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Gait representation and recognition from temporal co-occurrence
of flow fields

Hatem A. Rashwan’ - Miguel Angel Garcia3 - Sylvie Chambon' - Domenec Puig?

Abstract

This paper proposes a new gait representation that encodes the dynamics of agait period through a 2D array of 17-bin
histograms. Every histogram models the co-occurrence of optical flow states at every pixel of the normalized template that
bounds the silhouette of atarget subject. Five flow states (up, down, left, right, null) are considered. The first histogram bin
counts the number of frames over the gait period in which the optical flow for the corresponding pixel isnull. In turn, each
of the remaining 16 bins represents apair of flow states and counts the number of frames in which the optical flow vector

has changed from one state to the other during the gait period. Experimental results show that this representation is
significantly more discriminant than previous proposals that only consider the magnitude and instantaneous direction of
optical flow, especially as the walking direction gets closer to the viewing direction, which is where state-of-the-art gait
recognition methods yield the lowest performance. The dimensionality of that gait representation is reduced through
principal component analysis. Finally, gait recognition is performed through supervised classification by means of support
vector machines. Experimental results using the public CMU MoBo and AVAMV G datasets show that the proposed
approach is advantageous over state-of-the-art gait representation methods.

Keywords Gait recognition - Action recognition - Temporal co-occurrence - Optical flow - PCA - Support vector machine

1 Introduction

Human gait is the repetitive pattern of motion of the limbs
of a person while moving over a solid surface. Every per-
son has adistinctive gait when walking or running and other
specific gait featuresthat characterize gender and age. There-
fore, automatic gait recognition is of interest to a variety
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of applications, such as biometrics and video surveillance.
That interest has driven the development of a wide variety
of gait recognition algorithms that can be broadly classified
into model-based and appearance-based approaches, which
basically differ in the feature space utilized to represent the
dynamics associated with gait prior to classification. While
model-based approaches are only applicable to humans,
appearance-based methods are generalizabl e to both humans
and animals. Most of the approaches assume the appli-
cation of a preprocessing stage in order to segment the
target individual (foreground) from the background of the
scene. Eventually, a shadow detection algorithm may also
be required in the case of outdoor scenes. Furthermore, the
extracted silhouettes are usually normalized to a predefined
sizein order to gaininvarianceto scale changes. Themajority
of gait recognition approaches have been devised from lat-
eral views, that is, with aline of sight mostly perpendicular
to the sagittal plane.

M odel -based approaches assume someapriori knowledge
about the geometry of the human body, which imposes sev-
eral physical constraints on the motion of the lower limbs.
For example, in [1], a 73 dimensional measurement vector



is formed by aggregating parameters such as the subject’s
speed, gait frequency, body proportions and coefficients of
rotation sinusoidal modelsfor the hip, knee and ankle. Mean
and covariances are computed for the measurement vectors
corresponding to every subject, and Bayesian classificationis
finally applied. Inaddition, in[2], |least-squareslinear regres-
sionisapplied in order to extract the lines that represent the
thighs and shins from the edges of the subject’s silhouette. A
genetic algorithm determines the harmonic coefficients that
characterize the temporal variation of shin angles. Classifi-
cation is performed through K-NN. In addition, [3] proposes
a three-phase model that combines spatiotempora shape
and dynamic motion characteristics of silhouette contours
toidentify human’s gait. For identifying a subject, the match
scores obtained by analyzing the local and global gait char-
acteristics obtained in the three phases are combined using a
weighted sum. Alternatively, [4] proposes a set of dynamic
features based on a human skeleton model for gait recogni-
tion invariant to the walking speed. In particular, time series
of changing joint angles, angle phase differences, massratios
of body parts and distances of body parts from the body cen-
ter are computed over the entire gait sequence. Classification
is performed by comparing the features extracted from the
probe subjects with the tested ones using the Euclidean dis-
tance.

Alternatively, appearance-based methods only take into
account the consecutive foreground regions corresponding
to a same subject, with no assumptions about the latter
other than the periodicity of its motion. The gait represen-
tation utilized by most appearance-based methods is based
on one or several images (or 2D arrays) obtained from the
sequence of foreground regions of the target subject dur-
ing a gait period. Preliminary works include [5] where two
images are generated from the subject’s binary silhouettes:
a binary Motion-Energy Image (MEI), which represents
where motion has occurred in the last images, and a gray-
scale Motion-History Image (MHI) in which intensity is
proportional to the recency of motion. The meansand covari-
ances of the Hu's moments of those images are used as
lower-dimensional features, whileclassificationisperformed
through the nearest neighbor rule using the Mahalanobisdis-
tance between features. An extension of MHI is presented
in [6]. In particular, the frames of half agait period are par-
titioned into a constant number of digjoint subsets (temporal
windows). The MHI is computed for every subset and a his-
togram of oriented gradients (HOG) obtained for each MHI.
The gait period is then characterized by the set of HOGs.
The Euclidean distance between sets of HOGs is used for
recognition.

In turn, [7] proposed the Gait Energy Image (GEI) as
the average of the normalized binary silhouettes correspond-
ing to the same gait period. GEI has become a widely used
gait representation thereafter. In that proposal, dimensional-

ity reduction is done trough PCA and Multiple Discriminant
Analysis (MDA), whereas classification is based on the
minimum Euclidean distance between features. Similar gait
representations based on the average of binary silhouettes
wereproposedin[8]. Where PCA isapplied for dimensional-
ity reduction and the Euclidean distance used to measure the
similarity of the averaged silhouettes. A variation of GEI was
proposed in[9], in which the lower subimage from the knees
to the feet is removed. The result is the Head-Torso Image
(HTI). The nearest neighbor ruleis utilized for classification
by using the sum of absolute differences as a distance. Fol-
lowing a different approach also based on GElI, [10] applies
Gabor filtersto the GEI representationin order to obtain three
new imagesthat encode thefiltersresponse over the different
directions and scales. General Tensor Discriminant Analysis
(GTDA) isappliedin order to extract features and reduce the
dimensionality of the problem. Finally, classification isdone
through Linear Discriminant Analysis (LDA). In that line,
[11] applies the Radon transform to the GEI representation
to compute the 2D projection image along varying angles
between 0 and 180", All the projections are appended to
form a 1D Radon Transform vector, and PCA is applied to
reduce the dimensionality of the final feature space. Classi-
fication is performed through the nearest neighbor rule by
using the Euclidean distance.

Alternatively, in[12], GEIl images are mapped to a Grass-
mannian manifold. Then, Grassmannian locality preserving
discriminant analysisisused for improving recognition accu-
racy. Following adifferent approach, Kusakunniranetal. [13]
proposed a gait recognition method based on calculating an
adaptation of thelocal binary pattern (LBP) descriptor called
aweighted binary pattern (WBP) given asequence of aligned
silhouettesduring agait cycle. Thedistanceisthen calculated
to measurethe similarity between the various gait signatures.
In [14], two features based on multi-scale LBP (MLBP) and
Gabor filter banks extracted locally from Regions of Interest
(ROIs) are used to represent the dynamic areas in GEI. A
spectra Regression Kernel Discriminant Analysis reduction
agorithm is then used to reduce the dimensionality of these
features. Alternatively, Wang et al. [ 15] propose the Chrono-
Gait Image (CGl) asagait representation al so generated from
the contours of the normalized binary silhouettes. In particu-
lar, every contour is mapped to an RGB color depending on
its position within the gait period. All colored contours cor-
responding to aquarter of the gait period are added. The CGI
imageis obtained by accumulating the contour additions cor-
responding to different quarters of the gait period. PCA and
LDA areused for dimensionality reduction, while classifica-
tionisdone by means of K-NN using the Euclidean distance.
In addition, view-invariant gait recognition based on extract-
ing parametric 3D gait models from three cameras and using
partial similarity matching to improve recognition rates is



proposed in [16,17]. Sparse representation-based classifica-
tion isthen performed for gait classification.

All the af orementi oned appearance-based methodsencode
the dynamic information of a gait period based on the
visual appearance of the foreground region associated with
the target subject. However, with the exception of [18], al
those methods start with the binary silhouette of the subject,
hence disregarding the internal appearance of the regions.
In practice, only the shape of the region contour is thus
taken into account. Notwithstanding, an alternative family
of appearance-based gait recognition methods al so take into
account the internal appearance of the foreground regions
by analyzing the optical flow fields computed within those
regions, and encoding the variation of those fields over the
gait period. The advantage is that those gait representations
do not lose as much discriminative power as their coun-
terparts as the angle between the walking and the viewing
directions departs from 909'¢. In the extreme case where
both directions are aligned (i.e., the line of sight is perpen-
dicular to the corona plane), most of the aforementioned
methods have almost no shape information to discriminate
among different gaits.

Recently, [19] proposed the discretization of the flow
directions, encoding them into asingle 5-bin histogram asso-
ciated with every pixel. In particular, the first bin keeps the
number of frames within the gait period where that pixel has
no motion, whereas the other four bins keep the number of
frames with motion up, down, |eft and right, respectively. A
Motion Intensity Image (MIl) is obtained from the values of
thefirst binfor all pixels of theforeground region. Similarly,
four Motion Direction Images (MDI) are obtained from the
other bins. The MII and the first three MDls are indepen-
dently used for recognition. Component and Discriminant
Analysis (CDA) is applied for dimensionality reduction.
Classification is done using the Euclidean distance between
feature vectors in the CDA subspace. A similar approach to
MII [19] later proposed in [20] defines the Gait Flow Image
(GFI) as a gait representation in which the value associated
with each pixel isthe number of frameswithin the gait period
in which that pixel has no optical flow. GFls can be recog-
nized by direct matching or after dimension reduction using
L DA followed by classification through the nearest neighbor
rule.

Furthermore, [21] presented a gait recognition approach
that combines |ow-level motion descriptors based on optical
flow, which are extracted from dense local spatiotemporal
features, with amultilevel gait encoding based on the Pyra-
midal Fisher Mation (PFM) gait descriptor. This method
supports single and multiple viewpoints. The computed
optical flow isrepresented by means of the Divergence-Curl-
Shear (DCS) descriptor. Then, the DCS descriptors are used
to build a person-level gait descriptor based on Fisher vec-
tors. A Fisher vector is computed within each cell of the

spatiotemporal grid of the subject’s body. In order to build
apyramidal representation, different grid configurations are
combined. Then, afinal featurevector iscomputed asthecon-
catenation of the cell-level Fisher vectorsfor all the levels of
the pyramid. Finaly, SVM is utilized for the classification
stage to recognize the different gaits. In [22,23], based on
optical flow estimated from consecutive frames, a discrim-
inative biometric signature (DBS) is used for representing
the gait cycle. The descriptor accounts for both spatial and
temporal DBS features considering local and global cues of
the motion process.

In addition, some works of action recognition are based
on capturing the local motion information of a set of images
[24,25]. Regarding to [24], the authors have proposed a
descriptor based on combining histograms of oriented gradi-
ents (HOG) and histograms of optical flow (HOF) for human
action recognition in avideo. They utilized HOG to describe
static appearance information, whereas HOF to capture the
local motion information. In turn, [25] have introduced a
descriptor based on motion boundary histograms (MBH)
which relies on differential optical flow. For each interest
point detected, they consider avolume of 32 x 32-pixel win-
dow aong 15 consecutive frames, such that the window is
centered at the tragjectory of the corresponding point. That
trajectory is estimated through optical flow and median fil-
tered. Then, you divide the volumeinto 2 x 2 x 3 cellsand
compute MBHx and MBHYy for each cell. MBHXx isan 8-bin
histogram of the derivative of horizontal optical flow for the
pixels within the cell. MBHYy is the same for vertical. The
dimension is 96 (i.e., 2 x 2 x 3 x 8) for both MBHXx and
MBHYy. In addition, [26] proposed an extension for MBH by
using 3D co-occurrence descriptors, which take into account
the spatiotemporal context within alocal 32 x 32-pixel win-
dow along a set of consecutive frames. They then apply the
Bag-of-Featuresmodel for each vectorized 3D co-occurrence
matrix, and leverage amulti-channel kernel SVM to combine
channels for the descriptor.

Thispaper proposesanew gait representation that encodes
the dynamics of a gait period through a 2D array of 17-bin
histograms. Every histogram models the co-occurrence of
optical flow states at every pixel of the normalized template
that bounds the silhouette of the target subject. Similar to
[19], four flow directions are considered (i.e., up, down, left,
right) and thefirst histogram bin countsthe number of frames
over the gait period in which the optical flow for the corre-
sponding pixel is null. However, each of the remaining 16
bins now represents a change in motion state (e.g., up/up,
up/down, down/up, down/down, null/left, left/null, up/null,
...) and countsthe number of framesinwhichthe optical flow
vector has changed from one state to the other during the gait
period. Experimental results show that this representation is
significantly more discriminant than previous proposals that
only consider the magnitude and instantaneous direction of



optical flow [19,20], especially asthe walking direction gets
closer to the viewing direction, which is where state-of-the-
art gait recognition methods yield the worst performance.
The dimensionality of the proposed gait representation is
reduced through PCA.. Finally, gait recognition is performed
through supervised classification by meansof aset of Support
Vector Machines (SVM).

The rest of this paper is organized as follows. Section 2
introduces the basic concepts of optical flow and describes
the proposed gait representation, including the dimension-
ality reduction stage. The classification stageis presented in
Sect. 3. Experimental resultsare shown and discussedin Sect.
4, including acomparison with state-of-the-art gait represen-
tation methods using the public CMU MoBo and AVAMVG
datasets. Finally, conclusionsand futurelinesare highlighted
in Sect. 5.

2 Gait representation through temporal
co-occurrence of flow fields

This section describes anew gait representation that encodes
the dynamics of a gait cycle by statistically modeling the
temporal co-occurrence of optical flow states during a com-
plete gait period. Similar to previous approaches[7,19,20], a
background subtraction scheme is previously applied to the
input video sequence for extracting the foreground regions
corresponding to the target subject. To gain invariance to
scale, every foreground region is scaled such that its height
isset to apredefined size h and itswidth adjusted accordingly
in order to keep the original aspect ratio. The result is then
centered into an h x w template. The gait period is obtained
through maximum entropy estimation [27].

Given the set of n consecutive h x w templates belong-
ing to asame gait period, {To, Ty, ... Th—1}, an optical flow
field is computed for every template. The flow field for the
i — th template is denoted as wj and computed using two
consecutive templates: T; and Tj, where j = (i + m)%n,
O<m<nandO <i,j < n, where % is the module
operator. A state-of-the-art optical flow algorithm previously
proposed by theauthorsin[28] isapplied for estimating accu-
rate dense flow fields. That algorithm is robust to noise and
outliersin being based on adiscontinuity-preserving filtering
stage that applies stick tensor voting, Fig. 2(c).

Every optical flow field is atwo-dimensional vector field
wj defined in the domain of the h x w templates. That field
is congtituted by both a vertical displacement field v; and a
horizontal displacement field uj, wi = (u;, vj). Therefore,
the flow vector corresponding to a given template pixel at
coordinates (X, y) iswj (X, Y) = (Ui (X, Y), vi (X, ¥)).

Let R (x,y) and L;(x, y) be two Boolean variables that
indicate that the associated pixel has a positive (Right) or a
negative (Left) horizontal displacement, respectively, which
can be defined as:

Li(x,y) =1—"H(ui(x,y)), 1)
R(X,y) = 1—H(-Ui(X,y)), %)

where H is the Heaviside function. In addition, let H; (x, y)
be a Boolean variable that represents that the magnitude of
the flow vector in the horizontal direction, u; (X, y), is null,
that is, below avery small threshold e (inthiswork, € < 1.0).

1 —e<UXy <e
0 otherwise

Hi(x,y) = { ©)

If Hi (X, y) istrue, variables R (x, y) and L; (x, y) areforced
to the false state.

Similarly, let Dj(x,y) and Uj(x,y) be two mutualy
excluding Boolean variables that denote that the pixel’s
vertical displacement is positive (Down) or negative (Up),
respectively. In addition, Vi (X, y) is a Boolean variable that
represents that the magnitude of the flow vector in the ver-
tical direction, vj (X, y), isnull. If Vi (X, y) istrue, U; (X, y)
and Dj (x, y) are set to false.

UiX,y) =1-"H(@i(X,Y)), (4)

Di(X,y) = 1 —H(—vi(X,Y)), 5)
1 - S s X

R bk ©

The variation of the n flow fields estimated for the whole
gait period is then statistically modeled by an h x w array of
17-bin histograms, with a histogram associated with every
template pixel. The first bin (HV;) counts the total number
of templates over the gait period where the associated pixel
has no apparent motion (i.e,, Hi(X,y) = Vi(x,y) = 1).
Therefore, that bin represents the magnitude of motion as:

HVi(x,y) = Hi(x, y) x Vi(X,y), (7)

where x isthe multiplication operator.

In turn, each of the remaining 16 bins models a co-
occurrence of optical flow states between apair of templates
separated by m frames, Tj and T;. The 16 bins are noted as.
HL;, HR;, VU;, VDj, LH;, RH;, UV;, DV;, LL;, LR, RL;,
RR;, UU;, UD;, DU;, DD;. For example, RH; (x, y) counts
the number of templates where both H; (x, y) and R;j(x, y)
are true, indicating that the horizontal displacement is null
at template i and the horizontal component of the flow vec-
tor then becomes positive at template j, that is, m templates
later:

HR (X, y) = Hi(X, y) x Rj(X, y). (8)

The same pixel would also contribute to, for instance, bin
VU; provided Uj (x, y) and V; (X, y) were true, meaning that



thevertical displacement at templatei isnull and mtemplates
|ater becomes negative.

VUi (X, y) = Vi(x,y) x Uj(x,y). 9)

Noticethat both R; (x, y) and U (x, y) can betruesimul-
taneoudly, indicating that the angle of the flow vector isinthe
first quadrant. Inthat case, L j (X, y), Dj (X, y), Hj(x, y) and
Vj (x, y) will befalse. Every 17-bin histogram is normalized
through the L1 norm, whichyieldsslightly better resultsthan
the L2 norm and other normalization policiesthat have been
evaluated, see Fig. 1. For agait cycle, theh x w array of 17
bins is computed between every pair of frames. Finally, an
accumulation h x w histogram of 17-binsis computed. For
instance, the bin related to LL(x, y) can be defined as:

n—-1
LL(x,y) = Z LLi (X, y), (20)
i=0

The complete equations are shown in the Annex.

Similar to [19], the h x w array of 17-bins histograms
can also be interpreted as a set of 17 gray-level images of
h x w pixels each, such that every image keeps the val-
ues of one of the bins. Thus, the first bin yields the Motion
Intensity Image (MI1) [19], in which the lower the value the
higher the percentage of motion during the gait period. That
image resembles the popular Gait Energy Image (GEl) [7].
However, sincethe GEI iscomputed using binary silhouettes
instead of optical flow fields, the measurement of motion
intensity is indirect and far less accurate than the one uti-
lized for generating the MII. The remaining 16 bins yield
corresponding images referred to in thiswork as Motion Co-
occurrence Images (MCI).

Figure 2 shows two consecutive frames from one of the
video sequences belonging to the CMU dataset (a, b), the
computed optical flow field for those frames (c), the MiI
(d) and the 16 MCls (e-p) obtained for the gait period,
which comprises 34 image frames (n = 34) in this exam-
ple. The minimum separation between pairs of frames has
been set to m = 1, which as shown in Sect. 4 yields opti-
mal or near-optimal results for both slow and fast walking
speeds. Regarding the MII, the lowest values represent-
ing high motion are observed at the legs of the subject as
expected. As for the MCIs, the first two rows show the
motion co-occurrences for the horizontal (e-h) and ver-
tical (i) components. In turn, the last two rows show
the co-occurrences between null motion and appreciable
motion states (Mm—p), and vice-versa (g-t). Notice that all
co-occurrence images are different and provide distinctive
and complementary information that, as a whole, conveys
the dynamics of the analyzed gait.

Once the motion patterns of the gait cycle are represented
through the proposed h x w array of 17-bin histograms, it is

necessary to reduce the dimensionality of that array in order
to make it more compact and hence manageable. Similarly
[7,11,15,29], this is done through PCA, which applies an
orthogonal transformation in order to convert a set of obser-
vations of possibly correlated variablesinto a set of values of
linearly uncorrelated variables called principal components.
When the number of principal components is less than the
number of original variables, the dimensionality of the prob-
lem isreduced while retaining as much of the variancein the
dataset as possible, which isuseful for further discrimination
tasks. The principal componentsaretheright singular vectors
of the Singular Value Decomposition (SVD) of the centered
datamatrix. Thedimensionality isreduced by only consider-
ing thefirst r largest singular values and their corresponding
right singular vectors.

In particular, the Ml and each of the MCls are arranged
as asingle hw column vector. The original h x w array of
17-bin histogramsis then represented as an hw x 17 matrix
X. Therefore, the number of variables in this problem is 17
and the number of observations hw. Using SVD, al7 x 17
matrix of right singular vectors W is obtained, along with a
17 x 17 diagonal matrix of singular values X. The principal
components of X are the columns of W, which are sorted
in descending order of their corresponding singular values.
Matrix W is then truncated along its columns to retain the
firstr singular vectors, yielding W, , whichisal7 x r array.
In thiswork, r has experimentally been set to six as shown
in Sect. 4. Matrix W, isthen mapped to asingle 17r column
vector, which isthe final gait representation (gait vector).

3 Gait recognition

Gait recognitioninthiswork iscast asamulticlasssupervised
classification problem based on support vector machines
(SVMS). In particular, a binary SVM is trained for every
considered gait class. A one-versus-all training approach is
applied. Thus, during the offlinetraining stage, every SVM is
trained with thegait vectorscorresponding to the classassoci-
ated with that SVM aspositive examples, and the gait vectors
corresponding to the remaining classes as negative examples.
In turn, during the online classification stage, an input gait
vector is classified into the class corresponding to the SVM
with the largest output function, thus following a winner-
takes-al strategy. The experimental results conducted in this
work have yielded the best classification results by using
nonlinear SVMs with a kernel based on a Gaussian radia
basis function (RBF) (y = 0.2) and soft margin parameter
(C = 1). In addition, the mapping kernel RBF is defined as:

K. %) = exp (=7l = xl1?). (1)
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where y = 1/202, ||x; — x;||? is the squared Euclidean
distance between the two feature vectors x; and x;, and o is
a free parameter of the standard deviation.

4 Experimental results

In all experiments, we assume that the subjects are previously
extracted from original images. In particular, our dataset [30]
already contains the bounding box and silhouette of every
subject. In turn, for the dataset in [31], we used pedes-
trian detection based on the HOG descriptor and background
subtraction based on Codebook models to extract the bound-
ing boxes and silhouettes, respectively. Both algorithms are
implemented in OpenCV.

4.1 Experiments on the CMU MoBo dataset

The proposed gait representation and recognition method
have been evaluated using the public video sequences of the
CMU Motion of Body (MoBo) dataset [30]. That database
contains video sequences corresponding to four different
gaits (slow walk, fast walk, incline walk, walking with a
ball) performed on a treadmill by 25 subjects. Every individ-
ual was simultaneously recorded by six high-resolution color
cameras evenly distributed around the treadmill as shown
in Fig. 3. Thus, every sequence corresponds to one sub-
ject executing a particular gait and captured from a specific
viewpoint. Therefore, a total of 600 video sequences have
been processed, each containing 340 image frames approxi-
mately. A gait vector has been computed for every sequence
as described in Sect. 2.
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As indicated in Sect. 3, one SVM per gait has been trained
with positive examples of gait vectors corresponding to the
six viewpoints of the associated gait for the 25 subjects. The
remaining training gait vectors associated with the alterna-
tive gaits have been used as negative examples. The training
set was obtained through holdout cross-correlation by ran-
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Fig.3 Six camera viewpoints considered in the CMU MoBo dataset

domly picking half of the available video sequences (i.e., 300
training gait vectors). The remaining vectors constituted the
test set. The holdout cross-correlation process was repeated
30 times, thus obtaining 30 different pairs of training and test
sets. The final classification rates reported in this work have
been obtained by averaging the rates corresponding to every
test set.

The first experiment evaluates the effect of the number of
principal components, r, on the classification rates for the
different tested gaits with disregard of the camera viewpoint.
Table 1 shows the average classification rates for the tested
gaits by considering the first r singular vectors, with r rang-
ing between 2 and 10. Notice that classification rates do not
grow significantly beyond 6 components. Therefore, r = 6
is a convenient trade-off between classification accuracy and
computational cost. Thus, the classification rate is:

CR(%) = R:/ Ry, (12)

where R, and R; are the number of subjects correctly identi-
fied by the SVM prediction and the total number of subjects
in the dataset, respectively.

In the second experiment, the proposed gait representation
based on temporal co-occurrence of flow fields, referred to as
MCI, has been compared to three alternative gait represen-
tations: the widely used GEI representation [7], and the two
gait representations based on flow fields, respectively, pro-
posed in [19], hereafter referred to as GFF, and [20], referred
to as GFL. In order to compare those representations with the
one proposed in this work solely in terms of discrimination
capabilities, both the dimensionality reduction stage (PCA-
based) and gait recognition stage (SVM-based) proposed in



Table 1 Classification rates with the proposed technique for a varying
number r of principal components between 2 and 10

Gait 2 3 4 5 6 8 10

Slow 0.8 088 092 095 097 097 097
Fast 08 089 092 095 097 097 097
Incline 087 08 093 095 09 097 097
Ball 087 089 092 095 09 097 0.96

Average 087 089 092 095 096 097 097
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Fig.4 Average classification rates for a slow gait from the CMU MoBo
dataset yielded by the four gait representation methods: GEI, GFI, GFF,
MCI (proposed method), distinguishing among the six camera view-
points: 1 (v03), 2 (v05), 3 (v07),4 (v13),5 (v16) and 6 (v17), see Fig. 3

this work have also been applied to those three alternative
representations instead of the corresponding stages proposed
in their original proposals. In that way, the difference of clas-
sification rates among them will only be attributable to the
descriptive power of each gait representation.

The average classification rates corresponding to the four
evaluated gaits for each of the four tested gait representa-
tions are shown in Figs. 4, 5, 6 and 7, distinguishing among
each of the six camera viewpoints. Notice that the proposed
representation (MCI) is significantly superior to the others
for recognizing all gaits from the viewpoints aligned with
the walking direction (i.e., vO7 and v17). This is the hard-
est scenario, as shown by the drop in performance close
to ten percent that undergo the other methods. In contrast,
the proposed representation has a more stable behavior, with
classification rates above 95 percentin all cases. These results
show that the temporal co-occurrence of flow fields is able to
better capture the dynamics of the gait patterns independently
of the speed of the subject and the camera viewpoint, espe-
cially when the silhouette of the target does not correspond
to a lateral view, as well as for fast walking speeds.

In addition, Tables 2, 3, 4 and 5 show the confusion
matrices among gaits (including all their viewpoints) cor-
responding to the proposed gait representation (MCI), GFE,
GFI and GEI, respectively. The proposed method yields the

1 2 3 4 6

Fig.5 Average classification rates for a fast gait from the CMU MoBo
dataset yielded by the four gait representation methods: GEI, GFI, GFF,
MCI (proposed method), distinguishing among the six camera view-
points: 1 (v03), 2 (v05), 3 (v07),4 (v13), 5 (v16) and 6 (v17), see Fig. 3

e |

[; o =i . BEGhH
| [_IGFF
e |
— — 4 — I VE—
1 2 3 5 €

R

Fig. 6 Average classification rates for an incline gait from the CMU
MoBo dataset yielded by the four gait representation methods: GEIL,
GFI, GFE, MCI (proposed method), distinguishing among the six cam-
era viewpoints: 1 (v03), 2 (v03), 3 (v07), 4 (v13), 5 (v16) and 6 (v17),

see Fig. 3
1 2 3 B

Fig.7 Average classification rates for carrying ball gait from the CMU
MoBo dataset yielded by the four gait representation methods: GEI,
GFI, GFFE, MCI (proposed method), distinguishing among the six cam-
era viewpoints: 1 (v03), 2 (v05), 3 (v07), 4 (v13), 5 (v16) and 6 (v17),
see Fig. 3

L3

best performance and the lowest error rates among the alter-
native gait representation methods.

Another experiment aims at evaluating the effect of the
time span parameter m introduced in Sect. 2, which rep-
resents the number of frames between templates whose



Table 2 Confusion matrix for the four tested gaits with the proposed
method (MCI+PCA+SVM)

Slow Fast incline Ball
Slow 96.0 2.0 1.5 0.5
Fast 2.5 97.0 0.5 0.0
Incline 2.9 2.0 95.0 0.1
Ball 1.8 2.0 0.2 96.0

Table 3 Confusion matrix for the four tested gaits with
GFF+PCA+SVM

Slow Fast Incline Ball
Slow 92.4 2.8 33 1.5
Fast 3.7 91.1 22 3.0
Incline 3.5 1.8 92.0 2.7
Ball 25 35 3.6 90.4
Table 4 Confusion matrix for the four tested gaits with
GFI+PCA+SVM

Slow Fast Incline Ball
Slow 90.7 4.5 25 23
Fast 5.0 90.2 2.1 2.7
Incline 4.5 34 88.9 32
Ball 4.2 2.8 4.0 89.0
Table 5 Confusion matrix for the four tested gaits with
GEI+PCA+SVM

Slow Fast Incline Ball
Slow 89.2 4.1 22 4.5
Fast 4.8 89.0 3.2 3.0
Incline 5.5 5.8 87.5 1.2
Ball 6.0 3.2 2.7 88.1

flow fields are considered for the computation of the co-
occurrence of optical flow states. Figure 8 shows the average
classification rates obtained for the four tested gaits corre-
sponding to one of the two most demanding viewpoints (v07),
with different values of m ranging between 1 and 15. Notice
that the performance deteriorates as m increases. Therefore,
m has been set to one in this work, since it is the value that
yields optimal performance for the fast gait and near-optimal
performance for the other tested gaits.

Finally, Table 6 shows the CPU times corresponding to
the test stage (i.e., computation of the gait representation and
classification) for all the tested gait representations by using
the same dimensionality reduction stage based on PCA and
the classification stage based on SVMs. All methods have
been implemented in MATLAB and executed on an Intel

o
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Fig. 8 Average classification rates with the proposed method
(MCI+PCA+SVM) for the 4 tested gaits with viewpoint vO7 and values
of the time span parameter m between 1 and 15

Table 6 CPU times in seconds of the gait representation and classifi-
cation stages for the four tested gait representations

Method Representation Classification Total

GEI 7.063 0.425 7.488
GFI 34.452 0.846 35.284
GFF 26.376 1.154 27.530
MCI 32.244 2.251 34.495

Dual Core at 3.2 GHz. The execution time of the proposed
technique is in the same range as the other methods based on
optical flow fields.

4.2 Experiments on the AVAMVG dataset

In order to further assess the robustness of the proposed
method, it has also been evaluated using the AVA Multi-
View Database for Gait Recognition (AVAMVG) [31]. This
database contains 1200 video sequences of 20 subjects (16
males and 4 females). There are 60 sequences associated
with every subject, which correspond to 10 different paths
captured from 6 viewpoints, as shown in Fig. 9. Three paths
correspond to straight segments (1r01, ..., tr03), six paths
to curved segments (tr04, ..., tr09), as shown in Fig. 9a,
and the last path is an 1r08-shaped segment (¢r 10), as shown
in Fig. 9b.

Input video sequences must first be processed to segment
the walking subjects. Firstly, the RG B images are converted
into HSI color space. In this work, background subtraction
based on mixtures of Gaussian is applied to the Hue and
Saturation channels, which are more robust to illumination
changes. The subjects’ silhouettes are then processed through
morphological operations in order to improve their quality.

The performance of MCI for the six viewpoints of the
AVAMVG dataset is compared with the three standard gait
representation methods: GEI, GFI and GFFE. Figure 10 shows
that the proposed approach is robust to variations of the cam-
era viewpoints, and can correctly detect more than 95% of



sam ’ % ¥ 5.8m

(a) (b)

Fig.9 AVAMVG setup and different paths: a 701 to 1709 and b £r10
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Fig.10 Averageclassification rates for a path#r01 and b path 1704 from
the AVAMVG dataset yielded by the four gait representation methods:
GEI, GFI, GFF, MCI (proposed method), distinguishing among the six
camera viewpoints: cl ,c2,c3,c4,c5 and c6

the subjects’ gait. Actually, the alternative methods yield
less accuracy, especially when the camera is aligned with
the walking direction, which is consistent with the results
previously reported on the CMU MoBo dataset.

In addition, the four gait representation methods, GEI,
GFI, GFFE, MCI (proposed method), have been compared in
order to recognize the path segments of the subjects in the
AVAMVG dataset. In particular, the six viewpoints of the
subjects have been used to train four SVMs, such that each
SVM is associated with one path segment (tr01, tr04, tr07
and 1r10). As shown in Fig. 11, the results show the robust-
ness of the proposed gait recognition method with respect to
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Fig.11 Average classification rates for four paths (1701, tr04, tr07 and
tr10) from the AVAMVG dataset yielded by the four gait representation
methods: GEI, GFI, GFF, MCI (proposed method)

Table 7 Classification rates with the proposed method and the five
variations of the approach proposed in [21] (PFM)

Method tr04 tr07 trl0
MCI+PC 89.6 90.7 914
PFM [21] 75.0 91.3 81.0
PEM +PCAL100 [21] 725 91.5 772
PFM +PCAL100+PCAH256 [21] 73.8 90.0 81.1

PFM +PCAL50+PCAH256 +pyr [21] 75.0 90.0 87.3
PFM +PCAL100+PCAH256 + pyr [21] 713 92.5 823

the three other methods with a variation of walking paths.
MCI successfully detects the correct segment for the four
tested paths in the AVAMVG dataset (more than 94%),
whereas the other methods do not provide satisfactory recog-
nition rates, especially for the curved paths (1r04, tr07 and
tr10).

In this experiment, the proposed approach has been com-
pared with the method presented in [21] (PFM) with the same
multiview dataset (AVAMVG). In [21], the PFM approach
was evaluated by training different variations of a PFM
model with the three straight paths (1r01, tr02, tr03) and
then by testing on the other curved paths (tr04, tr07, tr 10).
As mentioned in [21], they used five different variations of
PFM: (a) PFM denotes a single-level PEM obtained by con-
catenating the descriptors extracted from both the top and
bottom half of the subject’s body with Fisher vectors obtained
using a Gaussian Mixture Model (GMM) of size 150. (b)
PFM + PCAL100 corresponds to applying PCA to reduce the
dimensionality of the low-level motion descriptors to 100
before building the PEM. (c) PFM +PCAL100+PCAH256
corresponds to PFM with a reduction in the dimensionality of
the low-level descriptors to 100 and of the final PFM descrip-
tor to 256. (d) PFM + PCALS50 + PCAH256+pyr corresponds
to a two-level pyramidal configuration where the first level
has no spatial partitions and the second level is obtained by
dividing the bounding box into two parts along the vertical
axis. In addition, PCA is applied in order to reduce the dimen-
sionality of the low-level descriptors to 50 and of the final



Table8 Recall (R), precision (P) and specificity (S) valueswith HOF, MBH, 3D-CoHOF,3D-CoMBH and MCI descriptors with slow, fast, incline

and carrying ball gaits

Methods  MCI MBH HOF 3D-CoHOF 3D-CoMBH

R P S R P S R P S R P S R P S
Slow 96.6 9.4 9.4 97.1 96.9 96.8 95.2 95.1 95.3 93.9 93.7 93.3 94.4 9%4.1 94.2
Fast 96.9 96.8 96.8 97.4 97.2 97.2 95.7 95.5 95.6 92.4 92.1 92.5 94.5 94.2 94.3
Incline 94.3 94.9 94.8 95.1 94.6 94.6 93.1 93.2 92.9 91.5 91.2 90.5 93.6 93.3 93.1
Ball 96.5 96.0 96.0 96.2 95.9 95.9 95.0 94.9 94.7 92.0 91.8 91.4 9.1 94.0 93.8

PFM vector to 256. () PFM +PCAL 100+ PCAH256 + pyr
issimilar to PFM + PCAL50+PCAH256 + pyr, but reducing
the dimensionality of thelow-level descriptorsto 100 instead
of 50.

Table 7 shows that the proposed method (MCI +PCA)
achieves correct classification rates above 89% with tr04
and 91% with tr 10, yielding significantly better results than
the five variations of [21]. In turn, the proposed scheme
yields a recognition rate of more than 90% for path tr 07.
Although PFM +PCAL 100+ PCAH256 + pyr yields the best
correct classificationratesfor tr 07, thisalgorithm hasamuch
larger computational compl exity thanthe proposed technique
due to both the use of GMM models of 150 Gaussians for
computing the Fisher vector features and the application of
PCA to both the low-level descriptors and the final PFM
descriptor.

4.3 Comparison with action recognition methods

The proposed descriptor has also been compared with four
descriptors, namely HOF[24], MBH [25], 3D-CoHOF [26]
and 3D-CoMBH [26], used for human action recognition. As
proposed in [25], the pixel window sizeis 32 x 32. In turn,
the path length has been set equa to the gait cycle (i.e.,, 33
frames for the CMU MoBo dataset). The 32 x 32 x 33 pixel
volume has been split into 2 x 2 x 3 cells.

For HOF, orientations are quantized into 8 bins, with full
orientation and magnitudes being used for weighting. An
additional zero bin has been added (i.e., 9 hins), as pro-
posed in [24]. The final descriptor sizeis 108 for HOF (i.e.,
2 x 2 x 3 x 9). For MBH, both MBHx and MBHYy feature
vectors have 96 dimensions. 3D-CoHOF, 3D-CoMBHx and
3D-CoMBHy have been defined as described in [26], with
each corresponding 3D co-occurrence descriptor along with
three offsets: of f sety, of f sety and of f set;, and where each
offset isavector of length4 x 4 x 2 x 2 x 3. SVM isthen
used for gait recognition.

In this experiment, the recall, precision and specificity
va ues with HOF, MBH, MCI, 3D-CoHOF and 3D-CoMBH
have been computed for thefour gaits(i.e., low, fast, incline
and carrying ball) of the CMU MoBo dataset. As shown in
Table 8, the MBH descriptor yields the best results among

Table 9 CPU times in seconds of the gait representation and classifi-
cation stages for HOF, MBH, 3D-CoHOF,3D-CoMBH and MCI

Method descriptor Classification
HOF 222 2.85
MBH 38.7 292
3D-CoHOF 328 351
3D-CoMBH 453 4.60
MCl 16.9 225

the three descriptors for both slow and fast gaits. In turn, the
proposed descriptor MCI yields the best results for the two
other gaits (i.e., incline and carrying ball). Meanwhile, the
standard HOF and MBH descriptors yield better accuracy
than the extended descriptors 3D-CoHOF and 3D-CoMBH,
athough their accuracy is less than the one of the proposed
MCI descriptors.

Table 9 shows the CPU times corresponding to the test
stage (i.e., computation of the gait representation and clas-
sification) for the five descriptors. HOF, 3D-CoHOF, MBH,
3D-CoMBH and MCI. They are implemented in C++. The
same classification stage based on SVMs has been applied
implemented in MATLAB. The proposed descriptor is sig-
nificantly faster than the four other descriptors, which must
compute the trajectories of the subjects over the gait cycle.
The execution time of the classification stage based on the
five descriptors is in the same range. Therefore, athough
MBH yields significantly better classification ratesthan MClI
in some cases, the latter istwice faster.

5 Conclusion

This paper proposes a new gait representation that encodes
the dynamics of a gait period through a 2D array of 17-
bin histograms. Every histogram models the co-occurrence
of optical flow states at every pixel of the normalized tem-
plate that bounds the silhouette of atarget subject. Five flow
states (up, down, left, right, null) are considered. The first
histogram bin counts the number of frames over the gait
period in which the optical flow for the corresponding pixel



is null. In turn, each of the remaining 16 bins represents
a pair of flow states and counts the number of frames in
which the optical flow vector has changed from one state
to the other during the gait period. The dimensionality of
the proposed gait representation is reduced through principal
component analysis. Finally, gait recognition is performed
through supervised classification by means of support vector
machines. Experimental results using the CMU MoBo and
AVAMV G datasets show that the temporal co-occurrence of
flow fields is able to better capture the dynamics of the gait
patterns independently of the speed of the subject, the path
shapeand the cameraviewpoint, especially whenthewalking
direction is aligned with the camera viewpoint and for fast
walking speeds, which is where state-of-the-art gait recog-
nition methods yield the lowest performance. Future work
aims at applying the proposed gait recognition technique to
arobust surveillance system for both indoor and outdoor sce-
narios.

Appendix

Each of the 17-bin histograms models a co-occurrence of
optical flow states between a pair of templates separated by
mframes, T; and T}, where j = (i + m)%n, 0 < m < nand
0 <i,]j < n,with n being the number of frames in a gait
period. Those bins are noted as: HV;, HR;, HL;, LR, LL;,
LH;, RR;, RL;, RH;, VU;, VD;, UU;, UD;, UV;, DU;, DD;,
DV;.

HVi (X, y) = Hi (X, y) x Vj(X, y), (13)
HR (X, y) = Hi(X,y) x Rj(X,y), (14)
HLi (X, y) = Hi(X,y) x Lj(X,y), (15)
LR (X, y) = Li(X, y) x Rj (X, y), (16)
LLi(X,y) = Li(X,y) x Lj(X,y), (17)
LHi (X, y) = Li(X, ¥) x Hj (X, y), (18)
RRi (X, y) = Ri(X,y) x Rj(X,y), (19)
RLi(X,y) = R(X,y) x Lj(X,y), (20)
RHi (X, y) = Ri(X, y) x Hj(X,y), (21)
VUi (X, y) = Vi(X, y) x Uj(X,y), (22)
VDi(x,y) = Vi(x,y) x Dj(x,y), (23)
UUi (X, y) = Ui(X, y) x Uj(x,y), (24)
UDi (x, y) = Ui (X, y) x Di(x, ), (25)
UVi(x,y) = Ui(x, y) x Vj(X,y), (26)
DUi (x,y) = Di(X, y) x Uj(x,y), (27)
DDi(x,y) = Di(x, y) x Dj(X, ). (28)

DVi (X, Y) = Di(X, ) x Vj(X, Y). (29)

Finally, an accumulation h x w histogram of 17 binsis
computed. The 17 bins can be defined as:

n-1

HV(x, y) = Y HVi (X, y), (30)
i=0
n—-1

HR(X. y) = > HR (X, ). (31)
i=0
n—-1

HL(X, y) = Y HLi (X, y). (32)
i=0
n—-1

LR(X, y) = ) LR (X, ), (33)
i=0
n—-1

LLX, ) = ) LLi(x, ), (34)
i=0
n—-1

LH(X, y) = Y _LHi(x, y), (35)
i=0
n—-1

RRX, ) = ) RRI(X,Y), (36)
i=0
n—-1

RL(X.y) = Y RLi(X.Y), 37)
i=0
n—-1

RH(X, y) = Y RHi(x, y), (38)
i=0
n-1

VU, y) = Y VUi (X, Y), (39)
i=0
n—-1

VD(X,y) = Y _VDi (X, y). (40)
i=0
n—-1

UUX, y) = > UU; (X, y), (41)
i=0
n—-1

UD(X,y) = > UDj(x. ), (42)
i=0
n—-1

UV(X, y) = > UVi(X, y), (43)
i=0
n—-1

DU(X,y) = ) _DUi(X,y), (44)
i=0
n—-1

DD(x.y) = > _DDj(x.y), (45)
i=0
n—-1

DV(X,y) = DV, (x, y). (46)
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