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ABSTRACT 

In System and Software Engineering development, unforeseen changes occurring during process enactment 
are almost inevitable but often poorly managed due to a Jack of efficient mechanisms for spontaneously 
handling these run rime changes. We proposed a change aware process management system that allows 
process actors reporting emergent changes, analyzing possible impacts, and notifying people affected by 
the changes. To this end, we integrated a Change Management Component with a Process Management 
System. The Process Management System monitors process enactment and uses the run rime process 
information to construct a Process dependency graph (PDG) representing the dependencies among the 
elements of running processes. The Change Management Component captures change requests sent 
asynchronously, then re asons the PDG to determine impacted elements. Our PDG reflects the information 
of process instances and therefore can uncover the intra process or inter processes dependencies that are 
invisible on process models. We implemented a prototype named CAPE based on the platform jBPM and 
the graph database Neo4j. Copyright© 2016 John Wiley & Sons, Ltd. 
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1. INTRODUCTION

Nowadays, changes in System and Software Engineering (SSE) projects are almost inevitable due to 
evolving requirements, resources, and technologies. Changes occurring in a running task can affect, 
in a chaining fashion, other tasks ei ther inside one organiz.ation or among different organizations. 
Badly managed changes can lead to unwanted reworks and cause projects to fall behind schedule 
and go over budget. Applying a holistic, structured approach to manage changes is then crucial to 
avoid adding extra cost and risk to both the project and organizational levels. 

As pointed out in [1], the complexity of the product, in terms of the number of components and the 
relationships between them, is a major source of change management problems. ln general, the 
development of a system involves multi-teams, multi-disciplines, and can be realized on multi-si tes. 
Consequently, facing a change, a single person can rarely have a detailed overview of all the 
system's components, such that be would be able to assess the impact and inform the concerned 
actors. Having a partial view on the development process, often, process actors do not know how 
their work relates to other tasks and have difficulties, even impossibility, in identifying the right 
person to communicate with for quickly resolving a problem. Lack of information on task 

*Correspondence to: Hanh Nhi Tran, Institut de Recherche en Informatique de Toulouse (IRIT), University of Toulouse,
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connections can lead to unnecessary repetition or inconsistent results, which in turn will require rework
or changes in other tasks. Insufficient communication usually discourages process actors to report all
the changes they made or obliges them to follow hierarchical channels for propagating a change,
where it can be delayed or misinterpreted.

Most modern SSE processes are extremely complex and inherently uncertain. These characteristics
make managing SSE processes especially challenging. On the one hand, it is hard to finely describe
SSE processes in order to exactly reflect the process execution in reality. Changes emerging at run-
time are not predictable and therefore not integrated into process models. On the other hand, it is
hard to develop an effective Process Management System (PMS) to automatically coordinate SSE
processes that require low-level operational, flexible, and collaborative workflows [2]. In this
context, although each organization does have a certain change management process, it is often
poorly applied and relies on humans to propagate changes, especially emergent changes. Change
management in SSE is thus a critical issue that is far from being mastered [3].

To facilitate run-time change management in SSE development, we aim at a change aware process
environment, which provides an overall control on the development along with mechanisms for (1)
capturing changes occurring in the development environment and (2) analyzing change impacts and
informing affected process actors, all in a timely and systematical manner. We do not have the
ambition to propose a complete solution for change management. We are primarily interested in the
change notification issue. Change implementation is out of the scope of the presented work. Our
objective is to provide an effective assistance for coordinating process actors in order to keep their
work products consistent. Thus, we propose a flexible enactment of the SSE process to deal with
changes made on the work products of the SSE process. Such changes are not described in the
process model. So, if actors follow strictly the process model, they cannot handle the changes. We
provide a certain flexibility on instantiation and execution of tasks in order to allow integrating the
run-time changes in the actual process. But we do not handle changes made on the process model
itself, that is, the process structure is supposed to be intact during its execution.

This paper extends our previous work [4] to enable more collaborative patterns, especially those
concerning multiple instances tasks. We also enhanced the functionalities of our environment to
support both emergent and initiated changes to respectively correct or evolve the process’s
work products. The remaining part of the paper presents our solution to obtain the objectives
mentioned earlier and is organized as follows. Section 2 gives a brief description of our
approach based on a motivating example. Section 3 presents the process dependency graph
(PDG), an abstract graph describing the links between running processes and providing us with
a global structure to analyze the impact of a change. Our idea is using PDG inside a process
environment to enable change notification and analysis at run-time. We describe in Section 4
the architecture of our change aware process environment and report in Section 5 the
experiments carried out by using our prototype CAPE. Some related works are discussed in
Section 6, and Section 7 concludes our paper.

2. APPROACH

In this section, first, we describe, through an example inspired from a real process of our industrial
partners, a typical situation of changes in process enactment and point out some synchronization
problems if the change is not well managed. Finally, we present our approach to tackle this issue.

2.1. Motivating example

In [3], the authors classified change processes existing inside companies into two types: official and
unofficial. An official change process is a macro-level process defining formal protocols to be
respected to handle changes concerning to a company or a product. Normally at this level, the
change process is rather well defined and conducted. An unofficial change process happens
generally inside technical processes, during the pre-certification phases, as backwards patching/
debugging redesign processes where developers attempted to fix a problem quickly during the



development. This type of process is often informal or semi-formal and poorly managed due to the lack
of coordination among developers. In this work, we focus on the problem of change management in the
context of an unofficial change process.

Figure 1 shows a portion of a system engineering process simplified from the V-model. This
example describes the system development phase containing two technical processes as System
Development process (Figure 1a) and Verification & Validation process (Figure 1c). In our example,
these two processes are performed respectively by System Team and Test Team. The System Team
defines five roles as Analyst, Designer, Test Designer, Developer, and Integrator; the Test Team has
only one role as Tester.

In the System Development process, the activity Design System produces two work products: System
Architectural Model, which specifies the high-level design of the system, and Test Strategy, which
describes several functionalities of the system to be tested later by the Test Team. From the System
Architectural Model, the activity Specify Component Requirements generates the requirements for
each component of the system. These requirements are aggregated in the work product Component
Requirements. For each component requirement, the Component Development sub-process
(Figure 1b) is realized to design the Component Design Model and then implement the final
component. As the development of different components can be realized concurrently and
independently, the sub-process Component Development is modeled as a multi-instance task. The
number of instances of the sub-process is determined at run-time by the number of elements in the
work product Component Requirements.

In parallel, the Test Strategy is analyzed in the activity Specify Test Requirements to produce the
Test Specifications for each functionality to be tested. In a test specification, the system under test is
represented by a list of Component Design Models of the components implementing the tested
functionality. The test specifications are combined into the work product Test Specifications.

The Test Team starts to work in parallel with the System Development Team when the Test
Specifications are defined. For each element in the Test Specifications set, an instance of the
Verification & Validation (V&V) process is created. The Tester analyzes the test specification to get
the Test Objectives, the list of Component Design Models of the system under test, and the
Environment Specification needed for preparing the Test Bench that will be used for executing the test.

These two general processes can be used for various development projects, thus, may be adapted to
a specific context of a given project as illustrated in the following scenario.

Scenario Δ
We examine the project1 whose Specify Component Requirements task and Specify Test Requirements
task are carried out. Thus, the components to be developed and the tests to be executed are known. The
main information about the project1 are presented in Table I.

We suppose that at that moment, the company has two other projects, project2 and project3, which
are waiting to use the test bench tb1 for their V&V processes denoted as P2.1. vv and P3.1. vv.

1

Change We consider one of the most common unofficial change situation that frequently occurs
during system development:

In the project1, when carrying out the Implement Component task to build the component C1, the
developer d1 faces a problem in the Component Design Model CDM1. To continue and finish his
implementation, d1 wants to modify CDM1, which is out of his responsibility. If the change was
controlled, d1 had to inform the designer des1 of the problem and then wait for a new version of
CDM1. However, in reality, in a loosely controlled development environment, d1 may change
directly CDM1 without reporting the change because (1) he cannot wait and (2) he does not know
the concerned people to notify them of the change.

In this example, the possible impacts of the change on CDM1 initiated by d1 are

• Impacts inside project1: any change in CDM1 will immediately affect the process instance P1. vv

performed by tester t1 who is preparing the test environment for the functionality F1 that is based

1Pi. j.vv represents the instance j of process V & V belongs to the project i
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Such a change, however, will not impact the work of the integrator i1 who is waiting for the im-
plementation of C1. This change will not impact neither the work of the tester t2 who is preparing
the test environment for the functionality F2 based on CDM2 and CDM3. This change may require
reworks of the designer des1 to insure the consistency between the work product Component Re
quirement CR1 and the Component Design Model CDM1.

• Impacts on other projects: the change on CDM1 in project1 leads to reworking of the tester t1 to
prepare the new version of configuration for the test bench tb1. Consequently, t1 may have to keep
tb1. for a longer period. Because tb1. is also required in the V&V process instances P2.1. vv of pro
ject2 and P3.1. vv of project3, the change in project1 can have significant impact on project2 and
project3. The impact concerning shared resources requires often stressful and costly planning ad-
justment for the whole company.

The aforementioned impacts cannot be deduced from the process models as information arises only
at run-time, such as the list of components, the state of tasks, the shared resources, and so on. By
performing the analysis at the model level, we can deduce just some coarse impacts of change. For
example, we can say that a change on the work product type Component Design Model will impact
the activities Prepare Test Bench and Execute Test. But if these activities have many concurrent task
instances performed by different testers, we cannot say exactly who and which task instances are
affected. Moreover, at the model level, we cannot know the inter-process impacts via shared resources.

We are interested in this unofficial change and motivated by development environments where
changes are handled manually and communication between concerned actors is free and ad hoc. In
such environments, the poor coordination can lead to unawareness of changes and therefore to
possible reworking. We aim to develop a mechanism that helps coordinating better the process
actors and therefore managing changes more efficiently. As observed, in order to thoroughly assess
change impacts, managing and analyzing changes should be done at instance level (run-time). In the
next section, we present our solution to achieve this objective.

2.2. Proposal

In this paper, we seek to remedy the problem of unnoticed changes in order to permit concerned people
to anticipate and respond to changes so that they can avoid obsolete works. The ultimate goal of our
work is providing a change aware process environment being reactive to change requests but
proactive to change implementations with the following functionalities:

• Capturing in a centralized and continuous way all change requests sent asynchronously by var
ious process actors: This functionality requires consolidating process management mechanism
and change management mechanism. On the one hand, a PMS is needed to monitor process ac-
tors’ activities. On the other hand, a Change Management Component is needed to allow process
actors reporting changes and analyzing the impact of their change on the whole system.

• Analyzing the potential impacts when a change happens and notifying process actors affected by
the change: To enable analyzing the impacts of change among process elements in a timely and
systematically manner, we need to integrate the process management mechanism and the query
mechanism on the run-time process data. The result of this consolidation is the PDG that

Table I. Information of Project 1.

Human resources Analyst = a1, Designer = des1, des2, des3, Test Designer = td1,
Developer = d1, d2, d3, Integrator = i1, Tester = t1, t2

Non human resources Test Bench = {tb1, tb2}
Components {C1,C2,C3}
Test objectives Functionality F1 on C1,C2

Functionality F2 on C2,C3

System development processes Number of instances = 1, P1.1. sd
Number of sub process instances = 3

Verification & Validation processes Number of instances = 2, Test objectives =F1,F2

P1.1. vv for F1 and P1.2. vv for F2



We emphasize the use of run-time process information in order to establish a global view on the
state of all elements inside the development environment. As pointed out in the example in
Section 2.1, while some of the dependencies existing among elements inside one process instance
can be easily extracted at build-time from the process model, there are other dependencies that only
emerge at run-time. It is especially the case of dependencies among different instances of a
multi-instance task or multi-instance sub-process. It is also the case of dependencies via shared
resources among different running processes. In contrast to most of the existing works that have
concentrated on the dependencies at process model level [5, 6], our PDG describes dependencies at
run-time in the process instance-level, thus allowing a more thorough change impact analysis. For
an efficient storing and querying of run-time process data, the PDG is implemented in a graph
database. When a change request is made, PDG provides a sound and effective basis to traverse
intra-process instance and inter-process instances to derive the affected elements.

3. PROCESS DEPENDENCY GRAPH

This section presents the PDG, which is our solution to represent a global view about the system at
run-time.

3.1. Process information

In the development environment, process information exists at two levels: model and instance levels.
When a process is executed, its model is instantiated and a process instance representing the running
process is obtained.

The model level relates to process information existing at build time and extracted from process
models. For our example, model-level information is represented in Figure 1. The instance-level
concerns process information existing at run-time. For example, the sub-process Component
Development has three instances at run-time; each instance has two tasks: Design Component (DC)
and Implement Component. Therefore, in the run-time environment, there are six task instances
denoted as three DC1, DC2, DC3 and three IC1, IC2, IC3. The whole instance-level information of
the process models of Figure 1 is represented in Figure 2.

If a PMS is used to manage and enact processes, the model-level information is stored in the process
repository, and the instance-level information of running processes are stored in the execution log and
the history log. When a change occurs, all this information are required in order to establish the
dependencies among process instances to enable an in-depth impact analysis. We have two
approaches to construct process dependencies:

• Querying the process logs at the time of change analysis to deduce the dependencies: This
approach requires extracting process information directly from different PMS’s logs. It is
advantageous in terms of data storage. However, making complex queries from the process
repository and process logs is not easy because of the heterogeneity of the process data together
with the process log’s access characteristics within the context of activities that are long lived,
open ended, and interactive [7].

• Constructing a global dependency structure in parallel with the processes’ execution to establish
progressively the dependencies among process instances: In some way, this approach duplicates
the process information stored in the system. However, it can lead to an improvement in
performance if an efficient support is chosen to represent and implement the global dependency
structure.

After considering the trade-off between efficiency and storage, we choose the second approach and
propose the usage of a graph structure called the PDG to represent the dependencies among process
elements at run-time. PDG is continuously updated to reflect always current state of the system.

represents dependencies existing among all process elements of the system at run-time and there-
fore provides process actors with information of the whole development environment what 
they cannot know from their local viewpoint.
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3.2. Structure of process dependency graph 

The PDG is defined as a directed graph composed of a set N of nodes and a set E of edges. Nodes and
edges of a PDG are typed to describe different types of process elements ( at instance level) and 

relations between them. We have four types of nodes and four types of edges, specified in the 

following definitions: 

PDG= (N,E) 
N = { node1ask }u{ node,varkProd11c1]u{ nodeactor }u{ nodereso11rce} 
E = { edgedata }u{ edge

precede}u{ edgeperfom, }u{ edge11sec1} 

3.2.1. Nodes of Process Dependency Graph. Each type of nodes has properties, which are defined as 

follows: 

• node,ask 
represents an instance of a task.

node,ask = (type, name, id, state, durati.on, parentProcesslnstance 
type = (si.nglelnstance, multilnstance) 
state = (created, i.nProgress, completed, aborted) 



In this paper, we handle human tasks and adopt the standard Web-Service Human Task (WS-HT)
[8]. Furthermore, if a task can have multiple instances independent at run-time, its type is
multiInstance.

• nodeworkProduct represents a concrete work product (data) inside a process instance. The state of a
work product is the same as the state of the task producing it.

nodeworkProduct = (type, name, id, state)
type = (singleWorkProduct, workProductSet)
state = (created, inProgress, completed, aborted)

• nodeactor represents a real actor in the system. An actor may involve in several process instances. We
assume that the state of an actor is managed by both the task management component and the
resource management component integrated to the PMS.

nodeactor = (role, id, state)
state = (notAvailable, idle, active, waiting)

• noderesource represents a resource that an actor uses to perform a task.

noderesource = (id, state)
state = (notAvailable, idle,active, waiting)

3.2.2. Edges of Process Dependency Graph. Edges in PDG are used to represent different types of
relationships among process elements. Properties and state of each type of edges are defined as follows:

• edgeperform represents the association between an actor and the task that he performs. The state of the
edge is the same as the state of the task that it points to. The reason to store this information twice is
to facilitate the traversal that we will discuss later.

edgeperform = (id, process, Instance, StartTime, duration)
state = (inProgress, completed, waiting)

• edgedata represents the association between a work product (data) and a task using or producing it:

edgedata = (id, source, target, state)
state = (sent, notSent)

• edgeprecede represents the association between two sequential tasks that share nothing between each
other (i.e., no exchanged work products or shared resources).

edgeprecede = (id, source, target)

• edgeused: represents the association between a resource and an activity.

edgeused = (id, source, target, state)

Figure 2 is provided to illustrate the PDG representing the system in the scenario Δ at run-time. To
simplify the visualization of the PDG, process elements of only project1 along with only affected
elements in other projects are illustrated. In our scenario, shared elements among process instances
are established by the work products Component Design Model CDM1, CDM2, CDM3 and
Component C1, C2, C3. The shared element between projects is established by the resource Test
Bench tb1.



4. CHANGE-AWARE PROCESS ENVIRONMENT

This section describes our solution to deal with poorly managed changes during process enactments.
Although this work targets more specially on technical software and system engineering process, it
can also be used by processes in other domains. Our aim is to consolidate two mechanisms of
process management and change management to create a change-aware process environment as
illustrated in Figure 3.

Our environment is composed of two main components: a PMS to execute and control processes
and a Change Management Component to handle changes coming from running processes. In the
next sections, we explain each component in details.

4.1. Process Management System

Process Management System (PMS) is a software that supports modeling, enactment, and monitoring
of processes throughout their life cycles. In our proposal, PMS provides the basis to systematically
control process actor’s activities and to obtain a global view on the status of the organization
development environment. The nucleus of a PMS is the Process Engine that is in charge of enacting
processes. From process models stored in a Process Model Repository, the process engine creates
new process instances and associates their tasks with corresponding resources taken from a
Resource Repository. PMS includes a Human Task Processor that makes the process engine to
interact with this component whenever a process instance reaches a human task. Resources of an
organization can be human (process actors) or non-human (tools, platforms, etc.) and is supposed to
be managed externally by a Resource Management System. The engine controls and keeps track of
tasks execution. The information of running processes is stored in the Execution Log, and the
historical information about process execution is stored in the History Log that later can be used to
conduct process analysis. Our work aims at assisting process actors on managing run-time changes.
To do so, the current Human Task Processor of the base PMS is enhanced to support new
functionalities on change notifying and analyzing. Our extension is presented in Figure 3b as the
Change Management Component that is described in the next section.

4.2. Change Management Component

The core of our proposal is the Change Management Component whose role is turning the process
environment to a change-aware process environment. This component enables a coordination among
main roles of the process environment known as process manager, process actors, and change
manager in order to manage changes systematically inside the system. We remind that the change

Figure 3. Change aware process environment.



management provided in this study was limited on informing an intentional change, estimating the
impact of the requested change and notifying potential affected process actors. Applying and
propagating changes is out of the scope of this paper. Figure 3b shows the main elements of our
Change Management Component and are described as follows:

1. Process Dependency Graph: the PDG stored in a graph database is the main support for change
impact analysis. It provides the global view of running processes and their dependencies. PDG is
created and updated by the Process Parser and Task Observer; it is used by the Change Impact
Analyzer.

2. End User UIs: A set of user interfaces to allow process actors (i.e., system and process actors) to
interact with the core PMS to request their task list, claim and complete the tasks assigned to
them. The novelty here is a new interface offering process actors the possibility to send a change
request during their task execution. Thanks to this new functionality, process actors can integrate
emergent changes, which are not described in their process model, into the process execution.
Also, a new role Change Manager together with the interface are defined to centralize the change
requests and show the result of potential change impacts.

3. Process Parser: This sub-component constructs the structure of a new process instance and adds
this structure to the PDG. It will be invoked by Task Observer when a new process instance is
created.

4. Task Observer: This sub-component is responsible for controlling process actors’ tasks and
keeping the PDG updated with the run-time events happening during task’s life cycle. Besides
the standard human task events defined by the WS-HT specification [8], we defined a new event
Change Request and the corresponding handler to capture change requests sent asynchronously
by process actors. When receiving a change request signal, Task Observer invokes the Change
Impact Analyzer.

5. Change Impact Analyzer: When the Change Manager receives a change request, he can use this
component for traversing the PDG and extracting the elements potentially affected by the change
request. The result of the change impact analysis is an Impact Graph (IG) that gives some
information to help the change manager on the change implementation decision and in informing
the concerned elements in a timely manner.

In the next sections, we present the functionalities of the three sub-components Process Parser,
Task Observer, and Change Impact Analyzer.

4.2.1. Process parser. This component is responsible for extracting from a process model the process
information at schema level in order to construct the structure of the PDG.

Whenever a process engine creates a new process instance from a process model, the Task Observer
invokes the parser to analyze the given process model and create a corresponding graph structure in
PDG. For each activity in the process model, we extract its input output work products as well as
identify the performing actors and resources needed for the task. Then the parser creates the
corresponding PDG nodes representing these process elements and the PDG edges representing the
relations between them. By default the parser handles an activity as a single-instance task. For
multi-instances activities, their task instances will be created dynamically in PDG when the number
of instances is known during the process execution. Afterwards, the PDG will be updated with
run-time information by the Task Observer as the process execution progresses.

4.2.2. Task observer. The main role of Task Observer is keeping the PDG updated with the system
state maintained by the process engine. Thus, it provides a sound basis for change impact analysis.
To do so, Task Observer listens to run-time events happening in the system via the interaction with
the process engine and process actors. Then it proposes the appropriate handlers for updating the
PDG according to the occurring event.

We classify different events relating to any changes at run-time environment into three categories:

1. Process Instance Event: It concerns the events of creating or finishing (or aborting) a process
instance. The event handler of this event type modifies the structure of the PDG: adding to the
PDG the new nodes of the created process instance or deletes all nodes of finished process



instance inside the PDG. Constructing of the schema of a new process instance is realized by the
Process Parser sub-component.

2. Task Life cycle Event: All events concerning the operations specified by WS-HT for human tasks
[8] are regrouped in this category: claiming, releasing, completing, or aborting a task. The basic
Task Management Component of the core PMS is responsible for these operations and, via
different event handlers corresponding to a specific event, informs the process engine of the
progression of the process instance execution. Using Task Observer as our own task service,
we extended the basic event handlers for the above events to update correctly the PDG in each
specific situation so that the PDG always represents the run-time state of the process instances.

• When a process actor claims (or releases) a task, the states of the involved PDG nodes
(i.e., claiming actor node, claimed task node) are updated and a PDG perform edge
between these two nodes is created (or deleted). We supposed that PDG actor nodes
are created from the list of process actors taken from the Resource Repository.

• Basically, whenever a process actor completes or aborts a task, the state of the corre-
sponding PDG task node and its related nodes (performing actor and produced work
product) will be updated. If the subsequent task is multi instance, the update of the
PDG becomes more complicated.
There are many patterns describing situations where there are multiple threads of execution
active in a process model. In this work, we focus on the pattern Multiple Instances with a
priori Run time Knowledge [9] concerning the creation of multiple instances of a task within
a process instance. The number of task instances depends on run-time factors, often the input
data of the task. The task instances run concurrently andwill be synchronized before triggering
the subsequent task. Inspired from the pattern ToMultiple Instance Task Instance specific data
passed by value [9], we update the PDG based on the passing data elements from a single-
instance task to a multi-instance task as shown in Figure 4.
In this pattern, the output set in wp of the current task t is the input of amulti instance taskmt.
In such a case, when the current task t is completed, the cardinality n of its output set in wp
determines the number of task instances of the subsequent task mt. For updating the PDG,
the sub-graph from set in wp to mt will be duplicated n times. In each sub-graph the set work
product node in wp is replaced with an item in wpi in the set; the task node mt takes the run-
time id of its task instance. If mt is a multi-instance sub-process, all nodes inside the sub-
process will be duplicated. At the conclusion of mt, n instances mti will be connected to the
merge taskm in the PDG.Our example and discussion respectively presented in Figure 1 and
Section 2.1 illustrate this special situation with the work product {Component Requirements},
which is the input of the multi-instance sub-process Component Development Process.

3. Change Request Event: This is a new event that we defined to allow process actors to send a
change request at any moment when executing a task. Here we handle the run-time unofficial
changes that cannot be previously foreseen and modeled in the process model. Changes can
concern modifications on the process actor’s work products, working time or resources required
for his work. We defined a new task handler to allow the action sending change request from the
process actors working environment. On the other side, the Task Observer handler is responsible

Figure 4. To multiple instance task instance specific data passed by value.



4.2.3. Change impact analyzer. When the Task Observer receives the change request CR, it invokes
the Change Impact Analyzer to analyze the impact of the change described in the CR.

In a change request CR (changeInitiator, changedElement, changedType):

• changeInitiator is the process actor who initiates the change.
• changedElement is the element that he wants to modify. The changedElement must be one of the
elements related to the changeInitiator’s current task.

• changeType is the type of change that the changeInitiator wants to make. He can make minor
changes for correcting small problems of a work product without causing reworking in other
tasks. If he wants to evolve a work product whose changed content can result in reworking on
other tasks, he has to make his change as major changes.

The Change Impact Analyzer carries out the impact analysis by traversing the PDG from the
changed element thorough possible types of edges. The traversal can be conducted in backward
or/and forward mode according to a specific type of change as presented in the Section 5. The result
of the traversal is a digraph so-called Impact Graph (IG), which is an extraction of the global PDG
but contains only the process elements impacted by the change. These elements are detected by the
emerging dependencies among run-time process elements in the PDG based on shared data,
resources or temporal sequences. The obtained IG is considered as the base to conduct impact
analysis at different levels according to a specific need of change manager.

The impact can be direct if an element works with the changed element or indirect if an element
works with an element impacted (directly or indirectly) by the change. Moreover, thanks to the
PDG that keeps trace of all elements in the development, we can have a thorough analysis on
different axes: by examining both nodes inside and outside of the changeInitiator’s process
instances, we can identify the impacts on the elements in the scope of a project or in other projects;
by examining all existing task nodes completed, current and future we can know which
elements are really impacted or potentially impacted.

We can go further in such analysis by annotating the nodes of the IG with some interesting metrics
such as resource costs or work product completion percentages. For instance, regarding any affected
work product the percentage of its completion at the time of change can be estimated based on the
duration of the task that produces it. This feature, which is dependent on a specific given domain for
calculating the required metrics, is not presented in this paper but in our previous work [10].

We summarize the whole procedure of the Change Aware Process Environment in the Figure 5.

5. VALIDATION STUDY

This section presents the prototype CAPE developed to validate our proposal. First, we describe the
implementation of CAPE. Second, we report the use of CAPE for a case study and the feedback of
our industrial partners.

5.1. Prototype implementation

As described in Section 2, our key goal is to coordinate better process actors at the moment of change.
To this aim, our prototype provides the functionalities that allows process actors to signal a change and
inform concerned people. As presented in Section 4, we distinguish two types of changes: minor
changes for correcting small problems of a work product without causing reworking and major
changes for evolving a work product with possible reworking. CAPE can analyze the change impact
of both.

This section presents our strategy to implement the two components of CAPE: PMS and Change
Management Component that allow creating and updating the PDG as a basis of change analysis.

to catch the sent change request and then invoke the Change Impact Analyzer sub-component to 
extract from the PDG the elements potentially affected by the requested change.



• Usage of jBPM as a basic PMS: Our idea is to enrich an existing PMS with a change management
mechanism and not develop a new PMS from scratch. First, we looked for PMSs supporting the
Software and Systems Process Engineering meta modeling language (SPEM) [11]. However, to
our knowledge, there are not mature and extensible process environment executing SPEM
processes except some academic works as [12, 13] and the commercial tool IBM Rational Team
Concert [14]. Thus, we turned to existing operational Business Process Management Systems that
can be used to execute SPEM processes that are mapped to a executable business process
language. Based on the features of existing BPMSs, we chose jBPM [15], a flexible,
light-weight, fully open-source and extensible BPMS, for developing our PMS component. Like
other BPMS, jBPM is composed of several components that each one resolves a particular
function inside the BPMS architecture as shown in Figure 3a. jBPM proposed a basic Human
Task Processor, a back-end task service that manages the life cycle of tasks realized by human
users, based on the WS-HT standard specification [8]. To assist process actors on managing
run-time changes, we used jBPM APIs (WorkItemHandler class) for re-implementing this task
service as our Change Management Component that enhances the basic Human Task Processor
with new functionalities on change notifying and analyzing. Thus, as part of the prototype, new
user interfaces are developed to handle process actors’ tasks in a task-list-oriented way.

• Usage of Neo4j as a graph database to store PDG: The PDG describing the running processes of
an organization can be huge. Thus, in order to store and manipulate efficiently the PDG, we
explored the use of NoSQL data management system, in particular on systems proposing native
graph data management. A graph database is typically substantially faster for connected data sets
and uses a schema-less, bottoms-up model that is ideal for capturing ad hoc and rapidly changing
data [16]. To this aim, Neo4j [17], an object oriented and open-source graph database, has been
chosen. Neo4j allows us to store and query the PDG in an efficient way thanks to its advantages
on powerful traversal framework and the declarative graph query language Cypher. We used the
Neo4j Core-Java-API to develop a Neo4j embedded application in our Change Impact Analyzer.
Thus, we can benefit not only an object-oriented approach to manipulate the graph database, but
also highly customizable high-speed traversal- and graph-algorithm implementations.

Figure 5. Procedure of change aware process environment.



When facing a problem that necessitates a change, process actors evaluate the importance of the
change and select the way to handle it with the help of CAPE. Figure 6 shows an example of the
task user interface in CAPE for developer d1 when he detects a minor problem on the work product
CDM1 and sends the change request. By choosing minor change, first CAPE helps the process actor
to inform the change management component as well as the actors concerning to the changed work
product, especially if it’s responsible. Then he can continue performing his task after making the
change. By choosing major change, first the process actor sends a change request to the change
manager in order to analyze the change impact and make a decision. If the change is accepted, then
the change manager informs affected actors and then the change initiator can carry out his task. If
the change is refused, the process engine aborts the initiator’s task.

5.2. Experiments

The experiment presented in this paper is a simplified version of a real case study conducted in the
context of the project FUI2 Agile tools for Conception and Validation of Systems (ACOVAS). We
focus on the system integration phase where changes occur with high rates. To evaluate CAPE, we
simulated the execution of the processes described in Figure 1 for three projects, using the same
setup for project1 as presented in Table I (cf. Section 2). Figure 7 gives the organizational model of
project1 and focuses on the elements concerned by change scenarios. In this project, the system is
composed of three components C1, C2, C3 developed by three different teams. The system
integration and the integration tests are carried out respectively by the system team and the test
team. The development teams can be intern of a company or belong to different suppliers that can
be geographically dispersed in different sites.

CAPE can handle change situations conform to two change patterns correction and evolution
described as follows:

5.2.1. Correction pattern. As illustrated in Figure 8, this pattern concerns a situation when a process
actor faces a minor change during his task tsk2. To continue his task, he needs to change (correct) his

Figure 6. UI of developer d1.

2FUI a French academic industry research program.

Figure 7. Simulation setup.



input work product wp1, which is produced by the completed task tsk1. At the moment of change, task
tsk3 and tsk5 are in parallel with tsk2, and tsk4 has not been started yet.

First, CAPE carries out a backward analysis to detect the completed elements concerned by the
change that needs to be informed but does not need to rework on the changed element. Backward
analysis is implemented by the traversing the PDG through the incoming data edge of changed
element wp1 that results in tsk1. Second, CAPE runs a forward analysis to deduce the current or
future elements that can be concerned by the change. Forward analysis is implemented by
recursively traversing the PDG through all outgoing edges of changed element. According to the
pattern, based on the shared work product wp1, forward analysis gives us tsk3 as an affected element
and wp2 and tsk4 as potential affected elements. The correction on the wp1 can add delay time on
completing task tsk2. Consequently, all the tasks need ir (i.e., tsk5) will be impacted.

Table II shows one possible scenario based on the pattern in which the change happens in the
project1 when the tester t1 faces a problem during his task Prepare TestBench to prepare the test
bench tb1. This problem requires a minor change on his input work product CDM2 (previously
produced by des2 in the task Design Model). At the moment of change, another tester t2 is using
CDM2 to prepare the test bench tb2 for another test, and the testers t3 and t4 are waiting for the test
bench tb1 for their task respectively in project2 and project3. Figures 9 11 present the scenario
simulated in CAPE. We can see that the impacted actors inside the project1 (i.e., des2 and t2) as well
as outside the project1 (i.e., t3 and t4) are informed of the change.

5.2.2. Evolution pattern. The pattern in Figure 12 presents a situation when a major change
(normally caused by the environment of the project) on the work product wp1 (previously produced

Figure 8. Correction pattern.

Table II. Correction scenario.

Pattern element Process element State Responsible process actor

tsk1 DC1 Completed des2
tsk2 PTB1 Current t1
tsk3 PTB2 Current t2
tsk4 ET1 Potential t1

ET2 t2
tsk5 PTB3 Current t3

PTB4 t4
wp1 CDM2 Completed des2
wp2 TP1, TBC1 Potential t1

TP2, TBC2 t2
r1 tb1 Current t1, t3, t4

tb2 t2



by tsk1) is requested. The change necessitates creating a new task instance tsk ′1 to modify wp1. Such a
change can impact the subsequent tasks of tsk1, completed or current.

CAPE performs a forward analysis by traversing the PDG through outgoing data edges of changed
element wp1 to detect all the elements that are dependent on wp1. As shown in the Figure 12, this
analysis gives the list of impacted elements comprising the completed elements tsk2 and wp4 and the
current task tsk4. However, the rework on wp1 does not have any impacts on elements tsk2, wp2,
and wp3.

Normally, major changes require an in-depth analysis to better estimate the impact. Thus, it is
important to identify the relevant and irrelevant elements to a change. This issue is especially
demanding in the situation where the changed element is a workProductSet and it related to a multi-
instance task whose number of instances is only known at run-time. Concretely, if the type of wp1 is
workProductSet and tsk2 is a multiInstance task, the number of tsk2’s instances is determined by the
number of wp1’s elements. When reworking wp1, it may happen that only some of its elements are
modified. In this case, it would be useful to identify which instances of tsk2 will be affected by the
changed elements in wp1.

Table III shows one possible scenario of the pattern Evolution with emphasizing on the multi-
instance elements. At the moment of change, all components C1, C2, and C3 are implemented and
integrator i1 is performing the system integration (i.e., all precedent tasks of the task Integrate
System are completed). The change happens when the des2 needs to execute once again the task
Specify Component Requirements to modify the work products CR (previously completed). CR is a
workProductSet and is the input of the multi-instance task DC. In this scenario, we suppose that
only the elements CR1 and CR2 of CR which are the input respectively of the instance DC1 and
DC2 of the task DC are changed. Figure 13 show the impact analysis of this scenario that CAPE

Figure 9. UI of designer des2.

Figure 10. UI of tester t2.

Figure 11. UI of tester t3, t4.



gives the change manager for this major change. The impacted actors are distinguished by the cause of
impact, while des1, des2, d1, d2, t1, t2, and i1 are affected by the change on their work products
concerning the components C1 and C2, t3 and t4 in other projects are affected by sharing the test
bench tb1 with t1. We can see that the actors des3, d3, and t3 who work on the component C3 are
not affected.

5.3. Discussion

Our framework is based on the assumptions that a central graph database, a central resource repository,
and an application server (e.g., jBOSS) are provided to support the change management in a distributed
environment. However, because of the security policies of our industrial partners, currently, we could
not deploy our prototype directly in their real development environment. So we conducted the
validation with the participation of our partners on a simulated development environment on one

Figure 12. Evolution pattern.

Table III. Evolution scenario.

Pattern element Process element State Responsible process actor

tsk1 SRC1 Completed des1
tsk ′1 SRC′

1 Current des2
tsk2 DC1 Completed des1

IC1 d1
DC2 des2
IC2 d1

tsk3 DC3 Completed des3
tsk4 IS1 Current i1

PTB3 t3
PTB4 t4

wp1 CR1 Completed des1
CR2 des2

wp2 CR3 Completed des3
wp3 CDM3,C3 Completed des3
wp4 CDM1 Completed des1

C1 d1
CDM2 des2
C2 d2



central machine. However, the simulation does not affect the feasibility of our proposal because the
main work is done on the PDG.

We summarize in Table IV different types of impacts that should be analyzed when a change occurs.
Then we point out which types of impacts that can be identified in three solutions: (A) without
supporting tools (like actual solution of our partners in project ACOVAS), (B) with run-time
information taken from a standard process environment (as jBPM), and (C) with information taken
from our change-aware process environment CAPE.

The Table IV shows the advantages of CAPE compared with the solutions (A) and (B) in analyzing
inter-projects change impacts as well as impacts on tasks at different states. CAPE has this capability
thanks to the PDG, which provides a view of the whole system and also the history of system
processes’ execution. Another remark is that CAPE allows an immediate analysis and propagation
of changes, whereas it takes more time in the solution (A) and (B). In (A), without supporting tools,
changes propagation is done by human actors and often the change request has to be passed through
many organizational levels so that its impact can be estimated. In (B), using only a standard process
environment, impact analysis can be done by complex queries on various process logs, but lacking
the information about the data and resources using by tasks, this analysis is rather limited.

The feedback of our partners on the preliminary results of CAPE is positive. They affirmed the
needs of managing unofficial changes during the development process, especially for dealing with
problems in the testing phase where time constrains are important, because physical and human
resources are booked and allocated. Although additional works will be needed to develop a full
solution that can be integrated to the real environment of our partners, they found that CAPE is
helpful and motivated to continue working with us on the improvement of CAPE.

6. RELATED WORK

Change management can be tackled from different perspectives, such as process perspective, tool
perspective, and product perspective [1, 3]. According to [3], tools and methods to support the
change process can be divided into two groups: (1) those that help managing the workflow or

Figure 13. UI of change manager.

Table IV. Simulation results.

Impacts
Impacted
Task

Scope

Intra project Inter projects

Direct Current (A), (B), (C) (C)
Completed (A), (C) (C)
Potential (A), (C) (C)

Indirect Current (C) (C)
Completed (C) (C)
Potential (C) (C)



documentation of the process and (2) those which support process actors in making decisions at a
particular point in the engineering change process (e.g., the risk/impact analysis phase).

We use this structure to discuss some similar works on the tool perspective in Business Process, SSE
communities.

Work flow/documentation support: Computer-based tools have been recognized as an essential to
support engineering change [18]. In terms of academic works, Chen et al. [19] proposed a tool to
support distributed engineering change management linking with concurrent engineering. Lee et al.
[20] introduced a prototype for collaborative environment for engineering change management,
which combines ontology-based representations of engineering cases, case-based reasoning for
retrieval and a collaboration model. In the business process community, many of the existing works
on change management focus on proposing mechanisms to enable process adaptation and changes
propagation. Lanz et al. in [21] propose a tool to support process adaptation at run-time. Other
researches [22, 23] have investigated solutions for process adaptation by allowing process actors to
modify the process (e.g., add or delete a task). Reichert et al. in [24] conduct a good survey on the
flexibility of workflow system in order to response better to changes. However, these studies apply
the change without consideration of its impact and stay as prototypes, which are difficult to be
validated for industries.

In the engineering domain, commercial tools such as IBM Rational Team Concert [14] and Siemens
TeamCenter [25] provide the control for collaborative work. However, these tools in general are costly,
very complex to use and to customize, thus few companies have adopted them in their environment. In
the business process domain, many commercial tools have been developed, among them we cite the
most interesting such as Bonita [26] and jBPM [15]. The positive point of these BPMSs is that they
offer partial or full open-source API that enable extensions in staying with standardized and
operational environments. Envisaging a validation of our prototype in software and system
engineering, we need to keep this vision as standard and operational. That is why we developed our
academic prototype based on jBPM.

Decision making support: A wide variety of techniques are used in the context of impact analysis
and change propagation [18] in the engineering domain. There is currently no commercial package
that helps predict the effect of a change; however, some work is being carried out in academic
institutions [3]. Eckert et al. [1] based on a study conducted in Westland Helicopters, identified two
types of changes: the emergent changes and the initiated changes. This particular study was based
on the interviews conducted with the company’s employees. They proved that by capturing the
design knowledge and experience (e.g., source of change, interdependencies between parts and
systems, etc.), in the form of experienced designers in the company, an automatic tool to identify
the engineering change propagation can be developed. This work has further led to the development
of a computer support tool by Jarrat et al. [27] to identify the risk of a change. They apply the
Change Prediction Method to realize how changes spread through a product by using the Design
Structure Matrix as the basis of the product model. The tool uses a simple model of risk, where the
likelihood of a change propagating is derived from the past experience in terms of their occurrence
and the impact such changes would have. This technique has been used in many other works [28,
29]. Grantham-Lough et al. [30] applied prediction methods for change propagation and risk
estimations based on the functional decomposition of the product in early design stages. Their
methods utilize history of design failures and assume that the behavior of past products is
sufficiently similar to current or new products. As a result, tools show a diversity of approaches but
based on prediction approaches and using past experiences. Their applicability reduces in the real-
time change analysis when time plays a major role in informing the change affected partners.

Impact analysis of change is also an important topic in the research area of business process domain.
In [5], a change propagation approach called Refine Process Structure Tree is proposed to deal with
change in process choreographies. This approach addresses both phases of process change but only
inside one process instance. The approval of a change is done by negotiations among change
initiator and affected partners. By contrast, our approach derives the impact of change inside and
among process instances and also provides useful metrics in order to facilitate the negotiation phase.
Muler in [22] dealt with logical failures management in inter-workflow collaboration scenarios and
extends the previous work [31] by adding temporal and qualitative implications of workflow



adaptation. Temporal implications of an adaptation are determined by estimating the duration required
to execute the dynamically adapted workflow and by comparing it with originally fixed time
constraints. The metrics used in their approach are for deriving the essence of adaptation not for
measuring the impact of the adaptation. Impact of change among process instances was not
investigated as they considered only the impact of adaptation in one process instance.

7. CONCLUSIONS

To date, there is a gap between the process management and change management. No automation
support for change management is one of the most popular causes of defects in multi-disciplinary
engineering environments. Thus, as pointed out in [32], lack of integrated change management
supports is one of the reasons of the limited acceptance of process environments in system and
software industry. Combining the management of processes and changes to provide effective
communication and synchronization through the system can decrease the cost of reworks [3].

Convinced by the aforementioned statement, we have developed a prototype of a change aware
process environment that consolidates the process management and the change management into
one development environment. In this environment, run-time changes which are not described in
the process model can be integrated into process enactment. By providing process actors with the
possibilities of notifying and analyzing changes, our environment allows them handle changes in a
centralized and proactive way so that they can better anticipate and response to changes. Hence, we
offer a process enactment more flexible but still controlled. A prototype, implemented in Java with
the APIs of jBPM and Neo4j, is operational and is being validated with the case studies provided by
our industry partners.

The key strength of this work is using run-time process information to establish hidden
dependencies among processes, especially a process that supports multiple instances tasks and other
processes in different projects. Those dependencies are invisible on the model level and only emerge
at run-time via data exchanging or shared resources. By uncovering these dependencies, we could
provide a more thorough and precise analysis on the impacts of changes. This advantage should be
particularly helpful for System Engineering where the development involves often various teams in
different domains and on extreme complex products. Thus, it is important to find out exactly the
impacted elements among a huge set of process elements.

One weakness of this study was the limitation on the types of change request. We only dealt with the
change concerning modification the content of a work product or the change on execution time or
resource using time. Changes on process structure are not allowed at run-time. Another point that
may limit the application of our approach is the strong assumption on the input process model. The
current PMS requires a well-defined process model describing the activities of all process roles. This
global model is needed for extracting the dependencies among process elements. However, in
reality, it is hard to have such a process model.

To overcome the aforementioned deficiencies, we are working on a bottom-up approach for process
modeling and enactment. The idea is letting each process actor describes his own work. Then, from
separate process fragments, our PMS can construct progressively the PDG, use it to synchronize the
activities of process actors, and also to construct the global process model.
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