are
first the use of the stability hypothesis so that we conclude that when l ∈ dom( f ) then



l1, l2 ∈ dom( f ) and conversely, second the use of the injectivity of f in order to connect the
two branches of the proof.

⎛
⎜⎜⎜⎝

q1
l1→ q ′1, q2

l2→ q ′2, l = l1 �� l2

(q1, q2)
l→ (q ′1, q ′2), l ∈ dom( f )

(q1, q2)
f (l)−−→ (q ′1, q ′2)

q1
l1→ q ′1, l1 ∈ dom( f )

q1
f (l1)−−−→ q ′1

q2
l2−→ q ′2, l2 ∈ dom( f )

q2
f (l2)−−−→ q ′2 l = l1 �� l2

(q1, q2)
f (l)= f (l1)�� f (l2)−−−−−−−−−−−−→ (q ′1, q ′2)

⎞
⎟⎟⎟⎠

��

Other variants of the transformation compositionality can be deduced. They are given in
the following:

Corollary 4 (Transformation Compositionality: first variant) Given LS1 = 〈L1, ��1〉,
LS2 = 〈L2, ��2〉, two LTSs L1 and L2 both over LS1, and a transformation tr : LS1 � LS2,
we have:

r_composable(tr) ∧ stable(dom(tr))⇒ [tr ](L1〈��〉L2) � [tr ](L1)〈��〉[tr ](L2)

Corollary 5 (Transformation Compositionality: second variant) Given LS1 = 〈L1, ��1〉,
LS2 = 〈L2, ��2〉, two LTSs L1 and L2 both over LS1, and a transformation tr : LS1 � LS2,
we have:

L1 | dom(tr) ∧ L2 | dom(tr) ∧ r_composable(tr)

⇒ [tr ](L1〈��〉L2) � [tr ](L1)〈��〉[tr ](L2)

where L | P means that all the labels of L transitions satisfy the predicate P.

Proposition 9 (Preservation of DID properties) Given two label structures LS1 and LS2,
an injective, reverse composability preserving transformation f : LS1 � LS2, and a LTS L
over LS1, each of the DID properties is preserved by the transformation f . Formally, for a
DID property P, we have: P(L)⇒ P([ f ]L).

The following proof sketch makes explicit the use of the different hypothesis for each of
the three property preservation results.

Proof Take an injective, reverse composability preserving, transformation tr : LS1 � LS2,
a LTS L over LS1 and two labels f (l1) and f (l2) occurring in transitions of [tr ](L). Suppose
L has one of the DID properties.

• (Preservation of diagonality) Suppose (tr(l1), tr(l2)) ∈ dom(��2). As f preserves
reverse composability, we have (l1, l2) ∈ dom(��1). As LS1 is diagonal, we have l1 = l2
and thus tr(l1) = tr(l2).

• (Preservation of idempotence) AsL is idempotent, (l1, l1) ∈ dom(��1) and l1 ��1 l1 = l1.
As tr is a transformation, (tr(l1), tr(l1)) ∈ dom(��2) and tr(l1) ��2 tr(l1) = tr(l1 ��2

l1) = tr(l1), which means [tr ](L) is idempotent.
• (Preservation of determinism) Given a state s and two states s′ and s′′ reachable from s

through l ′ in [tr ](L). As tr is injective, there exists a unique l such that l ′ = tr(l). As L
is deterministic and s

l→ {s′, s′′}, we have s′ = s′′. So [tr ](L) is deterministic.

��



4 Related work

In the following, we give an overview of work related to label structures: abstract behav-
ior types, structured labels and synchronization algebra. The first one is mainly related to
concurrency since it is mostly linked to behavioral aspects. The last two are closer to our
work.

4.1 Abstract behavior types

Abstract behavior types (ABT) [5] aim at specifying the interactions of components in order to
study their composition. ABT describe the dynamics of a component using a relation between
timed data streams flowing through its ports. Composing two ABT consists in computing the
join of the two relations. Thus ABT is orthogonal to our proposal as we mainly describe in a
structured way a punctual interaction, not the stream of data exchanges. However, a step in
this direction will be done in Sect. 6 where we attach a behavior to a label structure.

4.2 Structured labels

Structured Labels, introduced in [8], is a set of labels equipped with a partial order. In the
context of modal transition systems, the partial order over labels is used to constrain the
refinement between transitions systems: the labels of matching transitions are not supposed
to be equal but comparable (as required by the (may or must) modality semantics). As in our
case, a product of structured labels is defined, but its support set is the cartesian product of
the support sets of two structured labels: the product as a fixed definition. In our proposal,
the definition of the product is provided by the user, while a partial order may be derived.
The proposals are complementary and could be merged in a future work.

4.3 Synchronization algebra

In [38], the authors introduce a so called synchronization algebra as a binary associative
commutative operation over labels. It is used to parameterize the product of transition systems
as in our case. Furthermore, operations on labels, such as restriction, renaming, and product
are lifted to transitions systems. Their composition is rooted in a categorical setting which
we do not consider here. Actually, we have adopted the same principles while making some
changes to implicit properties of label structures and to their use in LTS composition. We list
some of these changes:

– Label structure composition is partial in order to encode a blocking synchronization. [38]
uses the symbol 0 as a special element marking undefinedness while we use a predicate
to specify its definition domain in the Coq implementation.

– Asynchrony is managed at the synchronization algebra level in [38] by the implicit
insertion of asynchronous transitions whose label contains the special symbol �. It means
that the CSP generalized parallel operator, parameterized by left and right alphabets, is
hard to encode. Our label structure only manages the synchronous case.

– Label structures are not by default associative and commutative. These properties are
assumed when needed, which allows to point out the hypotheses needed to establish
some properties. Other properties are also considered, such as diagonality, idempotence,
….

Contrary to [38], operations such as sum, product, renaming are not defined at the level
of labels, but at the level of label structures. It means that we also define the resulting label



product operator. Thus, we get label structure transformations and we reason on the properties 
they preserve.

Furthermore, we have proved general properties about LTS composition derived from 
properties of label structures and used them in the next sections linked to timed automata. 
Moreover, even if the overall idea of the two proposals are close, our approach is quite different 
by the fact that we have defined several operators on label structures and see them as building 
blocks to construct complex label structures. Then, we consider LTS to be defined on label 
structures, not only on labels. Label structures act as a typing information which plays an 
important role in the next sections, helping in verifying the wellformedness of LTS-based 
expressions.

5 Timed systems through label structures

In this section, we show how timed systems and their semantics can be represented by 
instances of Labelled Transition Systems over suitable label structures. Then, we reuse the 
results we have established on label structures in order to prove the compositionality of timed 
automata semantics.

5.1 Timed transition systems (TTS)

A timed transition system is a transition system where transitions are labelled either by 
discrete events or by a duration belonging to a given time domain. Usually some constraints 
over timed transitions are imposed (additivity, continuity, zero-delay). We do not consider 
them here. Expressing such properties in a general setting as the one we adopt here would 
require the introduction of a new operator to our label structure. It would correspond to 
sequential composition and is left for future work.

Definition 16 (TTS) Given a label structure LS  = 〈L , ��〉, a Timed Transition System (TTS) 
over LS  is a LTS over LS  ⊕ T S, where  T S  is the time label structure introduced in Sect. 2.3.

Remark 3 (TTS parallel composition) Thanks to the introduction of our label structure, the 
TTS composition is the composition of the underlying LTSs.

5.2 Timed automata (TA)

We first consider a definition of timed automata [4] in which no invariants are associated to 
its locations (this is close to timed graphs [3] since neither invariants nor committed states are 
modeled). The transitions are in the form of guard/event/r eset  where the guards contain 
a conjunction of constraints represented as clock intervals and the reset actions consist in a 
set of clocks to be reset. This is represented as a product of three label structures. The first 
one manages the clock guards, the second one manages the synchronization events, and the 
third one manages the clock resets. In the rest of this paper, we consider a set C of clocks 
and a time domain Δ (e.g. R+).

5.2.1 Guard label structure

Based on the Alur Dill timed automata [4], a guard is a conjunction of interval constraints 
associated to clocks. Here, this is modeled as an abstract function in C → 2Δ as we are not 
concerned with decidability results. The composition of two guards g1 and g2 is defined as a



function which associates to each clock the intersection of the time domains given by each
guard. The guard label structure is defined as:

G � 〈C → 2Δ, (g1, g2) �→ (c �→ g1(c) ∩ g2(c))〉
Proposition 10 The guard label structure is ACI.

Proof This property is a direct consequence of the ACI nature of set intersection. ��

5.2.2 Action label structure

Based on the Alur Dill timed automata [4], an action associated to a discrete transition can
reset some clocks while keeping the other clocks managed by the current timed automaton
unchanged. In order to allow the composition of reset actions, the clocks not managed by
a given timed automaton are left undetermined. Consequently an action is modeled by two
disjoint sets: r denoting the clocks to be reset and u denoting the clocks to be left unchanged.
Their composition is defined by respectively the union of the reset sets and the union of the
unchanged sets provided that the reset and the unchanged sets are disjoint.

A � 〈 {(r, u) ∈ 2C × 2C | r ∩ u = ∅},
((r1, u1), (r2, u2)) �→ (r1 ∪ r2, u1 ∪ u2) if r1 ∩ u2 = r2 ∩ u1 = ∅〉

Proposition 11 The action label structure is ACI.

Proof This property is easily proved by case analysis. ��

5.2.3 Timed automata label structure

Given a set of clocks C , we define a timed automaton as a LTS such that its transitions are
labelled by synchronization events (defined by some label structure LS), guards (the label
structure G) and reset actions (the label structure A). For the time being, LS is left undefined
and can either model the CCS-based synchronization or the CSP-based one. In the following,
we will denote G A as the product G ⊗ A.

Definition 17 (Timed automata) Given a label structure LS, a timed automaton (TA) over
LS is a LTS over LS ⊗ G A.

T ALS � LT SLS⊗G A with G A � G ⊗ A

Remark 4 (ACI property) Thanks to the ACI-preservation by the product operator (proposi-
tion 2), if LS has the ACI property, LS ⊗ G A has also the ACI property and thus the timed
automaton is over an ACI label structure.

Remark 5 (TA Composition) Thanks to our label structure, the TA composition is defined as
the composition of the underlying LTS systems. In fact, several composition rules have been
defined for TA. The one of [4] can be considered as based on CSP: it can be obtained by
choosing LS = SyncCSP . The one of UPPAAL5 [10] can be considered as based on CCS:
we take LS = SyncCCS .

5 We do not consider here the global variables and clocks can only be reset to 0.





– diagonality: labels used in Clk are reception labels or time labels. Their product is defined
only if they are of the same kind (definition of the ⊕ label structure) and identical.

– idempotence: the restriction of the product to the labels used by Clk is idempotent:
actually, for reception and time, the product is defined and idempotent.

– determinism: for each transition of Clk the destination state (location and clock values)
is determined by the source state and the label.

��
Reconstructing the TA Semantics. We can now propose our definition of TA semantics by
means of a composition between the syntactic ta and Clk where ta transmits the clock
commands to Clk. Since the LTS composition is defined over LTS built on identical label
structures, the label structures on which ta and Clk are defined have to be adapted so that
they both become defined over LSτ ⊗ G A!? ⊕ T S: a label can be either a time label or
a guard/action marked with send/receive and possibly associated with a label of LS. The
following transformations are applied to ta which is an LTS over LS ⊗ G A:

– the label part is embed in an option label structure (↑⊥)
– send markers are attached to actions (↑!)
– the labels of ta being pairs, the two previous transformations are composed to apply to

pairs: (↑⊥ ⊗ ↑!)
– these two updated fields are embed in a sum with the time part (↑l)

Concerning Clk, its labels, when untimed, must be extended to the product with LSτ through
↑τr . Timed labels are left unchanged (1). Thus, the transformation (↑τr ⊕1) is applied.
Now, the product of the resulting LTSs, defined on the same label structure, is built. It
is synchronized over labelled guarded actions, but asynchronous over time which is only
present in the Clk automaton. For this purpose, we use the 〈��

_
〉 operator. Lastly, as the LS

label is always present in the resulting LTS, the optional label structure LSτ is replaced by
LS through the transformation (↓⊥ ⊗1 ⊕ 1) which does not modify the guard/action part
and the time part of the label. Thus, we introduce the following definition:

Definition 18 (Alternative TA semantics) We define an alternative semantics for timed
automata based on the product of the transformed timed automaton and the clock process.

[[ta]] � [↓⊥ ⊗1⊕ 1] (↑l ◦(↑⊥ ⊗ ↑!))(ta)) 〈 ��

(LS⊗G A!?)•
〉 C

with C = (↑τr ⊕1)(Clk)

Theorem 4 (TA Semantics Compositionality) Given two timed automata ta1 and ta2, we
have: [[ta1〈��〉ta2]] � [[ta1]]〈��〉[[ta2]].

Proof This proof is based on the existence of a bisimulation between the semantics of the
composition of ta1 and ta2 and the composition of their semantics. We start by unfolding the
semantics of the TA composition [[ta1]]〈��〉[[ta2]] and by applying a sequence of bisimulations
we reach [[ta1〈��〉ta2]]. In the following proof, we denote:

↑τ⊗! = ↑LSτ⊗G A!⊕T S
LS⊗G A ↓τ=↓LSτ

LS ⊗1G A!? ⊕ 1T S

T1 = ↑τ⊗! (ta1) T2 =↑τ⊗! (ta2) 〈��•〉 = 〈 ��

(LS⊗G A!?)•
〉



We have:

[[ta1]]〈��〉[[ta2]]
� {Definition}

↓τ (T1〈��•〉C)〈��〉 ↓τ (T2〈��•〉C)

� {Factoring of ↓τ since it is reverse composable (def : 9) : Corollary 5}
↓τ ((T1〈��•〉C)〈��〉(T2〈��•〉C))

� {Weakened associativity : law 2 of Corollary 3}
↓τ (T1〈��•〉(C〈��〉(T2〈��•〉C)))

� {Commutativity : Proposition 6}
↓τ (T1〈��•〉((T2〈��•〉C)〈��〉C))

� {Weakened associativity : law 2 of Corollary 3}
↓τ (T1〈��•〉(T2〈��•〉(C〈��〉C)))

� {Idempotence: Proposition 7}
↓τ (T1〈��•〉(T2〈��•〉C))

� {Weakened associativity : law 1 of Corollary 3}
↓τ ((T1〈��•〉T2)〈��•〉C)

� {Synchronous Composition: Proposition 5}
↓τ ((T1〈��〉T2)〈��•〉C)

� {Substitution of T1 and T2 by their definitions}
↓τ ((↑τ⊗! (ta1)〈��〉 ↑τ⊗! (ta2))〈��•〉C)

� {Factoring of ↑τ⊗! since it is reverse composable : Corollary 4}
↓τ (↑τ⊗! (ta1〈��〉ta2)〈��•〉C)

� {Definition}
[[ta1〈��〉ta2]]

Since rewrites are conditional, their hypotheses must be verified. Namely, (LS ⊗ G A!?)•
is stable over LS⊗G A!?⊕ T S, αta1 ↑LS⊗G A!?⊕T S

LS G A ⊆ (LS ⊗ G A!?)•, DID is preserved by

the transformations, Clk verifies the DID 
⊗
properties, the product and the transformation are 

compatible w.r.t bisimulation and Lemma 1 (page 26). A transcript of this proof is given in 
Appendix E. ��

5.2.5 Comparison with standard TA semantics

We now state the equivalence between our TA semantics and the standard one defined as 
follows:

Definition 19 (Reference TA semantics) We call reference semantics of timed automata the 
LTS defined by the function [[_]]std : LT  SLS⊗G A  → LT  SLS⊗G A⊕T S  such that



[[〈Q, Q0,→〉]]std = 〈Q × (C → R
+), Q0 × {c : C �→ 0},→s〉 where:

q
(l,(g,(r,u)))−−−−−−→ q ′ ∀c · v(c) ∈ g(c) ∀c · v′(c)

⎧⎨
⎩
= 0 if c ∈ r
= v(c) if c ∈ u
∈ {0, v(c)} else

(q, v)
(l,(g,(r,u)))−−−−−−→s (q ′, v′)

(q, v)
δ→s (q, v + δ)

Note that transitions are not necessarily determined by their labels: clocks not belonging
to r ∪ u can be either reset or left unchanged. The motivation of this semantics is to make
easy the composition of timed automata.

Theorem 5 (standard vs. revised semantics) Given a timed automaton, its standard [[_]]std

and proposed [[_]] semantics where receive annotations have been deleted, are upto-bisimilar
through the identity relation on states (1) and the relation (1⊗ ≤ ⊕1) on labels which
compares through ≤ its guard-action part.

[[ta]]std �1⊗≤⊕1
1 (1⊗ ↓? ⊕1)[[ta]]

Proof Let us sketch the proof. We have to show the double inclusion between the transition
relations of the semantic LTS associated to a given timed automaton ta. Several cases should
be considered depending on the structure of the label (timed or untimed). We only consider
here an untimed label composed of a quadruple (l, g, r, u) where l ∈ LS, g ∈ G, r ⊆ C and
u ⊆ C .

– The following proof tree presents the main steps of one direction: from a transition for a
transformation by 1⊗ ↓? ⊕1 of the proposed semantics [[ta]], we build a transition for
the standard semantics. Reading the tree top-down, first we undo the transformation and
restore the receive marker. By the definition of LTS product, we get a send transition in
ta labelled by some g, r, u and a receive transition in Clk labelled by g, r, u such that
g, r, u ≤ g, r, u. By the definition of Clk, {r, u} is a partition of the set of clocks C . Thus
r = r and u = u. As a consequence, we get a transition labelled l, g, r, u for the standard
semantics and the relation between labels is satisfied.

(s, v)
l,g,r,u−−−−→

(1LS⊗↓G A?
G A ⊕1T S)[[ta]] (s′, v′)

(s, v)
l,(g,r,u)?−−−−−−→[[ta]] (s′, v′)

s
l,(g,r,u)!−−−−−→ta↑ s′

s
l,g,r,u−−−−→ta s′

v
(g,r,u)?−−−−−→Clk v′ g, r, u ≤ (g, r, u)

g(v), u = C \ r, ∀c · v′(c) = 0 if c ∈ r, v(c) else g ⊆ g, r ⊆ r, u ⊆ u

g(v), ∀c · v′(c)
⎧⎨
⎩
= 0 if c ∈ r
= v(c) if c ∈ u
∈ {0, v(c)} else

(s, v)
l,g,r,u−−−−→[[ta]]std (s′, v′)

– Consider now a transition of the standard semantics [[ta]]std . In the same way, we build a
transition for a transformation deleting receive markers of the proposed semantics [[ta]].



The main hint consists in adding to r clocks of which values are undetermined by the r, u
action but of value 0 in v′, thus obtaining r . We get g, r, u satisfying (g, r, u) ≤ g, r, u
so that the product can be built to provide the ta transition. As a last step, the receive
marker is deleted.

(s, v)
l,(g,r,u)−−−−−→[[ta]]std (s′, v′)

s
l,g,r,u−−−−→ta s′

s
l,(g,r,u)!−−−−−−→ta↑ s′

(s, v)
l,(g,r,u)−−−−−→[[ta]]std (s′, v′)

g(v), ∀c · v′(c)
⎧⎨
⎩
= 0 if c ∈ r
= v(c) if c ∈ u
∈ {0, v(c)} else

g(v), v
(g,r,u)?−−−−−→Clk v′, g = g, r = r ∪ v′−1(0) \ u, u = C \ r

g(v), v
(g,r,u)?−−−−−→Clk , (g, r, u) ≤ g, r, u

(s, v)
l,g,r,u?−−−−−→[[ta]] (s′, v′), (g, r, u) ≤ g, r, u

(s, v)
l,g,r,u−−−−→

(1LS⊗↓G A?
G A ⊕1T S )[[ta]] (s′, v′), (g, r, u) ≤ g, r, u

We can notice that labels ensuring the simulation property are not identical: not only the
receive marker can be added or deleted, but the contents of the guarded action differs. This is
because the target state is not fully specified by the source state and the action. This is done
in order to allow synchronous composition with other timed automata. ��
5.3 Timed automata with invariants

We now add state invariants to timed automata as defined in [23] where an invariant is an
upper bound constraint that may be associated to each clock.

5.3.1 Invariant label structure

An invariant is defined as a partial function from clocks to the time domain Δ. The com-
position of two invariants associates to each clock, when it exists, the minimum of the two
bounds. The invariant label structure is defined as:

I �
〈
C � Δ, (i1, i2) �→

⎛
⎝c �→

⎧⎨
⎩

min(i1(c), i2(c)) if c ∈ dom(i1) ∩ dom(i2)
i1(c) if c ∈ dom(i1) \ dom(i2)
i2(c) if c ∈ dom(i2) \ dom(i1)

⎞
⎠

〉

The invariant label structure is ACI.

5.3.2 Timed automata with invariants label structure

Given a set of clocks C , we define a timed safety automaton (TSA) [23] as a LTS such that its
transitions are labelled by communication channels (defined by some label structure LS) and
guarded actions (the label structure G A). Furthermore, invariants are attached to locations.
These invariants are here stored on special looping transitions in order to synchronize with
the Invariant Clock controller (IClk in paragraph 5.3.3). Given a label structure LS, a timed
safety automaton over LS is a LTS over LS ⊗ G A ⊕ I .

T S ALS � LT SLS⊗G A⊕I

Remark 6 (TSA Composition) Thanks to our label structure, the TSA composition is defined 
as the composition of the underlying LTS systems.





are themselves composed to be applicable on tsa. For IClk, guarded actions are embedded
into labels of the product LSτ ⊗ G A!?.

Theorem 6 (TSA Semantics Compositionality) Given two timed safety automata tsa1and
tsa2, [[tsa1〈��〉tsa2]] � [[tsa1]]〈��〉[[tsa2]].
Proof The proof of this theorem is similar to the one of Theorem 4. ��

5.3.4 Comparison with standard TSA semantics

We now state the equivalence between our revised TSA semantics and the standard one in
which a specific encoding of the state invariant is taken into account. We start by defining the
standard TSA semantics by the function [[_]]std : LT SLS⊗G A⊕I → LT SLS⊗G A⊕T S such
that [[〈Q, Q0,→〉]]std = 〈Q × (C → R

+), Q0 × {c : C �→ 0},→s〉 where:

q
(l,(g,(r,u)))−−−−−−−→ q ′ , ∧

c∈C v(c) ∈ g(c) ,∀c · v′(c) = 0 if c ∈ r,= v(c) if c ∈ u,∈ {0, v(c)} else

(q, v)
(l,(g,(r,u)))−−−−−−−→s (q ′, v′)

q
i→ q ∀c ∈ C · v(c)+ δ ≤ i(c)

(q, v)
δ→s (q, v + δ)

The transitions of these semantic rules are thus labelled either by tuples containing the
synchronization label and memory access orders (guards to be checked, clocks to be reset or
left unchanged), or by a delay δ.

Theorem 7 (Standard and revised semantics) Given a timed safety automaton, its standard
and revised semantics are bisimilar upto the relation (1⊗ ≤ ⊕ ≤ ⊗1).

[[tsa]]std �1⊗≤⊕≤⊗1
1 [1⊗ ↓? ⊕ ↓? ⊗1][[tsa]]

Proof The proof of this theorem is similar to the one of Theorem 5. ��

6 Towards behavioral label structures

In this section, we show how the previous semantic constructions could be generalized by
attaching behaviors to label structures. Up to now, a label structure defines how labels are
composed and consequently how labelled transition systems are composed. The attached
LTS, acting as a controller, is used to build the semantics of a LTS. We apply the same
methodology as for timed automata: starting from a syntactic LTS built on a product label
structure LSu⊗ LSm (user and medium label structures), its semantics will be defined over a
label structure LSu ⊗ LSm !?⊕ LSc through a composition with a contoller over LSu ⊕ LSc.
As before, we give two semantics, one called standard, the other called revised to keep the
same vocabulary as for timed automata.

Definition 20 (Behavioral Label Structure) A behavioral label structure is a tuple
〈LSu, LSm, LSc, C〉 where LSi are label structures, LSm is supposed ACI and C =
〈QC, Q0

C,→C〉 is an LTS over LSm !?⊕ LSc.

An LTS over such a behavioral label structure is an LTS over LSu ⊗ LSm . We define its
standard semantics by the function [[_]]std

C : LT SLSu⊗LSm → LT SLSu⊗LSm⊕LSc such that
[[L = 〈Q, Q0,→〉]]std

C = 〈Q × QC, Q0 × Q0
C,→s〉 where:



q
(lu ,lm )−−−→ q ′ , qC

l ′m?•−−→C q ′C , lm ≤ l ′m
(q, qC)

(lu ,lm )•−−−−→s (q ′, q ′C)

qC
•l→C q ′C

(q, qC)
•l→s (q, q ′C)

The semantics is an LTS L over the product of the state space of the syntactic LTS L and the
controller C. Its transitions are built by joining transitions on LSu ⊗ LSm provided by L and
C and adding transitions on LSc provided by C only. In order to allow the composition with
user-given LTSs, we add non-determinism through the introduction of the label l ′m such that
lm ≤ l ′m . More precisely, two families of transitions are defined over the product space:

– transitions labelled by (lu, lm) in LSu⊗LSm are fired if they are present inL and accepted
by C, through a label l ′m ≥ lm , marked with a receive tag

– transitions labelled by elements of LSc, asynchronously accepted by the controller C.

This standard semantics has been chosen to match the one previously proposed for timed
automata after abstracting from label structures and controller. This semantics is shown to
be equivalent to the revised semantics [[_]]C defined by reusing the label structure operators
and labelled transition systems transformations:

[[L]]C � [↓⊥ ⊗1⊕ 1] (↑l ((↑⊥ ⊗ ↑!)(L)) 〈 ��

LSu?⊗LSm

〉 (↑τr ⊕1)(C))

The LTS L is transformed by embedding LSu labels in the optional label structure LSτ
u ,

adding send markers to LSm labels for synchronizations with the controller, and embedding
the resulting label in a sum with LSc. The controller labels are transformed so that when
in LSm , they are coupled with a τ from LSτ

u . The LTS resulting from the product is then
converted into a LSu ⊗ LSm !?⊕ LSc LTS.

Theorem 8 (Standard and revised semantics) Given two LTSs L over LSu ⊗ LSm and
C over LSm !? ⊕ LSc with LSm ACI, [[L]]std

C and [[L]]C are bisimilar upto the relation
(1⊗ ≤ ⊕ ≤ ⊗1) and the removal of receive markers if LSm labels of the transitions of
C are maximal for ≤.

[[L]]std �1⊗≤⊕1
1 (1⊗ ↓? ⊕1)[[L]]C

The proof of this theorem is similar to the one for timed automata. As for timed automata,
the maximality hypothesis is used to conclude on the identity between matching labels of L
and C, as was the partition condition in Clk.

The compositionality result concerning the parallel operator of timed automata can also
be generalized as follows:

Theorem 9 (Generalized Compositionality) Given two LTSs L1 and L2 over LSu ⊗ LSm

and a controller C over LSm !?⊕ LSc, we have:

[[L1〈��〉L2]]C � [[L1]]C〈��〉[[L2]]C
if the following conditions hold:

– LSu and LSc are associative and commutative.
– LSm is ACI.
– C is DID.

This theorem has a similar proof as the timed automata one. Furthermore, all the hypotheses
are satisfied in the timed automata context.



7 Conclusion

We have presented a formal semantic framework for studying, defining, and manipulating 
the composition of extended transition systems based on the composition of their labels. 
The framework is based on the idea of defining a label structure containing a composition 
operator. Depending on the language in question, a different label structure is defined and 
thus different composition laws are integrated. The label structure is then used as a parameter 
of labelled transition systems which describe the common semantic domain of the considered 
languages. We believe that the suggested parameterization of the behavioral framework is 
a promising work and may represent, especially with the perspectives we have, the first 
step towards giving a unified formal semantic framework for different process algebras and 
specification languages.

In this paper, we have studied parallel composition operators of process algebras regardless 
of other behavioral operators. In this context, we have pushed forward existing works of 
similar structures [8,24,26,34] by offering a richer set of operations and properties such as 
the composition of label structures and transformations between label structures.

Following our technique, the composition of different LTS extensions, whether it is a 
syntactic model or a semantic model, is captured by a unique composition operation defined 
on LTS. This is a direct result of the separation between the label structure and the behavioral 
framework. This result is different from those found in the literature since with each system, 
a different composition operation is provided. This can be seen classically in the composition 
operations of LTS and TTS. Even though a TTS is exactly a LTS having additionally time 
transitions, usually its composition operation does not reuse the LTS one.

Furthermore, generic results concerning label structures and LTS transformations are 
applied to establish well known properties of high-level structures such as the definition of 
timed automata semantics. We have shown that these semantics match with the standard 
timed automata semantics and that timed automata bisimilarity is compositional w.r.t. the 
parallel operator.

Finally, all the definitions and theorems related to the presented framework have been 
formalized and validated using the proof assistant Coq. The Coq theory may be found in [14]. 
The Coq formalisation has induced representation choices linked to the difference between 
type theory and set theory. For example, we cannot silently embed a set into a disjoint union 
as it is usually done in set theory. Furthermore, partial functions (such as our �� operator) 
and total functions are hard to integrate in a single notation.

We have also experimented automatic proof tools such as the SMT-based solver Z3 
(invoked by the Why3 platform). Using Z3, we have efficiently solved one of several com-
binatory results, but failed on other proofs such as the preservation of associativity by the 
label structure product. However, even if Z3 can produce machine-checkable proofs, it is not 
interfaced with Coq for now.

We are now working on a dual view of this work which consists in coupling our label 
structures with states. This will help us to naturally take into consideration state-based mech-
anisms such as the committed states of UPPAAL [9]. We are also working on defining the 
formal semantics of real time languages (BIP [7], FIACRE [19] and ACSR  [16]). Namely, 
we are interested in extending our label structure with priorities which are present in all of 
the three cited languages. Another extension would consist in adding other operators to label 
structures:



– sequential composition: this feature is required for example to express usual constraints
on time transition systems, such as additivity or continuity. It could be done at the level
of label structures.

– negation: it could be correlated to the absence of transition with a given label, as proposed
in [13].

– refinement relations and more generally lattice relations as used in contract theories [31].

Lastly, it could be interesting to investigate this work within a categorical context, as
proposed by [38] which sets the foundations for this perspective. Moreover, with respect to
that work, it could also be interesting to study the preservation of dynamic properties (reach-
ability, acyclicity, …) by LTS operators. We also consider reusing the existing works on rule
formats dealing with properties like commutativity, associativity [18] and idempotence [2]
in order to better structure the mechanization of the proposed framework.

Acknowledgements We would like to thank the anonymous reviewers for their careful reading of our
manuscript and their helpful suggestions and comments.

A Coq definition of a label structure, associativity and commutativity

Record LblStr: Type := mkLS {
Label: Type;
Lprd: Label -> Label -> Label;
Lcnd: Label -> Label -> Prop

}.
Implicit Arguments Lerr.
Implicit Arguments Lprd.
Implicit Arguments Lcnd.

Record isAssoc LS: Prop := {
isAssoc1: ∀ l1 l2 l3, Lcnd LS l1 l2 -> Lcnd LS (Lprd

LS l1 l2) l3 -> Lcnd LS l2 l3;
isAssoc2: ∀ l1 l2 l3, Lcnd LS l1 l2 -> Lcnd LS (Lprd LS l1

l2) l3 -> Lcnd LS l1 (Lprd LS l2 l3);
isAssoc3: ∀ l1 l2 l3, Lcnd LS l2 l3 -> Lcnd LS l1 (Lprd

LS l2 l3) -> Lcnd LS l1 l2;
isAssoc4: ∀ l1 l2 l3, Lcnd LS l2 l3 -> Lcnd LS l1 (Lprd LS

l2 l3) -> Lcnd LS (Lprd LS l1 l2) l3;
isAssoc5: ∀ l1 l2 l3, Lcnd LS l1 l2 -> Lcnd LS (Lprd LS l1

l2) l3 ->
Lprd LS l1 (Lprd LS l2 l3) = Lprd LS (Lprd LS l1 l2) l3

}.

Record isComm LS: Prop := {
isComm1: ∀ l1 l2, Lcnd LS l1 l2 -> Lcnd LS l2 l1;
isComm2: ∀ l1 l2, Lcnd LS l1 l2 -> Lprd LS l1 l2 =

Lprd LS l2 l1
}.



B Coq definition for the product of label structures

The �� operator and its domain of definition are specified in Coq as follows:

Definition LSprod (LS1 LS2: LblStr): LblStr := {|
Label := Label LS1 * Label LS2;

Lprd l r := match l,r with
(l1,l2), (r1,r2) ⇒ (Lprd _ l1 r1, Lprd _ l2 r2)

end;
Lcnd l r := match l,r with

(l1,l2), (r1,r2) ⇒ Lcnd _ l1 r1 ∧ Lcnd _ l2 r2
end

|}.

Notation "l1 *l* l2" := (LSprod l1 l2)
(at level 110, left associativity).

C Coq definition for the sum of label structures

Inductive SumLabs L1 L2 :=
LLab: L1 -> SumLabs L1 L2

| RLab: L2 -> SumLabs L1 L2.

Definition LSsum (LS1 LS2: LblStr): LblStr := {|
Label := SumLabs (Label LS1) (Label LS2);
Lprd l1 l2 := match l1,l2 with

LLab x1, LLab x2 => LLab _ _ (Lprd _ x1 x2)
| RLab x1, RLab x2 => RLab _ _ (Lprd _ x1 x2)
| LLab x1, _ => LLab _ _ x1 (* unused *)
| RLab x1, _ => RLab _ _ x1 (* unused *)
end;
Lcnd l1 l2 := match l1,l2 with

LLab x1, LLab x2 => Lcnd _ x1 x2
| RLab x1, RLab x2 => Lcnd _ x1 x2
| _,_ => False
end

|}.

Notation "l1 +l+ l2" := (LSsum l1 l2)
(at level 112, left associativity).

D Coq statement of the general associativity lemma for LTS product

Record assoc_hyp LS
(A1 A2 A3 A4 S1 S2 A1’ A2’ A3’ A4’ S1’ S2’: Label LS ->

Prop): Prop := {
ah1: S1 & !(S2 & Prd) <: S2’;



ah1b: S1 & !A4 <: S2’;
ah1c: S2’ & (S1’ & Prd)! <: S1;
ah1d: S2’ & A1’! <: S1;
ah2: (S1 & ! (S2 & Prd)).1 <: S1’;
ah3: S1 & !A3 <: A3’;
ah4: S1 & !A3 <: S1’;
ah5: (S1 & !A4).1 <: A1’;
ah8: S2 & Prd & A2 <: S2’;
ah9: (S2 & A2).1 <: A2’;
ah13: (S2’ & (S1’ & Prd)!).2 <: S2;
ah14: (S2’ & A1’!).2 <: A4;
ah15: S2’ & A2’! <: A2;
ah16: S2’ & A2’! <: S2;
ah17: S1’ & Prd & A3’ <: S1;
ah18: (S1’ & A3’).2 <: A3;

eh1: A4’ <:> A2 & A4;
eh2: A1 <:> A3’ & A1’;
eh3: A2 & A3 <:> A2’ & A3’

}.

Lemma general_par_assoc:
∀ LS (A1 A2 A3 A4 S1 S2 A1’ A2’ A3’ A4’ S1’ S2’: Label LS

-> Prop)
(T1 T2 T3: LTS LS),

isAssoc LS -> assoc_hyp A1 A2 A3 A4 S1 S2 A1’ A2’ A3’
A4’ S1’ S2’ ->

T1 |[A1,S1,A2]| (T2 |[A3,S2,A4]| T3) ==
(T1 |[A1’,S1’,A2’]| T2) |[A3’,S2’,A4’]| T3.

E Coq script for compositionality

This Coq proof script illustrates how the various results established in the paper can be reused
to prove the compositionality of the product of two automata.

Theorem sem_prod:
forall LS, isAssoc LS -> isComm LS ->

forall (T1 T2: TA LS),
(sem (T1 |t| T2)) == ((sem T1) |t| (sem T2)).

Proof.
intros.
unfold sem.
assert (isAssoc (LS *l* ACTION +l+ TIME)) as A.
apply LSsumAssoc; auto.
apply LSprodAssoc; auto.
apply ACTION_assoc.
apply TIME_assoc.
assert (isComm (LS *l* ACTION +l+ TIME)) as C.



apply LSsumComm; auto.
apply LSprodComm; auto.
apply ACTION_comm.
apply TIME_comm.

match goal with
|- _ == ((?x | ?s | ?y) |t| ?z) =>

rewrite <-(asyncl_par_assoc
(s: Label (LS *l* ACTION +l+ TIME)->Prop)
x y z A (isLLab_stable _ _)
(notIsLLab_stable _ _)); simpl; intros;

auto
end.

match goal with
|- _ == (?x | ?s1 | (?y |t| ?z)) =>

rewrite (par_com C y z); simpl; intros; auto
end.

match goal with
|- _ == (?x | ?s1 | ((?z | ?s2 | ?t) |t| ?y)) =>

rewrite <- (asyncl_par_assoc
(s2: Label (LS *l* ACTION +l+ TIME)->

Prop)
z t y A (isLLab_stable _ _ )
(notIsLLab_stable _ _)); auto

end.
rewrite par_idem_det; simpl; intros; auto.

match goal with
|- _ == (?x | ?s1 | (?y | ?s2 | ?z)) =>

rewrite (asynclr_par_assoc
(s2: Label (LS *l* ACTION +l+ TIME)->

Prop)
x y z A (isLLab_stable _ _)
(notIsLLab_stable _ _)); simpl; intros;

auto
end.
rewrite <- (sync_async

(isLLab: Label (LS *l* ACTION +l+ TIME)->Prop)
([[tr_inl TIME]] T1) ([[tr_inl TIME]] T2)
(isLLab_stable _ _ )) ; auto.

rewrite (fun h => apply_spar (tr_inl TIME) h (isInj_inl)
T1 T2).

reflexivity.
apply stable_inl.
apply alpha_inl.
apply alpha_inl.
apply isDet_tr.



apply isDet_Clock.
apply isInj_tfrl.
apply isInj_extr.
apply isTDiag_tr.
apply isTDiag_Clock.
apply isInj_tfrl.
apply isInj_extr.
apply isTIdem_tr.
apply isTIdem_Clock.
intros.
apply (alpha_inl T2 l H1).
apply (alpha_inl (LS2 := TIME) T1 l H1).

Qed.
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