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Fig. 1. The volume interface
 .

A. Principle of the Overlapping Element Method (OLM)

In this method, the interface is constituted by a cylindrical
volume as shown in Fig. 1. In this volume fictitious ele-
ments are generated during the movement. These elements are
composed of main nodes and fictitious nodes. Main nodes are
generated during the movement and consist of the normal pro-
jection of the main nodes on the surface of opposite to
them. It can be shown that the potentials at the fictitious nodes
are related linearly to the potentials at the main nodes. This
method leads to an algebraic system of equations whose ma-
trix is symmetric and positive definite.

B. Implementation of the Method

On the Fig. 2, we can see an example of overlapping mesh.
The lowercase notation ( ) represents the fictitious nodes
while the uppercase notation ( ) represents the main
nodes. The potentials at the fictitious nodes are equated
to the potentials at the main nodes by a simple relation:

(7)

where is a factor matrix. The coefficients are easy to deter-
mine according to the relative displacement of the rotor.

IV. SOLUTIONS OF THEALGEBRAIC SYSTEM OFEQUATIONS

The application of the finite element method to a boundary
value problem of the type described above yields a sparse
system of linear algebraic equations, usually symmetric and
positive definite. Solving such a system is a major computing
task in itself. The most common methods for solving such
linear algebraic systems are direct methods such as Gaussian
elimination and the closely related Cholesky methods, when
the matrix arising in the formulation of the algebraic system is
symmetric and positive definite. Nevertheless, if the system is
ill-conditioned, the computed solution may indeed have large
relative errors due to rounding. This is particularly the case for
finite element problems in two or three space dimensions, even
if the sparsity of the matrix is taken into account. It is one of
the reason why iterative methods are often used to solve linear
algebraic systems derived from finite element discretization.
Indeed, when the asymptotic rate of convergence is good, these
methods are successful. Among such iterative algorithms, one
of the most successful is the conjugate gradient method. The

effectiveness of the conjugate gradient method can be much
improved by the technique of preconditioning, a topic of current
research in applied mathematics. There are two important kinds
of preconditioning, one based on the SSOR method and the
other one based on an incomplete factorization (ICCG). In the
present paper, we use the conjugate gradient method by SSOR
[7]. Furthermore, from a theoretical point of view, it can be
noted that, the improvement of the condition number is not
established in the general case, when ICCG preconditioning
are used. This improvement can be shown only by numerical
experiments.

V. APPLICATIONS

We have applied the whole numerical model to compute
the electromechanical lumped parameters of an existing mi-
cromotor constructed by the LAAS (Laboratory for Analysis
and Architecture of Systems) at Toulouse, France. This kind
of structure is a 3/2 type and this value represents the ratio
between the number of electrodes at the stator and the number
of teeth at the rotor.

The Fig. 3 gives us the dimensionnal characteristics of the
microactuator. The structure has been meshed with hexahedral
nodal elements (Fig. 4). The different cases simulated are pre-
sented in Table I.

The first case is considered as the reference case. Fig. 5 shows
the results obtained from both the reference case and the last
case. In the last case the meshes on each of the cylindrical sur-
faces of the interface volume , are constituted of irregularly
spaced main nodes.

A. Capacity Computation

The capacitances are computed by energy consideration. The
results in Fig. 5 represent the self capacitances of the rotor ()
and of one phase of the stator for a mesh step of and an
irregular mesh step, which takes the values 3, 5, or 6, with a ro-
tation step of 1. The differences between the two computations
do not depend on the angular position of the rotor. This tends
to show that the errors are mainly due to the approximation by
finite element method, when the characteristic dimensionof
the elements increase. The error introduced by the OLM method
can be neglected.

B. Torque Computation

We compute the static torque from the derivative of the ca-
pacitances with (3), and compare the case described above (ir-
regular mesh) to the reference one. To calculate the derivatives,
we used the Euler order 1 and 2 method. We have also imple-
mented the Maxwell stress tensor method. A technique of curve
smoothing, analogous to a technique used to take into account
the skeewed slots of electric machines is also used in order to
suppress eventual torque ripples. The slot step is equivalent here
to the mesh step.

The results in Fig. 6 show the static torque variation with an
irregular mesh step. The static torque is composed of harmonic
waves of different frequencies, related to the mesh step when we
use an Euler formula. Only the smoothing method is efficient



Fig. 2. An example of overlapping elements.

Fig. 3. Dimensions of the micromotor.

Fig. 4. A view of the meshing.

TABLE I
DIFFERENT CASES

SIMULATED

enough to suppress the problem. The torque computated by the
Maxwell stress sensor does not present torque ripples.

C. Convergence Analysis

We have compared the performance of two preconditioner for
a rotation of the micromotor rotor. The case simulated corre-
sponds to a step mesh of 3and a mesh rotation of 3. We have
chosen this case because the number of elements is not very high
and because the commercial software does not allow the step ro-
tation to be smaller than the mesh step. The results in Figs. 7 and
8 show that the SSOR preconditioning gives better results than
ICCG preconditioning.

VI. CONCLUSION

In order to evaluate the electromechanical lumped param-
eters, a method which takes into account the movement in a
3D finite element code has been presented. This method was
until now very scarcely employed and only in 2D. We have
shown that even if irregular mesh is employed at the interface the
quality of the solution is quite acceptable. This method seems
to be a good alternative to the Lagrange multipliers or the inter-
polation methods. The next stage will be to implement the case
where tetrahedral elements are on both side of the interface. We
have also evaluated the performances of the numerical model



Fig. 5. Irregular mesh results compared to the reference ones.

Fig. 6. Torque for irregular mesh.



Fig. 7. Speed of convergence between ICCG and SSOR.

Fig. 8. Number of iterations for ICCG and SSOR preconditioning.

presented here, comparing the OLM method associated to the it-
erative method based on SSOR, with the one used in commercial

software associating slip surface method with ICCG. The better
speed of convergence for SSOR, the predictibility of theoretical



results and its relative simplicity of implementation are the main
reasons for the choice of this preconditioner.
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