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Modeling the Movement of Electrostatic Motors
in a 3D Finite Element Code

N. Boukari, Y. Lefévre, and P. Spitéri

Abstract—When we use a lumped parameter model for elec-
trostatic micromotor, it is necessary to associate it with a 3D fi-
nite element code. In order to compute the lumped parameters
for different positions of the rotor, we present a method, up to
now scarcely employed, which allows us to take into account the
movement. To solve the algebraic system thus obtained, an itera-
tive method associated with a SSOR preconditioning is then used.
The numerical model is applied to an existing motor.

Index Terms—Finite element method, electrostatic motors,
movement modeling, iterative methods, SSOR preconditioning.

I. INTRODUCTION

TH the recent development of micromechan-
ical technologies (silicon surface machining,
LIGA processing, ...) electrostatic motors have now found

a domain of interest. To identify their industrial applications
it is important to be able to evaluate their electromechanical
performances.

In most cases, the electrical behavior of electrostatic struc-
tures can be modeled by linear relationships between potential
and charge quantities on all conductors. So, it is not necessary to
develop a coupled field and circuit model to simulate their dy-
namic operation. Electromechanical lumped parameter models
[1] [2] are favored. The parameters of this model vary with the
relative positions of the moving parts and stationary parts of
the devices. To evaluate these parameters, according to the thin
axial length of these motors, 3D electrostatic field software is
required.

Our work is concerned with rotating electrostatic motors.
The aim is to present a method for modeling the movement
in a 3D FEM code in order to evaluate these parameters for
different successive positions of the rotor. This overlapping
element method has been used in 2D but not in 3D [3]. We
have chosen this method because it does not require local or
global remeshing and restrictions on the meshes or the rotor
motion. Furthermore the elements at the interface between the
moving and fixed parts are not distorted [4]. This method is an
alternative to other methods such as the Lagrange multipliers
method [5] or the interpolation method [6]. In this paper, first
we describe the overlapping element method (OLM). The
obtained algebraic system is then solved using the conjugate
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gradient method preconditioned by the SSOR (symmetric
successive overrelaxation) [7]. The whole numerical model is
applied to an existing micromotor [8].

II. THE ELECTOMECHANICAL MODEL

Various research on the electrostatic motors have allowed a
lumped parameter model to be established. So, the electric equa-
tion which governs the structure is of the type:

. d . ,
Ve = Blaez ([CO)eteAUete) + {Uete, (1)
The mechanical equation is:

d*0
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and the coupling equation, which gives the electrostatic torque,
is:
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with: §, angular attitude of the rotor around its own axis: {V} ;..
voltage applied on the phases of the motor; {{/}.;. potential of
electrodes of the motor, [R]..: resistance of phases: [C(6)]cz.
induction coefficients and self capacitances matrix of the rotor;
T, electric drive torque; J,,,c., rotational inertia and 7., re-
sisting torque due to viscous and dry friction.

ITI. ELECTROSTATIC FIELD MODELLING

When we discretize the study domain with finite nodal ele-
ments €2, the scalar fields V" and p. correspond respectively to
the generalized vector {V'} of the values of electric potential
V; at every node i and the generalized vector {s} of equivalent
electric charges s; applied on every node i. The total potential
energy W can be put in the form:

W= HVYIEHVY - (1)

The condition of extremum of the potential energy for each node
1 1s written:

C)

aw

which gives:

[K{V} = {s}

The matrix [K] is symmetric and positive definite.
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effectiveness of the conjugate gradient method can be much
improved by the technique of preconditioning, a topic of current
research in applied mathematics. There are two important kinds
of preconditioning, one based on the SSOR method and the
other one based on an incomplete factorization (ICCG). In the
present paper, we use the conjugate gradient method by SSOR
[7]. Furthermore, from a theoretical point of view, it can be
noted that, the improvement of the condition number is not
established in the general case, when ICCG preconditioning
are used. This improvement can be shown only by numerical
experiments.

Fig. 1. The volume interfac8 s .

V. APPLICATIONS

A. Principle of the Overlapping Element Method (OLM) We have applied the whole numerical model to compute

In this method, the interface is constituted by a cylindricdhe electromechanical lumped parameters of an existing mi-
volumeQsg as shown in Fig. 1. In this volume fictitious ele-cromotor constructed by the LAAS (Laboratory for Analysis
ments are generated during the movement. These elementsaaig Architecture of Systems) at Toulouse, France. This kind
composed of main nodes and fictitious nodes. Main nodes afestructure is a 3/2 type and this value represents the ratio
generated during the movement and consist of the normal pbetween the number of electrodes at the stator and the number
jection of the main nodes on the surfacefdég opposite to of teeth at the rotor.
them. It can be shown that the potentials at the fictitious nodesThe Fig. 3 gives us the dimensionnal characteristics of the
are related linearly to the potentials at the main nodes. Thidcroactuator. The structure has been meshed with hexahedral
method leads to an algebraic system of equations whose maeal elements (Fig. 4). The different cases simulated are pre-

trix is symmetric and positive definite. sented in Table I.
The first case is considered as the reference case. Fig. 5 shows
B. Implementation of the Method the results obtained from both the reference case and the last

On the Fig. 2, we can see an example of overlapping me%;ﬁl.se. In the .Iast case the meshes on eac.h of the c_:ylindrical sur-
The lowercase notatior, b;, ¢;) represents the fictitious nodes aces of the_ interface volur@,., are constituted of iregularly
while the uppercase notationl(, B;, C;) represents the main spaced main nodes.
nodes. The potential§l., } at the fictitious nodes are equated ) _
to the potential V., } at the main nodes by a simple relation:A- Capacity Computation
The capacitances are computed by energy consideration. The
{Veo} = [o{Vep} (7) resultsin Fig. 5 represent the self capacitances of the r6{g) (
and of one phase of the stafd¥;; ) for a mesh step df° and an
where[«] is a factor matrix. The coefficients are easy to deteftregular mesh step, which takes the values 3, 5°pwéh a ro-
mine according to the relative displacement of the rotor. tation step of 1. The differences between the two computations
do not depend on the angular position of the rotor. This tends

IV. SOLUTIONS OF THEALGEBRAIC SYSTEM OF EQUATIONS to show that the errors are mainly due to the approximation by

L - finite element method, when the characteristic dimensiarf
The application of the finite element method to a boundaE

. . ¥e elements increase. The error introduced by the OLM method
value problem of the type described above yields a SPaSe, pe neglected

system of linear algebraic equations, usually symmetric an '
positive definite. Solving such a system is a major computi
task in itself. The most common methods for solving su
linear algebraic systems are direct methods such as GaussiatWe compute the static torque from the derivative of the ca-
elimination and the closely related Cholesky methods, wheacitances with (3), and compare the case described above (ir-
the matrix arising in the formulation of the algebraic system iggular mesh) to the reference one. To calculate the derivatives,
symmetric and positive definite. Nevertheless, if the systemuse used the Euler order 1 and 2 method. We have also imple-
ill-conditioned, the computed solution may indeed have largeented the Maxwell stress tensor method. A technique of curve
relative errors due to rounding. This is particularly the case femoothing, analogous to a technique used to take into account
finite element problems in two or three space dimensions, evire skeewed slots of electric machines is also used in order to
if the sparsity of the matrix is taken into account. It is one afuppress eventual torque ripples. The slot step is equivalent here
the reason why iterative methods are often used to solve linéathe mesh step.

algebraic systems derived from finite element discretization. The results in Fig. 6 show the static torque variation with an
Indeed, when the asymptotic rate of convergence is good, the@segular mesh step. The static torque is composed of harmonic
methods are successful. Among such iterative algorithms, amaves of different frequencies, related to the mesh step when we
of the most successful is the conjugate gradient method. Time an Euler formula. Only the smoothing method is efficient

n
cﬁ' Torque Computation
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Fig. 2. An example of overlapping ele

ments.

r=rotor

s1=stator electrod 1
s2=stator electrod 2
s3=stator electrod 3
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Fig. 3. Dimensions of the micromotor.

Fig. 4. A view of the meshing.

ev2
TABLE |
DIFFERENT CASES
SIMULATED
a: Mesh step Number |  Number
3: Rotation step | of nodes | of elements
a=1°3=1° 99361 87120
a=3°8=1° 33120 29040
a=3°3=3° 33120 29040
a=3...6°3=1° 18768 16456

enough to suppress the problem. The torque computated by the
Maxwell stress sensor does not present torque ripples.

C. Convergence Analysis

We have compared the performance of two preconditioner for
a rotation of the micromotor rotor. The case simulated corre-
sponds to a step mesh df 8nd a mesh rotation oP3We have
chosen this case because the number of elements is not very high
and because the commercial software does not allow the step ro-
tation to be smaller than the mesh step. The results in Figs. 7 and
8 show that the SSOR preconditioning gives better results than
ICCG preconditioning.

VI. CONCLUSION

In order to evaluate the electromechanical lumped param-
eters, a method which takes into account the movement in a
3D finite element code has been presented. This method was
until now very scarcely employed and only in 2D. We have
shown that even ifirregular mesh is employed at the interface the
quality of the solution is quite acceptable. This method seems
to be a good alternative to the Lagrange multipliers or the inter-
polation methods. The next stage will be to implement the case
where tetrahedral elements are on both side of the interface. We
have also evaluated the performances of the numerical model



-
“

i
mnl

i
iy

N
o

W
w

[51)
m

w
-4

L¥T)
a1

W
n

w
Y

w
w

IIIIIIIIIIIIII|I|II|IIII|IIIIIIIII||III|IIIIIII|IIIIII

%)
o

ca

B0

rotor position {deg)

mesh step=3,5,6°, rotation step=1°

mesh step=1°, rotation step=1°

Fig. 5.

x10~ 4 static torque{N.m/vA2)
0,125 -

Irregular mesh results compared to the reference ones.

||III

.100

o =]
Gl pu
e ) [i'l

o
n
gl

o

S

S
111

(= (=)
ol na
e [_In

o
~
a

._.
<
s

IIII

-
hy
m

o

50

rotor position  (deg)

mesh step=3,5,6°, rotation step=1°, Euler second order
mesh step=1°, rotation step=1°,Euler second order

mesh step=3,5,6°, rotation step=1°, Maxwell stress tensor

Fig. 6. Torque for irregular mesh.



Tl g
‘| - slowest ICCG convergence |]
-~ fastest ICCG convergence
—&— slowest SSOR convergence | |
—A— fastest SSOR convergence |3

relative residual
IS

0 10 20 30 40 50 60
number of iteration

Fig. 7. Speed of convergence between ICCG and SSOR.
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Fig. 8. Number of iterations for ICCG and SSOR preconditioning.

presented here, comparing the OLM method associated to thedftware associating slip surface method with ICCG. The better
erative method based on SSOR, with the one used in commersiaed of convergence for SSOR, the predictibility of theoretical
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