Hatem A Rashwan 
email: hatemrashwan@ieee.org
  
Miguel Ángel García 
email: miguelangel.garcia@uam.es
  
Sylvie Chambon 
email: sylvie.chambon@enseeiht.frdomenecpuigdomenec.puig@urv.cat
  
Domenec Puig 
  
Gait representation and recognition from temporal co-occurrence of flow fields

Keywords: Gait recognition, Action recognition, Temporal co-occurrence, Optical flow, PCA, Support vector machine

This paper proposes a new gait representation that encodes the dynamics of a gait period through a 2D array of 17-bin histograms. Every histogram models the co-occurrence of optical flow states at every pixel of the normalized template that bounds the silhouette of a target subject. Five flow states (up, down, left, right, null) are considered. The first histogram bin counts the number of frames over the gait period in which the optical flow for the corresponding pixel is null. In turn, each of the remaining 16 bins represents a pair of flow states and counts the number of frames in which the optical flow vector has changed from one state to the other during the gait period. Experimental results show that this representation is significantly more discriminant than previous proposals that only consider the magnitude and instantaneous direction of optical flow, especially as the walking direction gets closer to the viewing direction, which is where state-of-the-art gait recognition methods yield the lowest performance. The dimensionality of that gait representation is reduced through principal component analysis. Finally, gait recognition is performed through supervised classification by means of support vector machines. Experimental results using the public CMU MoBo and AVAMVG datasets show that the proposed approach is advantageous over state-of-the-art gait representation methods.

Introduction

Human gait is the repetitive pattern of motion of the limbs of a person while moving over a solid surface. Every person has a distinctive gait when walking or running and other specific gait features that characterize gender and age. Therefore, automatic gait recognition is of interest to a variety of applications, such as biometrics and video surveillance. That interest has driven the development of a wide variety of gait recognition algorithms that can be broadly classified into model-based and appearance-based approaches, which basically differ in the feature space utilized to represent the dynamics associated with gait prior to classification. While model-based approaches are only applicable to humans, appearance-based methods are generalizable to both humans and animals. Most of the approaches assume the application of a preprocessing stage in order to segment the target individual (foreground) from the background of the scene. Eventually, a shadow detection algorithm may also be required in the case of outdoor scenes. Furthermore, the extracted silhouettes are usually normalized to a predefined size in order to gain invariance to scale changes. The majority of gait recognition approaches have been devised from lateral views, that is, with a line of sight mostly perpendicular to the sagittal plane.

Model-based approaches assume some a priori knowledge about the geometry of the human body, which imposes several physical constraints on the motion of the lower limbs. For example, in [1], a 73 dimensional measurement vector ity reduction is done trough PCA and Multiple Discriminant Analysis (MDA), whereas classification is based on the minimum Euclidean distance between features. Similar gait representations based on the average of binary silhouettes were proposed in [8]. Where PCA is applied for dimensionality reduction and the Euclidean distance used to measure the similarity of the averaged silhouettes. A variation of GEI was proposed in [9], in which the lower subimage from the knees to the feet is removed. The result is the Head-Torso Image (HTI). The nearest neighbor rule is utilized for classification by using the sum of absolute differences as a distance. Following a different approach also based on GEI, [10] applies Gabor filters to the GEI representation in order to obtain three new images that encode the filters response over the different directions and scales. General Tensor Discriminant Analysis (GTDA) is applied in order to extract features and reduce the dimensionality of the problem. Finally, classification is done through Linear Discriminant Analysis (LDA). In that line, [11] applies the Radon transform to the GEI representation to compute the 2D projection image along varying angles between 0 and 180 circ . All the projections are appended to form a 1D Radon Transform vector, and PCA is applied to reduce the dimensionality of the final feature space. Classification is performed through the nearest neighbor rule by using the Euclidean distance.

Alternatively, in [12], GEI images are mapped to a Grassmannian manifold. Then, Grassmannian locality preserving discriminant analysis is used for improving recognition accuracy. Following a different approach, Kusakunniran et al. [13] proposed a gait recognition method based on calculating an adaptation of the local binary pattern (LBP) descriptor called a weighted binary pattern (WBP) given a sequence of aligned silhouettes during a gait cycle. The distance is then calculated to measure the similarity between the various gait signatures. In [14], two features based on multi-scale LBP (MLBP) and Gabor filter banks extracted locally from Regions of Interest (ROIs) are used to represent the dynamic areas in GEI. A spectra Regression Kernel Discriminant Analysis reduction algorithm is then used to reduce the dimensionality of these features. Alternatively, Wang et al. [15] propose the Chrono-Gait Image (CGI) as a gait representation also generated from the contours of the normalized binary silhouettes. In particular, every contour is mapped to an RGB color depending on its position within the gait period. All colored contours corresponding to a quarter of the gait period are added. The CGI image is obtained by accumulating the contour additions corresponding to different quarters of the gait period. PCA and LDA are used for dimensionality reduction, while classification is done by means of K-NN using the Euclidean distance. In addition, view-invariant gait recognition based on extracting parametric 3D gait models from three cameras and using partial similarity matching to improve recognition rates is is formed by aggregating parameters such as the subject's speed, gait frequency, body proportions and coefficients of rotation sinusoidal models for the hip, knee and ankle. Mean and covariances are computed for the measurement vectors corresponding to every subject, and Bayesian classification is finally applied. In addition, in [2], least-squares linear regression is applied in order to extract the lines that represent the thighs and shins from the edges of the subject's silhouette. A genetic algorithm determines the harmonic coefficients that characterize the temporal variation of shin angles. Classification is performed through K-NN. In addition, [3] proposes a three-phase model that combines spatiotemporal shape and dynamic motion characteristics of silhouette contours to identify human's gait. For identifying a subject, the match scores obtained by analyzing the local and global gait characteristics obtained in the three phases are combined using a weighted sum. Alternatively, [4] proposes a set of dynamic features based on a human skeleton model for gait recognition invariant to the walking speed. In particular, time series of changing joint angles, angle phase differences, mass ratios of body parts and distances of body parts from the body center are computed over the entire gait sequence. Classification is performed by comparing the features extracted from the probe subjects with the tested ones using the Euclidean distance.

Alternatively, appearance-based methods only take into account the consecutive foreground regions corresponding to a same subject, with no assumptions about the latter other than the periodicity of its motion. The gait representation utilized by most appearance-based methods is based on one or several images (or 2D arrays) obtained from the sequence of foreground regions of the target subject during a gait period. Preliminary works include [5] where two images are generated from the subject's binary silhouettes: a binary Motion-Energy Image (MEI), which represents where motion has occurred in the last images, and a grayscale Motion-History Image (MHI) in which intensity is proportional to the recency of motion. The means and covariances of the Hu's moments of those images are used as lower-dimensional features, while classification is performed through the nearest neighbor rule using the Mahalanobis distance between features. An extension of MHI is presented in [6]. In particular, the frames of half a gait period are partitioned into a constant number of disjoint subsets (temporal windows). The MHI is computed for every subset and a histogram of oriented gradients (HOG) obtained for each MHI. The gait period is then characterized by the set of HOGs. The Euclidean distance between sets of HOGs is used for recognition.

In turn, [7] proposed the Gait Energy Image (GEI) as the average of the normalized binary silhouettes corresponding to the same gait period. GEI has become a widely used gait representation thereafter. In that proposal, dimensional-proposed in [16,17]. Sparse representation-based classification is then performed for gait classification.

All the aforementioned appearance-based methods encode the dynamic information of a gait period based on the visual appearance of the foreground region associated with the target subject. However, with the exception of [18], all those methods start with the binary silhouette of the subject, hence disregarding the internal appearance of the regions. In practice, only the shape of the region contour is thus taken into account. Notwithstanding, an alternative family of appearance-based gait recognition methods also take into account the internal appearance of the foreground regions by analyzing the optical flow fields computed within those regions, and encoding the variation of those fields over the gait period. The advantage is that those gait representations do not lose as much discriminative power as their counterparts as the angle between the walking and the viewing directions departs from 90 circ . In the extreme case where both directions are aligned (i.e., the line of sight is perpendicular to the coronal plane), most of the aforementioned methods have almost no shape information to discriminate among different gaits.

Recently, [19] proposed the discretization of the flow directions, encoding them into a single 5-bin histogram associated with every pixel. In particular, the first bin keeps the number of frames within the gait period where that pixel has no motion, whereas the other four bins keep the number of frames with motion up, down, left and right, respectively. A Motion Intensity Image (MII) is obtained from the values of the first bin for all pixels of the foreground region. Similarly, four Motion Direction Images (MDI) are obtained from the other bins. The MII and the first three MDIs are independently used for recognition. Component and Discriminant Analysis (CDA) is applied for dimensionality reduction. Classification is done using the Euclidean distance between feature vectors in the CDA subspace. A similar approach to MII [19] later proposed in [20] defines the Gait Flow Image (GFI) as a gait representation in which the value associated with each pixel is the number of frames within the gait period in which that pixel has no optical flow. GFIs can be recognized by direct matching or after dimension reduction using LDA followed by classification through the nearest neighbor rule.

Furthermore, [21] presented a gait recognition approach that combines low-level motion descriptors based on optical flow, which are extracted from dense local spatiotemporal features, with a multilevel gait encoding based on the Pyramidal Fisher Motion (PFM) gait descriptor. This method supports single and multiple viewpoints. The computed optical flow is represented by means of the Divergence-Curl-Shear (DCS) descriptor. Then, the DCS descriptors are used to build a person-level gait descriptor based on Fisher vectors. A Fisher vector is computed within each cell of the spatiotemporal grid of the subject's body. In order to build a pyramidal representation, different grid configurations are combined. Then, a final feature vector is computed as the concatenation of the cell-level Fisher vectors for all the levels of the pyramid. Finally, SVM is utilized for the classification stage to recognize the different gaits. In [22,23], based on optical flow estimated from consecutive frames, a discriminative biometric signature (DBS) is used for representing the gait cycle. The descriptor accounts for both spatial and temporal DBS features considering local and global cues of the motion process.

In addition, some works of action recognition are based on capturing the local motion information of a set of images [24,25]. Regarding to [24], the authors have proposed a descriptor based on combining histograms of oriented gradients (HOG) and histograms of optical flow (HOF) for human action recognition in a video. They utilized HOG to describe static appearance information, whereas HOF to capture the local motion information. In turn, [25] have introduced a descriptor based on motion boundary histograms (MBH) which relies on differential optical flow. For each interest point detected, they consider a volume of 32 × 32-pixel window along 15 consecutive frames, such that the window is centered at the trajectory of the corresponding point. That trajectory is estimated through optical flow and median filtered. Then, you divide the volume into 2 × 2 × 3 cells and compute MBHx and MBHy for each cell. MBHx is an 8-bin histogram of the derivative of horizontal optical flow for the pixels within the cell. MBHy is the same for vertical. The dimension is 96 (i.e., 2 × 2 × 3 × 8) for both MBHx and MBHy. In addition, [26] proposed an extension for MBH by using 3D co-occurrence descriptors, which take into account the spatiotemporal context within a local 32 × 32-pixel window along a set of consecutive frames. They then apply the Bag-of-Features model for each vectorized 3D co-occurrence matrix, and leverage a multi-channel kernel SVM to combine channels for the descriptor.

This paper proposes a new gait representation that encodes the dynamics of a gait period through a 2D array of 17-bin histograms. Every histogram models the co-occurrence of optical flow states at every pixel of the normalized template that bounds the silhouette of the target subject. Similar to [19], four flow directions are considered (i.e., up, down, left, right) and the first histogram bin counts the number of frames over the gait period in which the optical flow for the corresponding pixel is null. However, each of the remaining 16 bins now represents a change in motion state (e.g., up/up, up/down, down/up, down/down, null/left, left/null, up/null, ...) and counts the number of frames in which the optical flow vector has changed from one state to the other during the gait period. Experimental results show that this representation is significantly more discriminant than previous proposals that only consider the magnitude and instantaneous direction of optical flow [19,20], especially as the walking direction gets closer to the viewing direction, which is where state-of-theart gait recognition methods yield the worst performance. The dimensionality of the proposed gait representation is reduced through PCA. Finally, gait recognition is performed through supervised classification by means of a set of Support Vector Machines (SVM).

The rest of this paper is organized as follows: Section 2 introduces the basic concepts of optical flow and describes the proposed gait representation, including the dimensionality reduction stage. The classification stage is presented in Sect. 3. Experimental results are shown and discussed in Sect. 4, including a comparison with state-of-the-art gait representation methods using the public CMU MoBo and AVAMVG datasets. Finally, conclusions and future lines are highlighted in Sect. 5.

Gait representation through temporal co-occurrence of flow fields

L i (x, y) = 1 -H(u i (x, y)), (1) R i (x, y) = 1 -H(-u i (x, y)), ( 2 
)
where H is the Heaviside function. In addition, let H i (x, y) be a Boolean variable that represents that the magnitude of the flow vector in the horizontal direction, u i (x, y), is null, that is, below a very small threshold (in this work, < 1.0). y) and L i (x, y) are forced to the false state.

H i (x, y) = 1 - u i (x, y) 0 otherwise (3) If H i (x, y) is true, variables R i (x,
Similarly, let D i (x, y) and U i (x, y) be two mutually excluding Boolean variables that denote that the pixel's vertical displacement is positive (Down) or negative (Up), respectively. In addition, V i (x, y) is a Boolean variable that represents that the magnitude of the flow vector in the vertical direction, v i (x, y), is null. If V i (x, y) is true, U i (x, y) and D i (x, y) are set to false.

U i (x, y) = 1 -H(v i (x, y)), ( 4 
) D i (x, y) = 1 -H(-v i (x, y)), ( 5 
) V i (x, y) = 1 - v i (x, y) 0 otherwise (6)
The variation of the n flow fields estimated for the whole gait period is then statistically modeled by an h × w array of 17-bin histograms, with a histogram associated with every template pixel. The first bin (HV i ) counts the total number of templates over the gait period where the associated pixel has no apparent motion (i.e., H i (x, y) = V i (x, y) = 1). Therefore, that bin represents the magnitude of motion as:

HV i (x, y) = H i (x, y) × V i (x, y), ( 7 
)
where × is the multiplication operator.

In turn, each of the remaining 16 bins models a cooccurrence of optical flow states between a pair of templates separated by m frames, T i and T j . The 16 bins are noted as:

HL i , HR i , VU i , VD i , LH i , RH i , UV i , DV i , LL i , LR i , RL i , RR i , UU i , UD i , DU i , DD i .
For example, RH i (x, y) counts the number of templates where both H i (x, y) and R j (x, y) are true, indicating that the horizontal displacement is null at template i and the horizontal component of the flow vector then becomes positive at template j, that is, m templates later:

HR i (x, y) = H i (x, y) × R j (x, y). ( 8 
)
The same pixel would also contribute to, for instance, bin VU i provided U j (x, y) and V i (x, y) were true, meaning that This section describes a new gait representation that encodes the dynamics of a gait cycle by statistically modeling the temporal co-occurrence of optical flow states during a complete gait period. Similar to previous approaches [7,19,20], a background subtraction scheme is previously applied to the input video sequence for extracting the foreground regions corresponding to the target subject. To gain invariance to scale, every foreground region is scaled such that its height is set to a predefined size h and its width adjusted accordingly in order to keep the original aspect ratio. The result is then centered into an h × w template. The gait period is obtained through maximum entropy estimation [27].

Given the set of n consecutive h × w templates belonging to a same gait period, {T 0 , T 1 ,... T n-1 }, an optical flow field is computed for every template. The flow field for the ith template is denoted as w i and computed using two consecutive templates: T i and T j , where j = (i + m)%n, 0 < m < n and 0 ≤ i, j < n, where % is the module operator. A state-of-the-art optical flow algorithm previously proposed by the authors in [28] is applied for estimating accurate dense flow fields. That algorithm is robust to noise and outliers in being based on a discontinuity-preserving filtering stage that applies stick tensor voting, Fig. 2(c).

Every optical flow field is a two-dimensional vector field w i defined in the domain of the h × w templates. That field is constituted by both a vertical displacement field v i and a horizontal displacement field u i , w i = (u i ,v i ). Therefore, the flow vector corresponding to a given template pixel at coordinates (x, y) is w i (x, y) = (u i (x, y), v i (x, y)).

Let R i (x, y) and L i (x, y) be two Boolean variables that indicate that the associated pixel has a positive (Right) or a negative (Left) horizontal displacement, respectively, which can be defined as: the vertical displacement at template i is null and m templates later becomes negative.

VU i (x, y) = V i (x, y) × U j (x, y). (9)
Notice that both R j (x, y) and U j (x, y) can be true simultaneously, indicating that the angle of the flow vector is in the first quadrant. In that case, L j (x, y), D j (x, y), H j (x, y) and V j (x, y) will be false. Every 17-bin histogram is normalized through the L 1 norm, which yields slightly better results than the L 2 norm and other normalization policies that have been evaluated, see Fig. 1. For a gait cycle, the h × w array of 17 bins is computed between every pair of frames. Finally, an accumulation h × w histogram of 17-bins is computed. For instance, the bin related to LL(x, y) can be defined as:

LL(x, y) = n-1 i=0 LL i (x, y), ( 10 
)
The complete equations are shown in the Annex.

Similar to [19], the h × w array of 17-bins histograms can also be interpreted as a set of 17 gray-level images of h × w pixels each, such that every image keeps the values of one of the bins. Thus, the first bin yields the Motion Intensity Image (MII) [19], in which the lower the value the higher the percentage of motion during the gait period. That image resembles the popular Gait Energy Image (GEI) [7]. However, since the GEI is computed using binary silhouettes instead of optical flow fields, the measurement of motion intensity is indirect and far less accurate than the one utilized for generating the MII. The remaining 16 bins yield corresponding images referred to in this work as Motion Cooccurrence Images (MCI).

Figure 2 shows two consecutive frames from one of the video sequences belonging to the CMU dataset (a, b), the computed optical flow field for those frames (c), the MII (d) and the 16 MCIs (e-p) obtained for the gait period, which comprises 34 image frames (n = 34) in this example. The minimum separation between pairs of frames has been set to m = 1, which as shown in Sect. 4 yields optimal or near-optimal results for both slow and fast walking speeds. Regarding the MII, the lowest values representing high motion are observed at the legs of the subject as expected. As for the MCIs, the first two rows show the motion co-occurrences for the horizontal (e-h) and vertical (i-l) components. In turn, the last two rows show the co-occurrences between null motion and appreciable motion states (m-p), and vice-versa (q-t). Notice that all co-occurrence images are different and provide distinctive and complementary information that, as a whole, conveys the dynamics of the analyzed gait.

Once the motion patterns of the gait cycle are represented through the proposed h × w array of 17-bin histograms, it is necessary to reduce the dimensionality of that array in order to make it more compact and hence manageable. Similarly [7,11,15,29], this is done through PCA, which applies an orthogonal transformation in order to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. When the number of principal components is less than the number of original variables, the dimensionality of the problem is reduced while retaining as much of the variance in the dataset as possible, which is useful for further discrimination tasks. The principal components are the right singular vectors of the Singular Value Decomposition (SVD) of the centered data matrix. The dimensionality is reduced by only considering the first r largest singular values and their corresponding right singular vectors.

In particular, the MII and each of the MCIs are arranged as a single hw column vector. The original h × w array of 17-bin histograms is then represented as an hw × 17 matrix X . Therefore, the number of variables in this problem is 17 and the number of observations hw. Using SVD, a 17 × 17 matrix of right singular vectors W is obtained, along with a 17 × 17 diagonal matrix of singular values . The principal components of X are the columns of W , which are sorted in descending order of their corresponding singular values. Matrix W is then truncated along its columns to retain the first r singular vectors, yielding W r , which is a 17 × r array. In this work, r has experimentally been set to six as shown in Sect. 4. Matrix W r is then mapped to a single 17r column vector, which is the final gait representation (gait vector).

Gait recognition

Gait recognition in this work is cast as a multiclass supervised classification problem based on support vector machines (SVMs). In particular, a binary SVM is trained for every considered gait class. A one-versus-all training approach is applied. Thus, during the offline training stage, every SVM is trained with the gait vectors corresponding to the class associated with that SVM as positive examples, and the gait vectors corresponding to the remaining classes as negative examples. In turn, during the online classification stage, an input gait vector is classified into the class corresponding to the SVM with the largest output function, thus following a winnertakes-all strategy. The experimental results conducted in this work have yielded the best classification results by using nonlinear SVMs with a kernel based on a Gaussian radial basis function (RBF) (γ = 0.2) and soft margin parameter (C = 1). In addition, the mapping kernel RBF is defined as: Table 7 shows that the proposed method (MCI + PCA) achieves correct classification rates above 89% with tr04 and 91% with tr10, yielding significantly better results than the five variations of [21]. In turn, the proposed scheme yields a recognition rate of more than 90% for path tr07. Although PFM + PCAL100 + PCAH256 + pyr yields the best correct classification rates for tr07, this algorithm has a much larger computational complexity than the proposed technique due to both the use of GMM models of 150 Gaussians for computing the Fisher vector features and the application of PCA to both the low-level descriptors and the final PFM descriptor.

K (x i , x j ) = exp -γ x i -x j 2 , ( 11 
)

Comparison with action recognition methods

The proposed descriptor has also been compared with four descriptors, namely HOF [24], MBH [25], 3D-CoHOF , used for human action recognition. As proposed in [25], the pixel window size is 32 × 32. In turn, the path length has been set equal to the gait cycle (i.e., 33 frames for the CMU MoBo dataset). The 32 × 32 × 33 pixel volume has been split into 2 × 2 × 3 cells.

For HOF, orientations are quantized into 8 bins, with full orientation and magnitudes being used for weighting. An additional zero bin has been added (i.e., 9 bins), as proposed in [24]. The final descriptor size is 108 for HOF (i.e., 2 × 2 × 3 × 9). For MBH, both MBHx and MBHy feature vectors have 96 dimensions. 3D-CoHOF, 3D-CoMBHx and 3D-CoMBHy have been defined as described in [26], with each corresponding 3D co-occurrence descriptor along with three offsets: of f set x , of f set y and of f set t , and where each offset is a vector of length 4 × 4 × 2 × 2 × 3. SVM is then used for gait recognition.

In this experiment, the recall, precision and specificity values with HOF, MBH, MCI, 3D-CoHOF and 3D-CoMBH have been computed for the four gaits (i.e., slow, fast, incline and carrying ball) of the CMU MoBo dataset. As shown in Table 8, the MBH descriptor yields the best results among the three descriptors for both slow and fast gaits. In turn, the proposed descriptor MCI yields the best results for the two other gaits (i.e., incline and carrying ball). Meanwhile, the standard HOF and MBH descriptors yield better accuracy than the extended descriptors 3D-CoHOF and 3D-CoMBH, although their accuracy is less than the one of the proposed MCI descriptors.

Table 9 shows the CPU times corresponding to the test stage (i.e., computation of the gait representation and classification) for the five descriptors: HOF, 3D-CoHOF, MBH, 3D-CoMBH and MCI. They are implemented in C++. The same classification stage based on SVMs has been applied implemented in MATLAB. The proposed descriptor is significantly faster than the four other descriptors, which must compute the trajectories of the subjects over the gait cycle. The execution time of the classification stage based on the five descriptors is in the same range. Therefore, although MBH yields significantly better classification rates than MCI in some cases, the latter is twice faster.

Conclusion

This paper proposes a new gait representation that encodes the dynamics of a gait period through a 2D array of 17bin histograms. Every histogram models the co-occurrence of optical flow states at every pixel of the normalized template that bounds the silhouette of a target subject. Five flow states (up, down, left, right, null) are considered. The first histogram bin counts the number of frames over the gait period in which the optical flow for the corresponding pixel is null. In turn, each of the remaining 16 bins represents a pair of flow states and counts the number of frames in which the optical flow vector has changed from one state to the other during the gait period. The dimensionality of the proposed gait representation is reduced through principal component analysis. Finally, gait recognition is performed through supervised classification by means of support vector machines. Experimental results using the CMU MoBo and AVAMVG datasets show that the temporal co-occurrence of flow fields is able to better capture the dynamics of the gait patterns independently of the speed of the subject, the path shape and the camera viewpoint, especially when the walking direction is aligned with the camera viewpoint and for fast walking speeds, which is where state-of-the-art gait recognition methods yield the lowest performance. Future work aims at applying the proposed gait recognition technique to a robust surveillance system for both indoor and outdoor scenarios.

Appendix

Each of the 17-bin histograms models a co-occurrence of optical flow states between a pair of templates separated by m frames, T i and T j , where j = (i + m)%n, 0 < m < n and 0 ≤ i, j < n, with n being the number of frames in a gait period. Those bins are noted as: HV i , HR i , HL i , LR i , LL i , LH i , RR i , RL i , RH i , VU i , VD i , UU i , UD i , UV i , DU i , DD i , DV i . 

  accumulation h × w histogram of 17 bins is computed. The 17 bins can be defined as: x, y).(46)HV i (x, y) = H i (x, y) × V j (x, y), HR i (x, y) = H i (x, y) × R j (x, y), HL i (x, y) = H i (x, y) × L j (x, y), LR i (x, y) = L i (x, y) × R j (x, y), LL i (x, y) = L i (x, y) × L j (x, y), LH i (x, y) = L i (x, y) × H j (x, y), RR i (x, y) = R i (x, y) × R j (x, y), RL i (x, y) = R i (x, y) × L j (x, y), RH i (x, y) = R i (x, y) × H j (x, y), VU i (x, y) = V i (x, y) × U j (x, y), VD i (x, y) = V i (x, y) × D j (x, y), UU i (x, y) = U i (x, y) × U j (x, y), UD i (x, y) = U i (x, y) × D i (x, y), UV i (x, y) = U i (x, y) × V j (x, y), DU i (x, y) = D i (x, y) × U j (x, y), DD i (x, y) = D i (x, y) × D j (x, y),DV i (x, y) = D i (x, y) × V j (x, y).

Table 8

 8 Recall (R), precision (P) and specificity (S) values with HOF, MBH, 3D-CoHOF,3D-CoMBH and MCI descriptors with slow, fast, incline and carrying ball gaits

	Methods	MCI			MBH			HOF			3D-CoHOF		3D-CoMBH	
		R	P	S	R	P	S	R	P	S	R	P	S	R	P	S
	Slow	96.6	96.4	96.4	97.1	96.9	96.8	95.2	95.1	95.3	93.9	93.7	93.3	94.4	94.1	94.2
	Fast	96.9	96.8	96.8	97.4	97.2	97.2	95.7	95.5	95.6	92.4	92.1	92.5	94.5	94.2	94.3
	Incline	94.3	94.9	94.8	95.1	94.6	94.6	93.1	93.2	92.9	91.5	91.2	90.5	93.6	93.3	93.1
	Ball	96.5	96.0	96.0	96.2	95.9	95.9	95.0	94.9	94.7	92.0	91.8	91.4	94.1	94.0	93.8
	PFM vector to 256. (e) PFM + PCAL100 + PCAH256 + pyr								
	is similar to PFM + PCAL50 + PCAH256 + pyr, but reducing								
	the dimensionality of the low-level descriptors to 100 instead								
	of 50.															

Table 9

 9 CPU times in seconds of the gait representation and classification stages for HOF, MBH, 3D-CoHOF,3D-CoMBH and MCI

	Method	descriptor	Classification
	HOF	22.2	2.85
	MBH	38.7	2.92
	3D-CoHOF	32.8	3.51
	3D-CoMBH	45.3	4.60
	MCI	16.9	2.25