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Mixing is the operation by which a system evolves under stirring from one state of simplicity -the initial segregation of the constituents-, to another state of simplicity -their complete uniformity-. Between these extremes, patterns emerge, possibly interact, and die sooner of later. This review summarizes the recent developments on the problem of mixing in its lamellar representation. This point of view visualizes a mixture as a set of stretched lamella, or sheets, possibly interacting with each other. It relies on a near-exact formulation of the Fourier equation on a moving substrate and allows to bridge the spatial structure and evolution of the concentration field with its statistical content in an direct way. Within this frame, both the dynamics of the concentration levels in a mixture as a function of the intensity of the stirring motions at the scale of a single lamella, and the interaction rule between adjacent lamella, are described precisely, thus offering a detailed representation of the mixture content, of its structure, and of their evolution in time.

MIXING IS NOT BLENDING, NOR STIRRING

Mélange: Il se dit de l'aggrégation de plusieurs choses diverses. Encyclopédie, Diderot & D'Alembert, 1765.

 showing an initially concentrated blob of dye progressively incorporated in its diluting environment as the medium is stirred, down to a point where none of the constituents of the blob, and of the diluting phase, can be distinguished; they are mixed.

Mixing is the operation by which a system evolves from one state of simplicity -the initial segregation of the constituents-, to another state of simplicity -their complete uniformity-. Between these two extremes, patterns emerge depending on how the medium is deformed, possibly interact depending on how the mixture disperses in space, and die sooner of later depending on how Brownian noise has blurred the patterns on the way. As such, mixing is a paradigm of irreversible phenomena (Gibbs 1901).

Concentrations, inter-molecular scale, and fluctuations

Mixing deals with concentration fields, not with discrete particles. We first discuss the relationship between the spatial density of particles diffusing on a substrate, and the associated lengthscales when the substrate is stirred, to ensure the validity of a continuum description.

1.1.1. Concentrations. From a set of discrete particles sparsely spread in space with interparticles distance λ, a number density 1/λ 3 can be defined from their (molar) concentration c as c = 1 N λ 3 1.

Figure 1

a) A blob of ink deposited in glycerol is stirred by the sequential passage of a rod as a straw in a milk-shake would do. The formation of stretched lamella, getting thinner and overlapping as concentration differences fade away through the stirring cycles, is obvious [START_REF] Villermaux | Mixing as an aggregation process[END_REF]. b) This celebrated picture from the very influential book by [START_REF] Arnold | Problèmes ergodiques de la mécanique classique[END_REF] illustrates blending, not mixing, although the authors used the word 'Mixing' to refer to iterated maps distorting/spreading a blob in pieces with a probability of presence uniform in space. c) A typical random mixture in 2-d. A solitary strip unevenly stretched presents broad concentration fluctuations, and overlaps with itself in some places of the bounded stirring area.

where N 6.02 × 10 23 is the Avogadro number. For, say, molecules of a chemical species diluted in a liquid with concentration c = 10 -1 mol. l -1 , we have λ ≈ 10 -8 m, a distance 10 to 100 times larger than the typical size of the molecules. A well defined c thus requires an averaging volume with size η substantially larger than λ. There are, in the mean, n ∼ (η/λ) 3 molecules randomly placed in this volume, with a relative number Poisson fluctuation of order

n 2 -n 2 n ∼ 1 n . 2.
A representative concentration c defining a continuum exempt from trivial particle number fluctuations thus requires that η λ. In continuous media, discrete particles suffer Brownian agitation giving rise to the phenomenon of diffusion, whose intensity is measured by the diffusion coefficient D. For in-stance, D ∼ (kBT ) 3/2 /(a 2 p √ m) in a gas of molecules with size a and mass m at pressure p and temperature T , where kB is the Boltzmann constant, or D = kBT /(6πµa) in a liquid with shear viscosity µ [START_REF] Landau | Fluid Mechanics[END_REF]. When released around a point in a medium at rest, a set of particles will spread in time t over an isotropic cloud of radius √ Dt, and if the medium is deformed (elongated and compressed) at a rate γ, we will show in section 2.4 that spreading is arrested in the compressive direction when the cloud has reached a transverse size η = D/γ 3.

called the [START_REF] Villermaux Batchelor | Small-scale variation of convected quantities like temperature in a turbulent fluid. part 1. general discussion and the case of small conductivity[END_REF] scale. The condition for a smooth, well defined concentration field in a mixture is thus that the diffusion length D/γ (we will see in section 4.3.1 that this occurs at an even larger scale in complex mixtures) is larger than the inter-molecular distance of the species being mixed or, in other words, that the Péclet number

P e λ = γλ 2 D 4.
is smaller than unity. In liquids where the diffusion of big molecules is slow (D ∼ 10 -9 m 2 s -1 or less), the Batchelor scale may be as small as a micron (10 -6 m) while still remaining large enough to fulfill the condition of a continuum. The concentration, or scalar field c is then ruled by the conservation equation

∂tc + ∇•(v c) = D∇ 2 c 5.
under the action of the stirring velocity field v which may not be divergence free (i.e. ∇ • v = 0), and may or may not depend on c itself. The latter case is termed passive scalar mixing. The word 'scalar', as opposed to 'vector' (although vey similar results as those discussed here exist for the magnetic field in 2-d flows, see [START_REF] Moffatt | Transport effects associated with turbulence with particular attention to the influence of helicity[END_REF]; [START_REF] Childress | Stretch, Twist, Fold: The fast dynamo[END_REF]), was employed, presumably for the first time in this context, by L. Kovasznay in 1961 at the Marseille symposium on the 'Mechanics of Turbulence' [START_REF] Favre | Mécanique de la turbulence[END_REF].

1.1.2. The need for distributions of concentration. Examples abound showing that in most instances involving a mixing operation, it is not the mean concentration of the mixture c which is of interest, not even the standard deviation (c -c ) 2 about the mean [START_REF] Danckwerts | The definition and measurement of some characteristics of mixtures[END_REF]), but the probability of an extreme concentration event: The size of a combustion chamber, or of a chemical reactor will be set by the residence time of the mixture for the strongest, according to a desired criterium, concentration fluctuation to be erased [START_REF] Marble | Spacecraft propulsion[END_REF]. Inhabitants living close to a leaking nuclear or chemical plant care if the concentration in pollutants of the effluents released by the leak, in air or through the ground [START_REF] Csanady | Turbulent diffusion in the environment[END_REF], will be above or below the lethal dose when the pollutant plume reaches them, even if once in a lifetime. A remaining imperfection of additives composition in a glass, or a cement will be the weak link spoiling e.g. their mechanical resistance [START_REF] Vidick | Critical mixing parameters for good control of cement slurry quality[END_REF]. Even the lifetime of liquid films as in sea bubbles is presumed to be set by highly concentrated impurities occurring with low probability in the liquid [START_REF] Poulain | Ageing and burst of surface bubbles[END_REF].

Conversely, it is sometimes fortunate that a substance, or a blend transported by a flow has not mixed yet as patchy, intermittent concentrated regions might be vital clues: A bacteria (Berg 2004), a moth [START_REF] Mafra-Neto | Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths[END_REF] or a lobster [START_REF] Koehl | Lobster sniffing: Antennule design and hydrodynamic filtering of information in an odor plume[END_REF] directs its motion towards the source of pheromone or nutriments by sensing their concentration above a detection level only [START_REF] Schnitzer | Strategies for chemotaxis[END_REF]), which may be way above the mean concentration in the medium [START_REF] Celani | Odor landscapes in turbulent environments[END_REF]. The chemical composition of the rocks in the lithosphere, homogeneous along stripes but segregated from the rest of the mantle because yet unmixed offers precious clues about the early interior Earth [START_REF] Allègre | Implications of a two-component marble-cake mantle[END_REF].

This pressing reality, in conjunction with the fact that in science a satisfactory theory of a physical phenomenon requires its statistical description [START_REF] Shraiman | Scalar turbulence[END_REF], think of the kinetic theory of gases [START_REF] Maxwell | On the dynamical theory of gases[END_REF], or of Brownian motion [START_REF] Chandrasekhar | Stochastic problems in physics and astronomy[END_REF][START_REF] Reif | Fundamentals of statistical and thermal Physics[END_REF]), for instance), leads us to focus on the distribution of concentration of the mixture p(c), also called Probability Density Function, or PDF, such that p(c)dc 6.

is the probability to find in the mixture a concentration level between c and c+dc; obviously, p(c)dc = 1. The goal is to understand the construction mechanisms of p(c) and to relate them to the detailed microscopic processes occurring in the mixture. The distribution p(∆c) of the concentration increments ∆c(∆x) = c(x+∆x)-c(x) is a quantity of general interest which presents original scaling properties [START_REF] Kraichnan | Anomalous scaling of a randomly advected passive scalar[END_REF][START_REF] Falkovich | Particles and fields in fluid turbulence[END_REF]) that we will consider too.

Semantics, misconceptions, and the singular role of diffusion

The subject matter is associated to a number of preconceptions and mental images that we consider now.

1.2.1. Semantics. An object may be defined by its opposite, and before we proceed to explain what mixing actually is, let us explain what it is not :

• Mixing is not blending, although a mixture is likely to mix well if it has been homogeneously blended. A perfectly well blended mixture might not be mixed at all if the constituents remain segregated from each other, even within finely divided domains.

Mixing requires concentration homogeneity at the molecular scale λ.

Imagine for example a mixture of particles with zero diffusivity (D = 0, an illusory limit in nature) which has been prepared in such a way that regions marked with c = 1 are adjacent to regions with c = 0. The marked regions are in relative proportion c . The concentration distribution of the mixture is

p(c) = (1 -c ) δ(c -0) + c δ(c -1) 7.
and remains unchanged whatever the spatial reorganization of the field and the division state of the mixture may be; indeed, whatever v may be provided it is incompressible (i. e. ∇ • v = 0, no net expansion nor contraction of the substrate), c is ruled by ∂tc + v • ∇c = 0 and is conserved along Lagrangian trajectories. There is, in this instance, no mixing at all. There would be if D = 0 and in that case sustained motions of the substrate would ultimately lead to

p(c) ---→ t→∞ δ(c -c ) 8.
or approach this perfectly well mixed limit after a mixing time which deserves to be understood in terms of the nature of the stirring motions.

• Mixing is not stirring, although a vigorously stirred mixture will reach homogeneity faster than a mixture kept at rest, this one being sensitive to the typically slow (these adjectives will be quantified later) molecular diffusion only. Stirring may contribute to efficient blending as in Figure 1b taken from [START_REF] Arnold | Problèmes ergodiques de la mécanique classique[END_REF], but stirring alone will not, for the reason underlined above, mix (see the lucid statements in [START_REF] Brodkey | The phenomena of fluid motions[END_REF], and [START_REF] Epstein | Shaken, stirred-but not mixed[END_REF]).

1.2.2. The singular role of diffusion. Mixing is stretching enhanced diffusion: Concentration change (∂tc) results from a subtle coupling between advection (v • ∇c) and diffusion (D∇ 2 c) in equation (5.), and fluctuations about the mean will decay according to [START_REF] Zeldovich | The asymptotic law of heat transfer at small velocities in the finite domain problem[END_REF])

d dt c 2 -c 2 = -2D (∇c) 2 9.
only if D = 0. This singular role of molecular diffusion, and its coupling with substrate motions is familiar, particularly in the context of dispersion. It is known that without diffusion, the second moment of the residence time distribution of a tracer dispersing along a laminar pipe (radius h, mean velocity U ), diverges. Is is finite, with an effective longitudinal dispersion coefficient D eff ∼ DP e 2 with P e = U h/D as soon as P e < ∞ [START_REF] Taylor | Dispersion of soluble matter in solvent flowing slowly through a tube[END_REF].

In cellular flows, like along an array of stationary convection cells, the only way a dye can jump from one cell to the other is by crossing their separatrices by molecular diffusion, an in that case D eff ∼ D √ P e [START_REF] Shraiman | Diffusive transport in a rayleigh-benard convection cell[END_REF][START_REF] Solomon | Passive transport in steady rayleigh-benard convection[END_REF][START_REF] Biferale | Eddy diffusivities in scalar transport[END_REF], a conclusion which holds also for reactive mixtures [START_REF] Audoly | Réaction diffusion en écoulement stationnaire rapide[END_REF]. Periodic oscillations of the separatrice location allow for cells to exchange material according to a mechanism imagined by Melnikov in 1963[START_REF] Rom-Kedar | An analytical study of transport, mixing and chaos in an unsteady vortical flow[END_REF]) but this 'lobe dynamics' will not alter, alone, the mixture composition [START_REF] Beigie | A global study of enhanced stretching and diffusion in cahotic tangles[END_REF]. In layered systems, like porous rocks with broad permeability distributions, it is the diffusion across the layers which regularizes the dispersion process along the layers, which otherwise would be purely ballistic [START_REF] Matheron | Is transport in porous media always diffusive? a coun-28 E. Villermaux terexample[END_REF][START_REF] Bouchaud | Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications[END_REF].

The existence of diffusion, even by a tiny amount, changes paradigm.

1.2.3. History matters. If mixing is contingent upon diffusion, a frequent underlying assumption, not firmly formalized as such [START_REF] Sturman | The Mathematical Foundations of Mixing[END_REF][START_REF] Aref | Frontiers of chaotic advection[END_REF], is that since stirring and diffusion are in essence two different phenomena (which is true), it is therefore paramount to focus on how material particles are advected, because a simili-diffusion can always be incorporated in the end of the advection process, by some local coarsening, to account for the 'smearing' of the -yet unmixed-scalar field. This sequential vision is fundamentally incorrect, as we show on hand of the following example (sidebar below). The whole stretching history, inherently coupled with the permanent, but possibly enhanced, or slowed down, action of diffusion has to be accounted for in a precise representation a mixture's fate.

Approach and scope

This review summarizes the recent developments on the problem of mixing in its lamellar representation [START_REF] Villermaux Batchelor | Small-scale variation of convected quantities like temperature in a turbulent fluid. part 1. general discussion and the case of small conductivity[END_REF][START_REF] Ranz | Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows[END_REF][START_REF] Ottino | Description of mixing with diffusion and reaction in terms of teh concept of material surfaces[END_REF]. This point of view, which visualizes a mixture as a set of stretched lamella, or sheets, possibly interacting with each other is extremely powerful since it relies on a near-exact formulation of the Fourier equation on a moving substrate (5.), and because it allows to bridge the spatial structure and evolution of 6 E. Villermaux

Out[24]= Figure 2
History matters: The two kinematically identical deformation protocols of a diffusing blob, and their very different mixing states in t = 1 (see text).

HISTORY MATTERS: AN EXAMPLE

A blob of size s0 is deposited at t = 0 on a 2-d substrate. At the same time the blob diffuses, we stretch the medium so that the blob elongates in one direction, and compresses in the other down to, say, 1/10 th of its initial size. We do this according to two distinct protocols. In (a), we first squeeze the bob within a short time according to s(t) = s0(1 -t/ ) down to s(t )/s0 = , and then let it still up to t = 1 (in units of the blob pure diffusion time s 2 0 /D). In (b), we let the blob still during a time 1 -t , and then squeeze it in the same way during t = (1 -). Since 1, the squeezing motion is at large Péclet number P e = -1 . The deformation kinematics of the blobs are identical in both protocols and in the absence of diffusion, (a) and (b) would be undistinguishable. But diffusion has operated on the way and it is not difficult to anticipate that protocol (a) is more efficient at decaying the concentration in the stretched blob than (b), for which the blob has remained thick for most of the time. We will see in section 2.3 that the maximal concentration of the blob is given by erf(1/4 √ τ ) with τ ∼ 1 0 dt /s(t ) 2 , and Figure 2 demonstrates that in protocol (a), τ ∼ -2 is 50 times larger than in (b) where τ ∼ 2. The blob concentration is therefore 2.6 times larger in (b) than in (a) at t = 1 for = 0.1, a ratio which is even larger for a smaller . History matters.

the concentration field with its statistical content in an direct way [START_REF] Meunier | How vortices mix[END_REF]. Within this frame, both the dynamics of the concentration levels in a mixture as a function of the intensity of the stirring motions at the scale of a single lamella, and the nature of the interaction rule between adjacent lamella, are described precisely [START_REF] Villermaux | Mixing as an aggregation process[END_REF]. This offers a detailed description of the mixture concentration content p(c) [START_REF] Duplat | Mixing by random stirring in confined mixtures[END_REF], of its structure p(∆c) (Le Borgne et al. 2017), and of their evolution in time.

STRETCHING ENHANCED DIFFUSION

Because the displacement gradients of the stirring motion typically form elongated structures (lamella in 2-d, sheets in 3-d) from an initially compact isotropic blob passively advected by the flow, concentration gradients are, usually, only notable in the direction perpendicular to the direction of elongation (at the exception of rare highly curved regions of the scalar support [START_REF] Thiffeault | Stretching and curvature of material lines in chaotic flows[END_REF], which are ever rarer as stirring proceeds [START_REF] Meunier | The diffusive strip method for scalar mixing in twodimensions[END_REF]). This is the reason why a one-dimensional description of the local concentration field dynamics is relevant, as it captures the essence of the coupling between stretching rate, and scalar decay.

Diffusion on still, and moving substrates

We first recall when and how stirring the substrate affects diffusion.

2.1.1. Still substrate. The concentration c(x, t) at position x and time t of N diffusing particles released at the origin of an axis in t = 0, i.e. c(x,

0) = N δ(x) is (Fourier 1822) c(x, t) = N 2 √ πDt e -x 2 4Dt
10.

while if N = c0s0 particles have been deposited with uniform concentration c0 in the interval x ∈ {-s0/2, s0/2} at t = 0 like for a blob of width s0, one has by integration of the Green's function c(x -x , t) in (10.) on the interval (see e.g. [START_REF] Carslaw | Conduction of heat in Solids[END_REF])

c(x, t) = c0 2 erf x + s0/2 √ 4Dt -erf x -s0/2 √ 4Dt 11.
The long time limit √ Dt s0 of (11.) recovers (10.). The maximal concentration c(0, t) ≡ θ(t) at the center of the blob in x = 0 is

θ(t) = c0erf s0/2 √ 4Dt 12. ∼ c0s0 √ Dt , for t ts s 2 0 D 13.
an asymptotic trend expressing mass conservation which generalizes to d-dimensions as

θ(t) ∼ c0 s0/ √ Dt d
, holding after the d-independent mixing time ts s 2 0 /D beyond which the concentration in the blob has departed appreciably from its initial value to reach the asymptotic decay.

The discussion in the sequel is not affected by the particular choice we have made for the initial condition in (11.) which is only meant to isolate a blob with uniform concentration from its diluting environment where c = 0. A blob defined by a Gaussian concentration profile of width s0 [START_REF] Meunier | The diffusive strip method for scalar mixing in twodimensions[END_REF], or any other shape leads to identical considerations.

2.1.2. Moving substrate. On a stirred substrate, diffusion competes with the deformation of the medium. The diffusion flux -D∇c is proportional to the concentration gradient that is, essentially, to the concentration difference between two points. If these points get further apart like in the stretching directions of the substrate, the gradient decays, and so does the flux. In compressive regions, the gradient steepens, and the diffusion flux is enhanced. For this key mechanism to operate, substrate compression must be fast enough.

Any kind of shear motion will elongate a blob into a lamella, say of width of order s. The lamella will decay by transverse diffusion according to equation (10.) in a time s 2 /D. If Diffusion on a moving substrate. A blob which would otherwise expand isotropically is stretched along y, and compressed along x, the permanent process forming lamella in stirred mixtures.

at the same time the substrate is compressed at a rate γ such that ṡ = -γs, it is clear that γ -1 should be smaller than s 2 /D for gradient reinforcement to be effective. Thus, starting with a blob of size s0, mixing will amount to a simple diffusion problem if s 2 0 /D γ -1 , and a genuine non-trivial coupling will occur when s 2 0 /D γ -1 , that is when the Péclet number

P e = γs 2 0 D 14.
is larger than unity.

The Ranz transformation

In a local Lagrangian frame {x, y} moving with a lamella (in 2-d, the discussion is readily generalized to a sheet in 3-d (Martinez-Ruiz et al. 2018)) so that the direction x points in the direction of the maximal concentration gradient, and y is perpendicular to it (these directions tend to align with the eigenvectors of the deformation tensor, see [START_REF] Ashurst | Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence[END_REF]), the components {u, v} of the velocity field v in equation (5.) are related to the compression rate of the (incompressible, ∇ • v = 0) substrate material particles by u = ( ṡ/s)x and v = -( ṡ/s)y.

Given the discussion above on the relative magnitude of the concentration gradients in the elongating, and compressing directions of the substrate, we see that the local dynamics of the concentration field from equation (5.)

∂tc + u∂xc + v∂yc = D ∂ 2 x + ∂ 2 y c 15.
incorporates two sub-dominant terms. Under stretch at large P e, a blob of initial surface s 2 0 is elongated into a strip of width s and length s (see Figure 3) so that, by incompressibility s 2 0 ∼ s× . The orders of magnitude of the components of the concentration gradient are O(∂xc) = 1/s and O(∂yc) = 1/ . Thus, in a neighborhood of size s at the

Stirring protocols and mixing times

We list below some standard stirring protocols, along with their mixing time ts from the condition (21.), and the maximal concentration θ(t) in (20.) for t > ts, in the large P e limit.

For a simple shear [START_REF] Ranz | Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows[END_REF] where it should be noted that the pure diffusive limit ts ∼ s 2 0 /D is recovered for P e 1 and that, under stretch, diffusion is arrested in the elongating direction where (t) = s0e γt since in that case τ = A finite time singularity (Villermaux 2012b) such that s(t) = s0(1 -γt) α with α > 1/2 gives

τ = 1 -(1 -γt) 1-2α (1 -2α)P e , giving γts ∼ 1 -P e 1/(1-2α) α>1/2 -----→ P e→∞ 1.
It is the only instance where the mixing time ts remains strictly finite at P e = ∞, and given by the singularity time γ -1 at which s(γ -1 ) = θ(γ -1 ) = 0.

center of the strip O(|u∂xc|/|v∂yc|) = /s 1 and for the same reason,

O(|∂ 2 x c|/|∂ 2 y c|) = ( /s) 2
1. The near exact (at large P e) form of the evolution equation for c is thus

∂tc + ( ṡ/s) x ∂xc = D∂ 2 x c 16.
As it is, (16.) already represents a considerable progress since it bridges, by a linear equation, the dynamics of c with the prescribed kinematics of the stirring field through a single feature, namely the compression rate ṡ/s. This compression rate reflects, in incompressible flows, the growth rate of material lines length (i.e. ˙ / ), or the area of surfaces.

More can be done towards a deeper understanding of (16.), a step which also makes it more practical to use. Distances x and time t define the space in which we discuss physical phenomena, but it is not necessarily the natural one. A coordinate change, popularized by [START_REF] Marble | The coherent flame model for turbulent chemical reactions[END_REF] and [START_REF] Ranz | Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows[END_REF] consisting in counting distances in units of s, and time in units of the diffusion time s 2 /D as ξ =

x s(t)

, and τ = D transforms equation ( 16.) into a pure diffusion equation

∂τ c = ∂ 2 ξ c 18.
This extremely elegant, and useful result is consistent with the fact that only molecular diffusion can alter the concentration content of a field; it is thus natural that in fine, the dynamics of c complies to pure diffusion, the dilatation, or compression of space (i.e. the time dependence of s(t)) being just a way to delay, or hasten the process. Since s(t) typically decreases in time under stirring, τ in (17.) increases faster than linearly in time, expressing the expected acceleration of diffusion.

Either in its original, or in slightly different forms, equation (18.) found its use in various disciplines ranging from heat transfer [START_REF] Levèque | Les lois de la transmission de la chaleur par convection[END_REF], turbulence (Batchelor 1959), reacting flows [START_REF] Gibson | On turbulent flows with fast chemical reactions. part ii. the distribution of reactants and products near a reacting surface[END_REF]; [START_REF] Carrier | The effect of strain rate on diffusion flames[END_REF]; [START_REF] Marble | Mixing, diffusion and chemical reaction of liquids in a vortex field[END_REF]), engineering and process industry [START_REF] Mohr | Mixing in laminar-flow systems[END_REF][START_REF] Ranz | Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows[END_REF], geophysics [START_REF] Rhines | How rapidly is a passive scalar mixed within closed streamlines[END_REF][START_REF] Allègre | Implications of a two-component marble-cake mantle[END_REF], chaos [START_REF] Ottino | Description of mixing with diffusion and reaction in terms of teh concept of material surfaces[END_REF][START_REF] Beigie | A global study of enhanced stretching and diffusion in cahotic tangles[END_REF], physics [START_REF] Moffatt | Transport effects associated with turbulence with particular attention to the influence of helicity[END_REF], or mathematics [START_REF] Fannjiang | Dissipation time and decay of correlations[END_REF].

From a blob, or strip of initial transverse size s0, the concentration (scaled by c0) in the genuine coordinates (17.) is

c(ξ, τ ) = 1 2 erf ξ + 1/2 2 √ τ -erf ξ -1/2 2 √ τ 19.
obtained in the same way the concentration profile in (11.) was.

Maximal concentration and mixing time

The maximal concentration in the lamella is found in x = 0, that is ξ = 0 and is

θ(τ ) = erf 1 4 √ τ ---→ τ 1 1 √ τ 20.
while θ(τ ) ≈ 1 as long as τ 1. Inline with section 2.1.1, we define the mixing time ts beyond which the concentration in the lamella has departed appreciably from its initial value to reach the asymptotic decay 1/ √ τ by the condition

τ (ts) = O(1) 21.
To any stirring protocol, involving any particular form of s(t), and therefore of τ (t), corresponds a given ts with, notably, a given dependence on P e (see the sidebar 2.2). The mixing time is always of the form

ts ∼ 1 γ F (P e) 22.
where γ relates to the deformation rate of the substrate, and F (P e) is a weak function of the Péclet number P e, typically a small power, or a logarithm, a fact known to engineers for a long time [START_REF] Nagata | Mixing, Principles and Applications[END_REF]. Irrespective of the nature of the substance being mixed (i.e. of D), the time it takes to mix it in a stirred vessel with a standard impeller rotating Ṅ rounds per unit of time is Ṅ ts ≈ 5, the factor 5 reflecting geometrical factors, and a logarithmic Péclet correction at large Reynolds number which is so weak that it is insensitive in the engineering practice. Said differently in order to allude to an image frequently associated with mixing, it is well known that when stirring a drop of milk in a cup of coffee, only the number of spoon turns matters. This fact is indeed familiar in the turbulence context (at large Reynolds number, the analogue of the Péclet number for vorticity [START_REF] Moffatt | Transport effects associated with turbulence with particular attention to the influence of helicity[END_REF])) where the 'cascade time' from the blob injection (of scalar, or vorticity) to its dissipation by molecular diffusion, or viscosity is essentially independent of them, or involves a weak correction only.

For being weak in practice since a logarithm is close to a constant at large P e (see e.g. [START_REF] Donzis | Scalar dissipation rate and dissipative anomaly in isotropic turbulence[END_REF]), the correction F (P e) is nevertheless singular (it is infinite in the limit D → 0, sometimes coined a 'dissipative anomaly' [START_REF] Falkovich | Particles and fields in fluid turbulence[END_REF])), and this makes sense : The decay rate of the scalar fluctuations is solely prescribed by the stirring strength γ, but it is so after the mixing time only. In other words, it takes some time for the stretching motions to bring the scalar blob down to a scale small enough for molecular diffusion to become effective in erasing the scalar differences. This time depends both on the stirring strength γ, on the initial blob size s0, and on its diffusional properties D; this is the essence of mixing in stirred media.

After the mixing time, the maximal concentration θ(t) in (20.) decreases according to mass conservation θ(t) √ Dt/s(t) ∼ 1 as θ(t) ∼ (γt) -α-1/2 for power law stretching, or θ(t) ∼ e -γt with exponential stretching (see the sidebar 2.2), and in any case faster than for pure diffusion where θ(t) ∼ (Dt) -d/2 in d-dimensions.

2.3.1. The case of small Péclet numbers. We have stressed in section 2.1.2 that mixing is a non-trivial problem in the limit of large Péclet numbers only, but this is not exactly true. An interesting coupling occurs for P e < 1 in a shear flow: At low P e, diffusion broadens a (small) blob in its traverse direction as √ Dt > s0 resulting, since the blob sits in a shear, in a longitudinal dispersion velocity of the blob ˙ ∼ γ √ Dt, that is a blob length scaling like (t) ∼ γ √ D t 3/2 (this is besides a well-known recipe to produce a super-diffusive dispersion law à la [START_REF] Richardson | Atmospheric diffusion shown on a distance-neighbour graph[END_REF], see for instance [START_REF] Celani | Shear effects on passive scalar spectra[END_REF]). The blob surface increases like √ Dt × (t) = γDt 2 which, by mass conservation, provides the maximal concentration carried by the blob θ(t) as

θ(t) ∼ s 2 0 γDt 2 23.
This régime is however likely to operate if (t) above is larger than the pure kinematic elongation of the blob s0γt, that is for t > s 2 0 /D, a time large compared to ts ∼ P e 1/3 /γ unless P e < 1. The corresponding régime will thus affect the early dynamics of a blob for P e, at best, of order unity. A rigorous treatment of this nice exercise can be found in [START_REF] Thiffeault | Scalar decay in chaotic mixing[END_REF].

Rule of Thumb

The qualitative meaning of the crossover condition in equation (21.) is that diffusion starts to operate when its associated timescale compares to the substrate deformation time, that is

| ṡ/s| ∼ D/s 2
Taking generically s(t) ∼ s0(γt) -α , one sees that 2α+1) , and θ(t) ∼ (γt

ts ∼ 1 γ P e 1/(
) -α-1/2
explaining why the P e-dependence of ts is weaker when the stretching is stronger (i.e. large α).

Batchelor scales and dissipation

We have emphasized how diffusion broadening competes with substrate compression. To this process is associated a lengthscale η, which we have already alluded to in section 1.1.1.

There is in fact a family of lengthscales, all representative of the same phenomenon. For τ > 1, that is for t > ts, the concentration profile across a lamella (19.) converges towards a decaying Gaussian (de Rivas & Villermaux 2016)

c(x, t) ∼ 1 2 √ πτ e -x 2 2η 2 24.
with η(t) = s(t) τ (t) 25.

We call η(t) and, more precisely η(ts), a Batchelor scale. After the mixing time, η(t) has no reason to be a constant, in general. It is, in the special stirring protocol of a constant stretching rate γ. In that case, s(t) = s0e -γt and τ (t) ∼ e 2γt /P e, therefore s(t) τ (t) ∼ D/γ is indeed a constant of time, also independent of s0 (Batchelor 1959). This lengthscale first arose in turbulence, where the relevant stretching rate γ = (U/L)Re 1/2 is the one prevailing for scales below the Kolmogorov scale LRe -3/4 where Re = U L/ν is the Reynolds number with U a velocity at the large scale L and ν the fluid kinematic viscosity. The (original) Batchelor scale LRe -3/4 Sc -1/2 with Sc = ν/D the Schmidt number is usually difficult to detect in flows at large Reynolds, and Schmidt numbers (note that P e = Re × Sc), because it is small [START_REF] Miller | Measurements of scalar power spectra in high schmidt number turbulent jets[END_REF]; it is however more easily accessible to precise numerical simulations [START_REF] Schumacher | Very fine structures in scalar mixing[END_REF], or to experiments involving moderate, and simple deformations fields [START_REF] Meunier | Transport and diffusion around a homoclinic point[END_REF]). Anticipating on section 3.2, we note that since in random flows stretching rates are distributed in intensity, the Batchelor scale above has to be understood as a representative mean of an otherwise broad distribution of scalar dissipation scales [START_REF] Schumacher | Very fine structures in scalar mixing[END_REF].

In more general stirring protocols, the compression rate γ(t) = -ṡ/s is itself timedependent. For instance, if s(t) decreases as a power law like s(t) ∼ s0(γt) -α , one has

η(t) ∼ √ Dt 26.
consistent with the large time decay of the compression rate γ(t) ∼ 1/t, finally overcome by diffusion broadening. Since in that case (see the rule of thumb in 2. small enough to resolve the Batchelor scale (2.8). For instance, with ˙ = 0.01 s 1 and s 0 = 25 µm, we have s AD (t B ) = s 0 p 5(3 ˙ s 2 0 /D 0 ) 1/3 ⇡ 10 µm. A high-pass filter (590 nm) is positioned between the sample and the camera to eliminate direct light reflections. To avoid photobleaching during the image acquisition, the intensity of the laser is lowered to 100 mW and the image acquisition is synchronized with a shutter opening only during acquisition times. Note that all experiments are performed at T = 22 ± 0.05 C by setting the temperature of the water running through the bottom moving plate with a cryo-thermostat.

Experimental results

4.1. A single lamella Figure 3(a) shows successive pictures of a lamella undergoing a laminar shear (see also supplementary movie 1). Initially vertical and highly contrasted, the lamella progressively tilts under the effect of the shear flow while blurring under the effect of molecular diffusion. Accurate measurement of the lamella's concentration profile along the flow (x-direction) are obtained by averaging over all horizontal lines of pixels after translating these lines to make their maximum concentration coincide. The resulting average concentration profile of the lamella is shown in figure 3(b) for successive strains: the maximum concentration decays while the width increases. These trends are captured well by fitting each concentration profile with a Gaussian of the form C(x, t) = C max (t)e x 2 / 2 x (t) (see figure 3b). all enough to resolve the Batchelor scale (2.8). For instance, with ˙ = 0.01 s 1 d s 0 = 25 µm, we have s AD (t B ) = s 0 p 5(3 ˙ s 2 0 /D 0 ) 1/3 ⇡ 10 µm. A high-pass filter 90 nm) is positioned between the sample and the camera to eliminate direct light flections. To avoid photobleaching during the image acquisition, the intensity of the ser is lowered to 100 mW and the image acquisition is synchronized with a shutter pening only during acquisition times. Note that all experiments are performed at = 22 ± 0.05 C by setting the temperature of the water running through the bottom oving plate with a cryo-thermostat.

. Experimental results 4.1. A single lamella igure 3(a) shows successive pictures of a lamella undergoing a laminar shear (see so supplementary movie 1). Initially vertical and highly contrasted, the lamella rogressively tilts under the effect of the shear flow while blurring under the effect f molecular diffusion. Accurate measurement of the lamella's concentration profile ong the flow (x-direction) are obtained by averaging over all horizontal lines of ixels after translating these lines to make their maximum concentration coincide. he resulting average concentration profile of the lamella is shown in figure 3(b) r successive strains: the maximum concentration decays while the width increases. hese trends are captured well by fitting each concentration profile with a Gaussian f the form C(x, t) = C max (t)e x 2 / 2 x (t) (see figure 3b). The resulting maximum concentration C max (t) and width x (t) are plotted in figures 3(c) and 3(d) versus time for experiments performed at different Péclet number (4.5 6 Pe 6 1190). The Péclet number was varied by repeating the experiment at various shear rates ˙ = [6 ⇥ 10 4 0.3] s 1 . The agreement with (2.4) and (2.6) is very good for both C max (t) and x (t). Note that in both cases, ˙ , s 0 and D 0 are fixed by the experimental conditions; there is thus no adjustable parameter. When plotted as a function of the dimensionless time t/t B , where t B = (3Pe) 1/3 / ˙ is the Batchelor time, these data are found to collapse, for all Pe, on the same master curve (see figure 3e,f ). For t < t B , C max and x remain constant. Then when the effect of molecular diffusion becomes significant, i.e for t > t B , C max (respectively x ) starts to decrease (respectively increase) following the power law t 3/2 (respectively t 3/2 ), consistently with the long-time trends of (2.4) and (2.6). These measurements clearly illustrate how mixing is accelerated by imposing an external macroscopic shear: larger applied shear rates (larger Péclet numbers) result in earlier mixing times.

We have so far probed the lamella along the direction of the flow. However, further insight into the mixing process, specifically on the advection-diffusion coupling presented above, are provided by probing the lamella width along its transverse direction (along n, see figure 1). Figure 4(a) shows the evolution of s AD (t) measured experimentally. At an intermediate time, the thickness of the lamella is found to decrease like t 1 . After reaching a minimum, it increases like t 1/2 . These trends precisely illustrate the expected interplay between advection and diffusion. The lamella width initially decreases as imposed by the kinematics of the flow following the intermediate time trend (for t < t B ) of (2.5), s AD (t) ⇠ s 0 ( ˙ t) 1 . However, this compression of the lamella progressively steepens its concentration gradients which, beyond the Batchelor time, eventually makes the broadening effect due to molecular diffusion become dominant. The transverse dimension of the lamella then re-increases diffusively like t 1/2 . At the Batchelor time t B , the lamella typically reaches its minimum thickness, which is equal to the Batchelor scale s AD (t B ) (within 3 %). As shown in figure 4 then η(ts) ∼ s0P e -α/(2α+1) 27.

now depending on the value of α, and on the initial condition s0. The case α = 1 (shear flow) was precisely investigated by [START_REF] Souzy | Mixing lamellae in a shear flow[END_REF] who indeed confirmed all the necessary trends an scaling laws (Figure 4).

In time-dependent flows, if α is a number reflecting the accelerated nature of the stretch intensity (α > 1), or its slowing down (α < 1), we have

γ(t) γ = α (γt) α-1 , 28.
a formulation which has no other fundamental justification than being easily adaptable to different flow configurations knowing that in nature, diverse behaviors exist concomitantly, and/or sequentially [START_REF] Mckenzie | Finite deformation during fluid flow[END_REF]. The corresponding Batchelor scale in (27.) tends when t > ts towards 2.4.1. Dissipation. Among the many global, lumped indices which have been defined to quantify a mixing state, or the 'mixideness' of a given protocol that is its ability to mix well, such as the intensity of segregation (variance of c about the mean, [START_REF] Danckwerts | The definition and measurement of some characteristics of mixtures[END_REF]), the dilution index (entropy of p(c), [START_REF] Kitanidis | The concept of the dilution index[END_REF]), the mix-norm (field coarsening, [START_REF] Mathew | A multiscale measure for mixing[END_REF] see also [START_REF] Thiffeault | Using multiscale norms to quantify mixing and transport[END_REF]), which are all ersatz of the concentration distribution

η(t) ∼ D αγ ( 
p(c) (see Le Borgne et al. ( 2015 
)
), is the dissipation rate χ(t) = -2D (∇c) 2 . It is the average squared concentration gradient which, when weighted by D, is the decay rate of the mean squared concentration differences about le mean (see (9.), and [START_REF] Zeldovich | The asymptotic law of heat transfer at small velocities in the finite domain problem[END_REF]).

From the Batchelor scale η(t), and the maximal concentration in a lamella θ(t), a typical concentration gradient is θ(t)/η(t), and for an isolated stretching blob at t ts χ(t) ∼ γ √ P e (γt) -α-3/2 (power law stretching) 30.

χ(t) ∼ γ

√ P e e -γt (exponential stretching) 31.

exhibiting, not surprisingly, a stronger time-dependence than for pure diffusion where

χ(t) ∼ D -d/2 t -1-d/2 in d-dimensions.
There is no dissipation as D → 0, because ts → ∞ in that singular limit (see section 2.3 and [START_REF] Balmforth | Diffusion-limited scalar cascades[END_REF]). The above relations are readily generalized to nondecaying mixtures where blobs are periodically injected and stirred at steady state (Villermaux 2012b). This is a way to understand from elementary principles eddy diffusivities, or heat and mass transfer laws at sheared boundaries.

SOLITARY STRIPS

By solitary strips we mean lamella carrying concentration levels (20.) solely prescribed by their local stretching history according to (17.). In that case, the concentration distribution p(c) simply reflects the relative cumulated elongation intensities along the strip at a given time. We examine several examples with either steady, or time-dependent stirring protocols.

Deterministic stirring

We call deterministic those stirring protocols which are either steady, or time-dependent but which all lead to a unique trajectory of the deformed blob for a given initial condition.

3.1.1. The concentration distribution of a Gaussian spatial profile. We aim at giving a representation of the distribution p(c) of the concentration levels c along a lamella distorted by a flow. After the mixing time, these levels are carried by the local Gaussian spatial profile across the lamella in (27.) parametrized by its maximum θ, and width η; the concentration levels span from 0 far from the lamella, to θ. Exploring, along the axis x across the lamella (see (27.)), the c levels over a x-range of the order of a few η, each are encountered with a relative frequency given by

g(c|θ) ∼ η -1 |dc/dx| x(c) ∼ 1 c ln(θ/c) 32.
with x(c) ∼ η ln(θ/c). The characteristic ∪ shape of this distribution is well known [START_REF] Meunier | How vortices mix[END_REF], 2007, 2010;Duplat et al. 2010a;[START_REF] Martinez-Ruiz | The diffusive sheet method for scalar mixing[END_REF][START_REF] Souzy | Mixing lamellae in a shear flow[END_REF]. The distribution (32.) is however not normalized because of its divergence in c = 0, reflecting the free choice for defining the support of the lamella, which can extend arbitrarily far from it in its diluting ocean, a divergence which is thus not physically meaningful. The distribution g(c|θ) has another divergence in c = θ which singles out the concentration maximum, and it is this divergence which carries the relevant information given that, in non-trivial flows, θ is itself distributed. Unless explicitly taken into account when they give rise to an interesting phenomenon [START_REF] Meunier | Van hove singularities in probability density functions of scalars[END_REF], it is usually fair to disregard the contributions of the low concentration levels from the spatial tail of the Gaussian profile (27.), and thus approximate (32.) as

g(c|θ) ≈ δ(c -θ) 33.
which serves our purpose to discuss the large excursion shape of the distribution p(c) of a strip along which the maxima θ are distributed.

c(r, ξ, t) ≈ c0 erf 1 4 √ τ (r) exp -6 ξ 2 1 + 24τ (r) (3) 
The PDF of such a spatial profile is easily obtained by integration over r in the range where the maximum concentration cM (r) is larger than a given concentration level c:

P (c) = 2s0 cM (r)>c |∂c/∂ξ| -1 dr/A
where A is a normalising constant equal to the surface area on which the PDF is calculated. Expressing ∂c/∂ξ = -12ξ c/(1 + 24τ ), and inverting the function c(ξ ), we find the general solution

P (c) = 2s0 cA max 0, τ (r) + 1/24 log[erf(1/4 √ τ (r) )] -log[c/c0] 1/2 dr (4)
The function 'max(0, .)' stands for the integrand to vanish when the maximum concentration cM (r) is smaller than c; this allows the integration to be performed on the entire lamellae length at any time.

Defining the curvilinear abscissa σ along the lamellae (Fig. 1), this formula is extended to any two-dimensional flow provided the stretching rate γ (σ, t) = -[ds(σ )/dt]/s(σ ) of all the lamellae elements is known at any time along their Lagrangian trajectory. The integral is computed over σ instead of r for axisymmetric flows, giving

τ (σ, t) = D s 2 0 t 0 exp 2 t ′ 0 γ (σ, t ′′ ) dt ′′ dt ′ (5)
Prediction ( 4) is plotted in Fig. 2 and shows good agreement with the measured distribution. The general solution (4) can be further simplified when τ (r) is rapidly varying with r. By a change of variable u = cM (r)/c, the integral is modified into a result easily obtained by retaining the maximum of the concentration at each radius only in computing the PDF, with a weight equal to the transverse size of the Gaussian profile √ τ + 1/24, giving P (cM ) dcM = √ τ + 1/24 dr. This ansatz, also plotted in Fig. 2, reproduces the shape of the PDF correctly, and is off by a factor 2 in amplitude. This 4) and the dashed line to the approximation (6) using the maximal concentration.
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Probability density function

If A is the total surface area of the spiral with a non-zero concentration level, the probability density function (PDF) of the scalar P (c) is the fraction of the total area with concentration lying in the interval [c, c + dc]. It is convenient to compute P (c) in the (r, ξ ) coordinates where ξ is defined in (3.8) so that with dX = 1 + (Γ 2 t 2 )/(π 2 r 4 ) dr and dY = s dξ = s 0 dξ/ 1 + (Γ 2 t 2 )/(π 2 r 4 ), one has

P (c) dc = c(X,Y )∈[c, c+dc] dX dY A = c(r,ξ )∈[c, c+dc] s 0 dr dξ A . (4.1)
The scalar spatial distribution is given in (3.10) as the difference of two error functions. However, after the mixing time, that is when the spiral is very thin, this difference approximates the derivative of the error function, providing a Gaussian concentration profile: Villermaux (2003[START_REF] Meunier | Van hove singularities in probability density functions of scalars[END_REF].

c(ξ, r) = c 0 erf 1 4 √ τ (r) e -ξ 2 /2σ 2 ξ , (4.2)

Mixing by a vortex.

The stirring protocol of a permanent point vortex with circulation Γ (azimutal velocity Γ/2πr) is an illustration of the construction mechanism of p(c) which is worth considering in some details [START_REF] Meunier | How vortices mix[END_REF].

A blob of size s0 is deposited at a distance r s0 from the center of the vortex. An element of surface s0dr of the blob is stretched kinematically into a strip of length d such that

d = dr 1 + Γ 2 t 2 π 2 r 4 → dr Γt πr 2 34.
spiraling around the vortex center. Area conservation s0dr = s(r, t)d thus gives rise to a time-dependent, and radius dependent stretching rate, so that τ in (17.) depends on both r and t as

τ (r, t) = Dt s 2 0 1 + Γ 2 t 2 3π 2 r 4 35.
with a time-dependence (i.e. t 3 ) reminiscent of flows which increase material line lengths in proportion of time (the length of the spiral is

L = d ≈ Γs0t/r 2 ). The condition τ (r, t) = O(1) provides a r-dependent mixing time ts(r) ∼ r 2 Γ s0 r 2/3 Γ D 1/3
.

36.

The fluid particles of the blob closer to the center of the vortex are stretched faster, and have hence a shorter mixing time; they also carry a smaller maximal concentration θ(r, t) = erf(1/4 √ τ ) ∼ 1/ τ (r, t) because they have mixed earlier (Figure 5). The one-to-one correspondence between strip elongation, and maximal concentration along the deformed blob translates in the conservation law q(θ)dθ = d /L, providing the distribution of maximal concentrations as q(θ) ∼ Γt Lr 2 1 |dθ/dr| 37.

The full concentration field c can be reconstructed precisely [START_REF] Meunier | How vortices mix[END_REF] from the elementary ∪ distributions in (32.), also describing some features like Van Hove singularities when the spatial concentration field presents a saddle point in a variant of the present problem [START_REF] Meunier | Van hove singularities in probability density functions of scalars[END_REF]. At large times, the use of the approximation (33.) is such that p(c) = g(c|θ)q(θ)dθ ≈ q(θ = c), and when t > ts(r) for all r ∈ {r, r + s0}

p(c) ∼ s0 √ DΓt 3/2 1/2 r c 3/2 38.
Because the particles close to the vortex center are more stretched, they occupy a larger fraction of the spiral than the remote ones. Since their concentration is smaller as they are more elongated, then the overall p(c) is a decreasing function of c. This simple fact is the paradigm of solitary strip mixing.

Random Flows

An identical construction as above, relating the strips elongations to p(c) holds when stirring is time-dependent in the sense of chaotic or turbulent. Irrespective of the stirring protocol, the elongation ρ(t) = s0/s(t) is related to τ by

τ ≈ Dt s 2 0 ρ 2 , for ρ 1 39.
and since θ ∼ 1/ √ τ , the knowledge of the distribution of ρ in an ensemble of stretched lamella provides, via simple changes of variables, the distribution of τ (and therefore of ts), and the distribution of θ (and therefore of c).

3.2.1. Sequential elongations: the lognormal paradigm. We consider protocols which consist in a sequential, uncorrelated (in intensity and direction) series of stretchings, applied either to a large collection of blobs, or to sub-parts of a stretching blob. This can be realized in several ways like in asymmetrical Baker transforms [START_REF] Ott | Fractal measures of passively convected vector fields and scalr gradients in chaotic fluid flows[END_REF] or other iterated maps [START_REF] Meunier | The diffusive strip method for scalar mixing in twodimensions[END_REF]Figueroa et al. 2014) and random processes [START_REF] Kalda | Simple model of intermittent passive scalar turbulence[END_REF], by the transport of the blob through successive pores in a porous medium [START_REF] Le Borgne | The lamellar description of mixing in porous media[END_REF] or in a sheared suspension of beads [START_REF] Souzy | Stretching and mixing in sheared particulate suspensions[END_REF], for instance.

If the blob experiences N successive random stretchings ρi, its elongation is ρ = N i ρi and if the ρi's are all independent, the probability Q(ρ) that a point on the initial blob is stretched by a factor ρ is given by Q

(ρ) = exp[-(log ρ -N µ) 2 /2N σ 2 ]/ρ √ 2πN σ 2
, where µ and σ 2 are the mean and variance of log ρ, defining a lognormal distribution. The probability P (ρ) that a point on the final strip has experienced a stretching ρ is equal to [s0/ (t)]ρ Q(ρ) where (t) is the total length of the strip. With a number N of stretchings proportional to time t in a permanently stirred flow, 

P (ρ) = s0/ (t) √ 4πκt exp - (log ρ -γpt) 2 4κt 40.

A simple model of stretching

4.1. Temporal evolution of the strip length It is well known that in a chaotic stirring flow sustaining a series of stretchings and foldings, a strip of scalar is stretched exponentially in time: this is the paradigm of the Baker transform (Ottino 1989). More generally, a succession of random motions distributed in intensity and direction results in a global exponential lengthening of material lines (Kraichnan 1974;[START_REF] Duplat | Persistency of material element deformation in isotropic flows and growth rate of lines and surfaces[END_REF]. This is very wellconfirmed in the present sine flow, where the total length L of the strip increases as e γ t , as shown in figure 9. The numerical value of the mean stretching rate (also called topological entropy) can be obtained accurately γ = 0.91 ± 2 %. This value will be the only constant needed for the theory developed in the following.

PDF of stretching factors

The total length of the strip is a global characteristic which does not give any information about the variation of the elongation ρ along the strip, which is distributed according to a well-defined PDF, P (ρ). It is defined as the probability of finding a point on the final strip, where the strip has been stretched by a factor ρ = x/ x 0 . Since the final refinement is done such that the tracers are equally spaced along the strip, P (ρ) is easily calculated as the number of tracers for which x/ x 0 is in the interval [ρ, ρ + dρ] divided by dρ. These PDF are plotted for t = 2, 4 and 7 in figure 9. The numerical results seem to be parabolic in this logarithmic scale, which means that P (ρ) is a Gaussian function of log(ρ). It is clear that the parabola get wider as time increases. Moreover, log(ρM ) increases linearly in time, where ρM is the most probable stretching.

Multi-step stretching

The above result and shape of P (ρ) is readily understood. Let us split the stretching of the strip at one point into N successive random stretching operations. We assume that a given tracer of the strip experiences a stretching ρ1 between t = 0 and t = δt, a Due to a lack of printing resolution, the thickness of the strip has not been respected: the strip has been plotted as a line. However, the image has been zoomed 200 times in the inset to show the correct thickness of the strips.

extremely easy to plot the distributions of scalar at any diffusivity (as high as wished in particular). Two examples are given in figure 8 for Pe = 10 7 and Pe = 10 10 . Such numerical simulations are impossible to do using a spectral code, since the number of points needed would be too high. Indeed, it was impossible to reconstruct the scalar field on a two-dimensional mesh, and the strip has only been plotted as a line in figure 8. However, it is possible to reconstruct the scalar field in two dimensions on a smaller area. This is shown in the insets of figure 8 and proves that the results are correct although it is impossible to visualize them on the whole field.

At a Péclet number equal to 10 7 , the strip has reached the mixing time in some places, but some parts of the strip seem to have a concentration equal to c0. The inset shows that the strip has reconnected with itself, leading to a rather blurry picture. On the contrary, for Pe = 10 10 , the different parts of the strip remain separate, even at the upper left corner of the inset, where two lines are not only extremely close, but also extremely thin. This is in agreement with the fact that the mixing time has not been reached there, which prevents the reconnection of the strip (due to the flow incompressibility). At such a high Péclet number, the mixing time has not been reached almost everywhere, and the concentration is equal to c0 almost everywhere. It is clear on this figure that the spatial distribution of scalar is very complex and contains a lot of information, which is why the numerical simulation gets very slow at these late stages. We are using this information in the following to analyse the mixing properties of the flow and relate them to the stretching of the strip. where γp = N µ/t is the most probable stretching rate, and κ = N σ 2 /(2t) stands for their dispersion, both depending of the type of unsteadiness in the flow (for instance [START_REF] Souzy | Stretching and mixing in sheared particulate suspensions[END_REF] showed how γp and κ depend on the volume fraction of beads in a sheared suspension). The net length of the strip (t) = ρQ(ρ)dρ = s0e (γp+κ)t increases exponentially fast, a common feature of random sequential processes [START_REF] Cocke | Turbulent hydrodynamic line stretching: Consequences of isotropy[END_REF][START_REF] Hinch | Mixing, turbulence and chaos-an introduction[END_REF][START_REF] Duplat | Persistency of material element deformation in isotropic flows and growth rate of lines and surfaces[END_REF]. Figure 6 shows examples of this paradigm of sequential mixing, commonplace in real-world and numerical experiments. From Q(ρ), apparent stretching rates γ = (ln ρ)/t (or finite-time Lyapunov exponents [START_REF] Bohr | Dynamical systems approach to turbulece[END_REF]) can be defined, whose distribution is

G(γ) = t 4πκ e -(γ-γp ) 2 4κ t 41.
showing how, as time proceeds, all elements of the strip experience progressively the same effective stretching given by the most probable stretching rate γp. Cumulated stretching histories are all alike as the mixture approaches uniformity. It was suggested by Kalda (see Meunier & Villermaux (2010)) that γp and κ should be related to each other by γp = dκ in dimension d; from the sole knowledge of the net growth rate of material surfaces, the entire distribution of elongations can be inferred. The distributions q(θ) and p(c) follow from P (ρ) by quadratures (see 39.) and since θ, τ and ρ are power laws of each other in the long time limit, p(c) is also lognormal (Le Borgne et al. 2015).

18 E. Villermaux

Solitary strips in turbulence.

The multiplicative nature of the elongation process is such that strongly elongated portions of a blob are likely to be even more stretched in the next sequences. Since large elongation means short mixing time, the distribution of mixing times T (ts) obtained from (40.) with (21.) and (39.) is an essentially decaying function of ts, well represented by [START_REF] Shraiman | Lagrangian path integrals and fluctuations in random flows[END_REF], see also Duplat et al. (2010a))

T (ts) =
1 ts e -ts/ ts 42.

Crossover functions like θ ≈ (1+t/ts) -β (Duplat et al. 2010a) or θ ≈ 1-e -(ts/t) β (Le Borgne et al. 2017) are good fits for θ in (20.) leading, with (33.) to (Figure 7)

p(c) = t β [-log(1 -c)] 1 β -1 1 -c e -t[-log(1-c)] 1 β , with t = t ts 43.
In the far field of a decaying turbulent jet with mean velocity u, the average mixing time of a solitary strip injected from a tube of diameter h smaller than the radius of the jet is given by ts ∼ (h/u)Sc 1/5 , whose Schmidt number dependence was checked over three orders of magnitude. In a turbulent flow, the strip is chopped-off in lamella with thickness of the order of the Taylor scale s0 ∼ νh/u, which are further stretched by the velocity gradient γ ∼ u/h at the scale of the injection tube according to s(t) ∼ s0(γt) -2 , hence P e = γs 2 0 /D = Sc and β = 5/2 (Duplat et al. (2010a), see also [START_REF] Villermaux | Mixing in coaxial jets[END_REF]). A similar construction involving exponentially distributed stretchings at each sequence of fixed duration ts providing

p(c) = (-ln c) t-1 Γ( t) 44.
was proposed by [START_REF] Kalda | Turbulent mixing: the roots of intermittency[END_REF] in a slightly different context.

The exponentially decaying form of p(c > c ) ∼ e -tc exemplifies rare events, getting rarer for increasing time, or distance to the source. These intermittent 'still not yet mixed' portions of the strip separated from each other by immense voids, carry a concentration way above the -otherwise close to zero-mean concentration c [START_REF] Celani | Odor landscapes in turbulent environments[END_REF].

OVERLAPS

Solitary strips give a fair representation of the mixture composition as long as each of their sub-parts evolve on their own; but in most flows in practice, this lonely route has an end: a blob stretched exponentially in a bounded two-dimensional space occupies, after ts, an area s0 D/γe γt soon larger than the stirring domain. In turbulent flows, the strip gets corrugated, or 'rough' at all scales (i.e. fractal), with a fractal dimension depending both on scale [START_REF] Catrakis | Mixing in turbulent jets: scalar measures and isosurface geometry[END_REF], and time [START_REF] Villermaux | Line dispersion in homogeneous turbulence: Stretching, fractal dimensions and micromixing[END_REF][START_REF] Villermaux | On the geometry of turbulent mixing[END_REF][START_REF] Nicolleau | Study of the development of three-dimensional sets of fluid particles and iso-concentration fields using kinematic simulation[END_REF]. The consequence of this inherent, or enforced confinement, is that a strip will unavoidably overlap with itself, and that the concentration levels along the strip is then no more that of an individual trajectory, but result from an interaction with neighboring portions of the strip (Figure 8).

Linearity of the Fourier equation: additions and convolutions

The Fourier equation (18.) is linear in c, and any concentration field c(ξ, τ ) is the sum of Gaussian pulses with amplitude modulated by an appropriate initial condition c(ξ, 0)

c(ξ, τ ) = dξ c(ξ , 0) 2 √ πτ e -(ξ-ξ ) 2 4τ 45.
Equivalently, a mixture is the sum of its sub-parts: the concentration profile of a set of two lamella 1 and 2 as those shown in Figure 8, each with a profile c1(ξ, τ ) and c2(ξ, τ ), is obtained by summation c(ξ, τ ) = c1(ξ, τ ) + c2(ξ, τ ), 46.

an elementary composition rule which is the building block of the evolution of complex mixtures. Indeed, if one divides a-priori a blob in two by tagging each sub-part with a different color and if p1(c1) and p2(c2) are the concentration distributions of each subfields, then the distribution p(c) of the total concentration field c = c1 + c2 must be a combination of them.

For a broad variety of stirring protocols where the lamella are enforced to overlap, it has been found that additions in (46.) are made at random among the concentration levels 20 E. Villermaux 

Appendix B. Convolutions around the mean

We derive here the shape of the concentration distribution evolving through the selfconvolution process described in § 3, counting now the concentration levels not from 0 but from the average concentration ⟨C⟩. We therefore define a concentration c such that c = C -⟨C⟩, and we look for its distribution p(c). For the same reason which is outlined in § 3 -and which basically comes from the linearity of the Fourier diffusion equations -the concentration levels c obey an addition rule, whose translation in the probability space of p(c) is a self-convolution process. The concentration c can be positive or negative, and for ⟨C⟩ = 1/2, the distribution p(c) has a zero mean and is obviously symmetric.

We study the following kinetic equation for p(c), formally identical to (3.9) in § 3:

∂t p = n -p + p ⊗ 1+1/n , (B 1)
where n is a positive number, and the time t is dimensionless. available in the current distributions. Random additions in concentration space translate into a convolution in probability space (Feller 1970)

p(c) = c=c 1 +c 2 p1(c1)p2(c2)dc2 = p1 ⊗ p2 47.
and, when it actually succeeds are describing the mixture, gives a precise definition of what 'random stirring protocol' means. This is the case for interfering line sources [START_REF] Warhaft | The interference of thermal fields from line sources in grid turbulence[END_REF] and plumes [START_REF] Duplat | Mixing by random stirring in confined mixtures[END_REF] in turbulence, blobs stirred in viscous fluids (Duplat et al. 2010b), or porous media [START_REF] Kree | Scalar mixtures in porous media[END_REF]. For these stirring protocols, all particles constitutive of the mixture have a chance to interact with all the others. This excludes flows with permanent segregated islands [START_REF] Giona | Spectral properties and transport mechanisms of partially chaotic bounded flows in the presence of diffusion[END_REF], or to some extent slow regions like near walls which prevent good blending [START_REF] Gouillart | Walls inhibit chaotic mixing[END_REF]).

Self convolution and Gamma distributions

Solitary strips evolve on their own in dispersing mixtures, but when confined, overlap according to (47.). The distribution p(c, t + δt) is thus the result of a convolution with itself p(c, t) an instant earlier necessary for the additions (46.) to complete. We confuse c and θ, and consider two limits, making use of the Laplace transform of p(s, t) = ∞ 0 p(c)e -sc dc.

• Either a fraction rδt of the lamella, or sheets undergo a complete addition between t and t + δt, and in that case ∂t p = r -p + p2 48. • Or, the convolution operation occurs on a continuous timescale everywhere in the flow, with sheets all merging with their neighbors in a continuous way, therefore altering the distribution p(c, t) even on an infinitesimal timescale and in that case ∂t p = r p ln p 50.

whose solution is the self-convolution of the initial distribution p(c, 0) as

p(c, t) = p(c, 0) ⊗exp( t 0 rdt ) . 51.
The two self-convolution routes above are distinct limits of the general evolution equation [START_REF] Villermaux | Mixing as an aggregation process[END_REF] ∂t p = rn -p + p1+1/n , 52.

defining for p(c, t) a unique family of distributions, with a single parameter n. The discrete time additions in (48.) corresponds to n = 1, and the uniform continuous time process in 22 E. Villermaux (50.) is recovered when n → ∞. To this crucial random addition step is superimposed the decay of c by stretching, resulting in a global shift p(c + δc, t + δt) = p(c, t) with δc/δt = -γ(t)c so that the complete evolution of p(c, t) is ∂tp = γ∂c (c p) + rn -p + p ⊗1+1/n . 53.

In mixtures with conserved average concentration, additions compensate for stretching, so that r = γ and since the lamella aggregate because they are stretched, ṅ = γn. The parameter n thus appears as a number of convolutions at time t and since the piling-up of the concentration levels by coalescence through (52.) contributes to a concentration increase exp{ dn/n} = n, the average concentration is conserved provided

n = 1 θ(t)
54.

In that case, p(c, t) is asymptotically given by

p(x = c/ c ) = n n Γ(n) x n-1 e -nx , with ṅ/n = γ(t) 55.
a Gamma distribution, with order n(t) increasing in time, only function of the mixture rate of stretch while the shape of the distribution solely reflects the microscopic additions giving birth to it. Obviously, p(x) ----→ n→∞ δ(x -1) when the mixture is completely mixed in the sense of (8.), and not simply blended as in (7.); it took the above developments to understand why and how. This distribution represents well mixtures in turbulent channel flows (see [START_REF] Duplat | Mixing by random stirring in confined mixtures[END_REF] and Figure 9), weakly heterogeneous porous media [START_REF] Le Borgne | The lamellar description of mixing in porous media[END_REF], blobs in viscous fluids [START_REF] Villermaux | Mixing as an aggregation process[END_REF], along with their respective temporal dependence of n, specific to each stirring protocol. Numerical simulations have confirmed that the solitary strip concentration distribution has to be convoluted with itself n(t) times to reconstruct the full overlapped mixture p(c, t) [START_REF] Meunier | The diffusive strip method for scalar mixing in twodimensions[END_REF][START_REF] Le Borgne | The lamellar description of mixing in porous media[END_REF].

Additions in (46.) should be understood about the mean c and actually lead to the Gamma family (55.) when c 1. When c = 1/2 for instance, the fluctuations of c -c are symmetrical about 0 and (53.) leads to Bessel functions [START_REF] Villermaux | Bridging kinematics and concentration content in a chaotic micromixer[END_REF].

Coarsening scale and Increments

The permanent lamella overlaps in a stirred mixture have a consequence not only on its concentration content, but also on its spatial structure.

Coarsening scale.

To the balance between diffusion and stretching is associated a Batchelor scale (section 2.4); overlaps give rise to another, the coarsening scale [START_REF] Villermaux | Coarse grained scale of turbulent mixtures[END_REF]. Sheets, lamella are typically dense in space in confined mixtures, and are locally parallel, aligned in the direction of stretching, forming bundles.

Consider for instance an initial scalar field c(x, 0) consisting in a bundle of parallel lamella, each separated from their immediate neighbors by a distance s0, and piled-up over a distance of order L where the stretching applies: from c(x, 0) = 1 + cos(2πx/s0) for x ∈ {-L/2, L/2}, we have c(ξ, τ ) = 1 + cos(ξ)e -τ . The time needed to complete the coalescence of the lamella in the bundle (Figure 9) is the time required to make the concentration modulations small compared to unity (i.e. τ > 1). At that time ts, the bundle where the merged lamella have percolated (Villermaux 2012a;[START_REF] Le Borgne | Scalar gradients in stirred mixtures and the deconstruction of random fields[END_REF] has shrunk down to the transverse size given by η = LP e -α/(2α+1) 56.

for a power law stretching, or η = LP e -1/2 for exponential stretching. Within η, which now scales as the stirring scale L and is thus much larger than the Batchelor scale, the concentration is close to uniform. This is the 'scale of scrutiny' imagined by [START_REF] Danckwerts | Theory of mixtures an mixing[END_REF] to describe a mixture. This mechanism explains the ramp-cliff-plateau structures notorious in shear flows. There, L-wide regions of nearly uniform concentration are separated by steep cliffs absorbing a concentration difference of the order of the mean [START_REF] Sreenivasan | On local isotropy of passive scalars in turbulent shear flows[END_REF][START_REF] Pumir | A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient[END_REF][START_REF] Warhaft | Passive scalars in turbulent flows[END_REF]).

4.3.2. Increments: strips as quanta. In confined mixtures, diffusive overlap between elementary lamella occurs in bundles of transverse size η (section 4.3.1). There, the concentration c(x) at a point x results from the random superposition of concentration levels of n elementary strips, each of them with concentration θi as c(x) = n i=1 θi(x, t) leading for p(c) to the self-convolution construction described in section 4.2. This aggregation mechanism has a consequence on the mixture spatial structure measured for instance by the distribution p(∆c) of concentration increments ∆c(∆x) = c(x + ∆x) -c(x) .

Consider two locations x and x + ∆x separated by a distance ∆x < η. There, the concentrations are c(x, t) and c(x + ∆x, t), respectively which both result from the addition of n independent levels θi so that ∆c(∆x) = the two sums being contributions from elementary lamella in a neighborhood of size η lying in x, and x + ∆x. Thus, when ∆x < η, the two neighborhoods intersect, with n -m lamella in the common overlapping region, and m independent lamella in the rest (Figure 9). Upon subtraction (57.), the levels from the n -m lamella that contribute to both concentration levels cancel-out, and thus (Le Borgne et al. The number m obviously increases with the separation distance ∆x, and m → n as ∆x → η. Equation (61.) illustrates how computing increments of concentration in a field made of elementary aggregations deconstructs the direct aggregation process. One probes all the more deep, or early, in the process that small scale increments are considered since the number of independent lamella vanishes as ∆x → 0. When m → 1, p(c|1) is a measure of the 'quantum' (Villermaux 2012a), or elementary brick constructing the concentration field p(c), that is the solitary strip. The spatial correlation of the concentration field in a confined mixture thus results form an uncorrelated, random superposition of quanta, or strips. Their possible entanglement (Duplat et al. 2010b) singles-out long lasting temporal correlations from the mixture initial condition and/or stirring protocol.

SUMMARY POINTS

1. Mixing is not blending, nor stirring. Mixing is stretching enhanced diffusion and results from a subtle interplay between substrate deformation, and diffusion broadening when the Péclet number is large. 2. In most instances involving mixing, the interest is in controlling the probability of occurence of large, or low concentrations: There is therefore a need to understand the concentration distributions p(c), and especially their large excursion tails. 3. Concentrations c are described by a pure diffusion equation ∂τ c = ∂ 2 ξ c in suitably chosen variables {ξ, τ } function of the nature of the local stretch history, and of molecular diffusion. They decay after a mixing time ts ∼ γ -1 F (P e), essentially fixed by the deformation rate of the substrate γ, corrected by a (usually weak, but singular) function of the Péclet number P e depending on the stirring protocol. 4. Stirring motions form lamella typically unevenly stretched. When these solitary strips evolve on their own, they carry a distribution of concentration p(c) reflecting the elongation histories along the strip only. 5. In confined mixtures where the strips are enforced to overlap, concentration levels add at random and p(c) is now constructed by a self-convolution rule setting its shape (a Gamma distribution), and directing its evolution towards uniformity. 6. Bundles of lamella aggregate at the coarsening lengthscale η, larger than the Batchelor scale, proportional to the stirring scale, and to a decaying function of P e. Within a range of scales ∆x ≤ η, the distribution of concentrations differences p(∆c) is a deconstruction the direct aggregation process giving birth to p(c).

FUTURE ISSUES

1. Heuristics: The present ideas and methods are not limited to passive scalars. They were successfully applied to evaporating dense sprays [START_REF] Villermaux | Fine structure of the vapor field 30 E. Villermaux in evaporating dense sprays[END_REF], Marangoni flows [START_REF] Geri | Thermal delay of drop coalescence[END_REF][START_REF] Néel | The spontaneous puncture of thick liquid films[END_REF], and should contribute to reexamine old problems like mixing in stratified flows [START_REF] Osborn | Estimates of the local rate of vertical diffusion from dissipation measurements[END_REF] or in chemically reactive mixtures [START_REF] Gibson | On turbulent flows with fast chemical reactions. part ii. the distribution of reactants and products near a reacting surface[END_REF][START_REF] Tél | Chemical and biological activity in open flows: A dynamical system approach[END_REF], to the "demixing" of colloids by diffusiophoresis [START_REF] Prieve | Motion of a particle generated by chemical gradients. part 2. electrolytes[END_REF][START_REF] Deseigne | How a "pinch of salt" can tune chaotic mixing of colloidal suspensions[END_REF][START_REF] Shin | Membraneless water filtration using co2[END_REF][START_REF] Raynal | Advection and diffusion in a chemically induced compressible flow[END_REF], and could be applied to mixing by living animals (biomixing, see e.g. [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF]), or by optimized stirring protocols [START_REF] Thiffeault | Using multiscale norms to quantify mixing and transport[END_REF][START_REF] Weij | Mixing by unstirring: Hyperuniform dispersion of interacting particles upon chaotic advection[END_REF], among other fascinating topics. 2. Fundamentals: In confined mixtures, the self-convolution route towards uniformity is an empirical fact. However, the status of this ubiquitous 'maximal randomness' property of random flows is unclear. A simple case using maps could be worked-out to understand the decay of correlation of τ in space (hence ensuring the independence of concentrations at merging); that might not be a simple exercice [START_REF] Gilbert | Advected fields in maps -iii. passive scalar decay in baker's maps[END_REF], although certainly a useful one. 3. Numerics: A solitary strip carries concentrations reflecting its elongation history (i.e. τ ) only. This fact has prompted the Diffusive Strip Method (DSM) a simulation method to compute a-posteriori a mixture from the kinematics of the flow, for any P e > 1. Working both in 2-d (Meunier &Villermaux 2010) and3-d (Martinez-Ruiz et al. 2018), it could have a broad range of applications.
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  2P e (1 -e -2γt ) → 1/2P e. Sub (α < 1) or super (α > 1) exponential stretching (de Rivas & Villermaux 2016) with s(t) = s0e -(γt) γt) α 2α(γt) α , giving ts ∼ 1 γ (ln P e) 1/α , and θ(t) ∼ e -(γt) α .

  FIGURE 3. (a) Successive images of a lamella undergoing shear at Pe = 20 (see also supplementary movie 1 available at https://doi.org/10.1017/jfm.2017.916). (b) Corresponding averaged concentration profiles along the flow (x-direction). The black lines are fitting Gaussian profiles. (c) Normalized maximum concentration C max /C 0 and (d) normalized half-width of the concentration profiles x / 0 versus time for experiments performed at different Péclet numbers. The black lines correspond to (2.4) in (c) and (2.6) in (d). In both cases, ˙ , s 0 and D 0 are set and fixed by the experimental conditions. (e) and ( f ) Same data plotted versus t/t B .

  , I. Zaier, H. Lhuissier, T. Le Borgne and B. Metzger IGURE 3. (a) Successive images of a lamella undergoing shear at Pe = 20 (see so supplementary movie 1 available at https://doi.org/10.1017/jfm.2017.916). (b) Correonding averaged concentration profiles along the flow (x-direction). The black lines e fitting Gaussian profiles. (c) Normalized maximum concentration C max /C 0 and (d) rmalized half-width of the concentration profiles x / 0 versus time for experiments rformed at different Péclet numbers. The black lines correspond to (2.4) in (c) and (2.6) (d). In both cases, ˙ , s 0 and D 0 are set and fixed by the experimental conditions. (e) d ( f ) Same data plotted versus t/t B .

  FIGURE 4. (a) Evolution of transverse dimension of the lamella s AD (t)/s 0 versus time for experiments performed at different Péclet numbers. The black lines correspond to (2.5). The dotted line corresponds to the solution in the absence of shear, i.e. in the pure diffusion limit (Pe = 0). (b) Corresponding Batchelor scale s AD (t B )/s 0 versus Péclet number; the black line corresponds to (2.8). (c) Concentration distribution P(C/C 0 ) measured at successive strains, ˙ t, for a lamella sheared at Pe = 4.5. The black lines correspond to (2.10). In all cases, ˙ , s 0 and D 0 are fixed by the experimental conditions.

  Figure 4 a) Lamella mixing in a shear flow. b) Decay of the maximal concentration θ(t) ∼ (t/ts) -3/2 , c) Standard deviation of the lamella concentration profile exhibiting first kinematic compression, then diffusive broadening according to (26.) and d) Péclet number dependence of the Batchelor scale in (27.) with α = 1. From Souzy et al. (2018).

  the usual constant value D/γ in exponentially diverging flows with α = 1. The concentration gradient goes on steepening as the maximal concentration decays in the accelerated regions of the flow (see an example with α = 2 in Néel & Villermaux (2018)), and relaxes for slowed down stretching (de Rivas & Villermaux 2016).

  24/ log(u) ∂cM /∂r. Since this function diverges for u = 1, the other terms can be replaced by their values in u = 1, which corresponds to cM (r) = c, giving P

Fig. 2 .

 2 Fig. 2. (a) Probability density function of the concentration c and (b) concentration field at t = 60 s. The solid line corresponds to the full model (4) and the dashed line to the approximation (6) using the maximal concentration.

Figure 4 .

 4 Figure 4. Comparison of the maximal dye concentrations obtained experimentally (symbols) and theoretically by (3.11) (solid lines). (a) Radial dependence at t = 5 s ( ), t = 10 s ( ) and t = 20 s (M). (b) Temporal dependence for r/a0 = 4.4.

Figure 5

 5 Figure 5Mixing by a vortex. A) A blob in the far field of a Lamb-Oseen vortex spirals around the vortex. B) Concentration θ(r, t) at given instants of time along the spiral (a), and a fixed radial location versus time (b) together with the expected relation (continuous lines) from θ(r, t) = erf 1/ 4τ (r, t) with τ (r, t) given in (35.). C) Concentration distribution of the spiraling blob at a given instant of time, and expected law (continuous line) presenting a Van Hove singularity when the blob is deposited close to the viscous core of the vortex. From[START_REF] Meunier | How vortices mix[END_REF], 2007).

Figure 9 .

 9 Figure 9. (a) Total length of the strip as a function of time. The solid line corresponds to an exponential growth with a mean stretching rate γ = 0.91. (b) PDF of elongation of the strip for t = 2 (▽, dotted line), t = 4 ( , dashed line) and t = 7 (᭺, solid line). Lines correspond to the theoretical prediction of (4.14).

Figure 8 .

 8 Figure 8. Distribution of a scalar in a sine flow at t = 7 for (a) Pe = 10 7 and (b) Pe = 10 10 .Due to a lack of printing resolution, the thickness of the strip has not been respected: the strip has been plotted as a line. However, the image has been zoomed 200 times in the inset to show the correct thickness of the strips.

Figure 6

 6 FIGURE 5. (Colour online) Comparison of the stretching processes of a blob of dye sheared at high Péclet (⇠10 6 ) and low Reynolds numbers (⇠10 4 ), in a pure fluid (top), and in a particulate suspension with volume fraction = 35 % (bottom). The dye appears as dark, and the beads appear as bright, see also supplementary movie 2.

  Figure 7 A) A planar cut through a dispersing plume made by the injection of a dye (Disodium Fluorescein in water) through a small tube h = 4 mm in diameter on the axis of a larger turbulent jet with L = 8 cm. Scalar sheets dilute by evolving on their own. B) Same as above, with the plume confined in a square duct of lateral width L = 3 cm. The mixture relaxes, through aggregation of sheets, towards a non-zero average concentration; Re = 10 4 . a) Concentration distributions p(c) measured at increasing distances from the source in A) as in Duplat et al. (2010a) and fits by (43.) for Sc = 10 3 . b) Same as in a), with Sc = 7 (heat in water). From Le Borgne et al. (2017).

Figure 23 .

 23 Figure 23. (a) Spatial concentration profiles C(z, t) of the folded coalescing sheet shown in figure 22, superimposed for successive instants of time. The sheet moves perpendicular to itself, as its two pieces get closer; the figure shows the concentration profiles resulting from the intersection of the sheet in figure 22 with a line fixed in space. (b) The distance s(t) between the maxima of concentration of the profiles (᭹) and the evolution of the maximal concentration C(0, t) of the overall profile (᭺) as a function of time. is the addition of the concentration profiles of each individual sheet, a consequence of the linearity of the Fourier diffusion equation (Fourier 1822).

  Figure 8 Lamella overlap and convolutions: A) Lamella aggregation and temporal evolutions of their separation distance s(t) ∼ t -2 and associated maximal concentration θ ∼ t -5/2 . B) Splitting of a blob in two different sub-parts (tagged in red and green), concentration distributions p(c) of each distinct fields, of their convolution according to (47.) (dotted line), and of the sum of the two fields (black line), for two consecutive stirring cycles (From Duplat & Villermaux (2008); Duplat et al. (2010b)).

  Figure 9 A) Three consecutive instants of times showing how a bundle of stretched sheets in a confined channel are brought together and merge, losing their individuality on a support of transverse thickness η, leading to Gamma distributions for p(c) in (55.), and Bessel distributions for p(∆c) in (62.). Close-up in the dispersing mixture showing how the scalar field resolves into a set of essentially non-interacting, disjointed sheets with distributed concentrations. c) Sketch of the elementary sheet overlapping mechanism constructing the concentration field: every concentration level c results from the merging of n sheets (the rapidly oscillating curves with concentrations θ) on a support of size η. Nearby concentration levels (separated by ∆x) have in common the contribution of n -m sheets. d) In dispersing mixtures where sheets are isolated and merging is anecdotal, concentration differences ∆c are given by the concentration field c itself. From Le Borgne et al. (2017).

  x + ∆x) and c (x) are now two independent concentrations obtained by random addition of m ≤ n independent lamella in the respective disjointed neighborhoods. Since the concentration levels c (x, t) and c (x + ∆x, t) are now statistically independent, the convolution rule (47.) applies, andp(∆c) = dc p(c |m)p(|∆c| -c |m).61.where p(c |m) is the concentration distribution of m aggregated independent lamella. Using (55.) with c = nθ,
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