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1. Understanding pesticide impacts on populations of target/non-target species and commu-18

nities is a challenge to applied ecology. When predators that otherwise regulate pest den-19

sities ingest prey contaminated with pesticides, this can suppress predator populations by20

secondary poisoning. It is, however, unknown how species relationships and protocols of21

treatments (e.g. anticoagulant rodenticide (AR)) interact to affect pest regulation.22

2. To tackle this issue, we modelled a heuristic non-spatialized system including montane23

water voles, specialist vole predators (stoats, weasels), and a generalist predator (red fox)24

which consume voles, mustelids and other prey. By carrying out a broad-range sensitivity25

analysis on poorly known toxicological parameters, we explored the impact of 5 farmer26

functional responses (defined by both AR quantity and threshold vole density above which27

AR spreading is prohibited) on predator-prey interactions, AR transfer across the trophic28

chain and population effects.29

3. Spreading AR to maintain low vole densities suppressed mustelid and fox populations,30

leading to vole population dynamics being entirely regulated by AR use. Such vole-suppression31

treatment regimes inhibited predation ecosystem services and promoted pesticide depen-32

dence.33
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4. Keeping vole density below acceptable bounds by spreading AR while maintaining suffi-34

cient voles as prey resources led to less AR being applied and extended periods without AR35

in the environment, benefiting predators while avoiding episodes with high vole density.36

This may meet farm production interests while minimizing the impact on mustelid and37

fox populations and associated ecosystem processes. These alternating phases of mustelids38

and farmer regulation highlight the consequence of intraguild relationship where mustelids39

may rescue foxes from poisoning. Both global and wide-range sensitivity analysis illustrate40

the tightrope between predator-prey regulation and pesticide-pest regulation.41

5. Synthesis and applications Different pesticide protocols lead to a rich variety of predator-42

prey dynamics in agro-ecosystems. Our model reveals the need to maintain refuges with43

sufficient non-poisoned voles for sustaining specialist mustelids, to conserve the predator44

community given the potential of secondary poisoning with rodenticides. We suggest that45

long periods without pesticide treatment are essential to maintain predator populations,46

and that practices of pesticides use that attempt to permanently suppress a pest over a47

large scale are counterproductive.48

Keywords biodiversity conservation; secondary poisoning; cyclic fluctuations; pesticides; cascade49

effects; ecosystem service; sensitivity analysis ; ecological control50

1 Introduction51

Since the “green revolution” following the 1950s, pesticides use has increased to control pests52

damaging properties, public health or crops (Tilman et al., 2002). Pesticides usage is varyingly53

triggered by the perception/estimation of pest densities. Natural enemies (e.g., predators, para-54

sites, competitors) also reduce pest densities and hence may preclude the need for using pesticides55

(Michalko and Pekár, 2017). Natural enemies are, however, also affected by pesticides, either56

by direct exposure, through ingestion of contaminated prey (Berny, 2007) or indirectly through57

cascading consequences of effects of resource depletion (Halstead et al., 2014). Thus, under some58

regimes of pesticides use, pest populations only become regulated by pesticides once predators have59

collapsed. To preserve ecosystem health and the services that predators provide through regulation60

of pest densities, we need to assess the feasibility and benefit of pesticide treatment regimes in their61

ability to control pest species with minimal damage to predators (Halstead et al., 2014). It is how-62

ever empirically challenging to assess the overall impact of pesticide treatments on the dynamics of63

species linked by trophic interactions. In this context, process-based models describing simplified64

scenarios are powerful tools to reveal hidden patterns by disentangling processes emerging from65

pesticide impacts on predator-prey systems (e.g., Baudrot et al. (2018)).66

Voles and other grassland rodent species undergo multi-annual population cycles (e.g., Krebs67

(2013)). At their peaks, they may attain extremely high densities, causing substantial damage68

to grass/cultivated crops and forestry and conflicts with humans (Delattre and Giraudoux, 2009).69

Farmers worldwide expand financial resources to purchase and spread anticoagulant rodenticides70

2



(hereafter AR), hoping to reduce vole populations and damages, and increase profits despite the71

investment required (Stenseth et al., 2003). They do so according to protocols, equivalent to farmer72

functional responses (hereafter FFR), that involve varying amounts of AR spread in response to73

different thresholds in vole densities.74

Voles and many small rodents are perceived as pests, but they are also keystone species, crucial75

to the functioning of grassland and forest ecosystems, as well as being the prey of numerous preda-76

tors, including species of conservation concern (Delibes-Mateos et al., 2011; Coeurdassier et al.,77

2014). Their population cycles create pulses of resources crucial to the viability of a wide range of78

resident predators and the aggregation of mobile avian vole predators (Korpimaki and Norrdahl,79

1991). The smallest mustelids (e.g. weasels Mustela nivalis) are specialist vole predators. Their80

numerical response has been shown theoretically to be necessary for generating predator-prey cy-81

cles (Hanski et al., 1991). They are said to be responsible for driving 3-to-5-year vole cycles in82

Fennoscandia (the specialist predation hypothesis) (Hanski et al., 1991). Generalist resident preda-83

tors like foxes (Vulpes vulpes) are expected to have regulatory and limiting effects on voles, owing84

to dietary plasticity that slows down vole population increase at low density (Hanski et al., 1991).85

Foxes do not show numerical responses to vole abundance (Weber et al., 2002) but they influence86

the food chain through occasional killing and consumption of bite-sized mustelids. Mustelids form87

a small proportion of fox diet (0-10%) but their offtake could represent a significant portion of the88

population (reviewed in Lambin (2018)).89

Anticoagulant rodenticides are non-selective toxicants with deleterious effects on non-target90

fauna (e.g. Coeurdassier et al. (2014)). Despite AR being exclusively licensed for rodent control,91

a large number of predator species are secondarily exposed to AR (Sánchez-Barbudo et al., 2012).92

Consumption of dead and sub-lethally intoxicated voles reduced fox abundance in farmland in east-93

ern France (Jacquot et al., 2013) and ARs caused short-term declines in stoats in New Zealand94

(Alterio, 1996). Rodent-eating mustelid populations are affected by ARs given the pervasive levels95

of contamination reported (McDonald et al., 1998). Thus, there is little doubt ARs use inadvertently96

depresses predator populations. As predators likely limit vole populations, it is essential to under-97

stand when AR use becomes counterproductive by altering the pest population dynamics, producing98

more frequent outbreaks and high residual vole abundance.99

With the aim of understanding the potentially complex interactions between prey that are per-100

ceived as pest, predators and farmers spreading rodenticide in response to vole abundance and their101

functional responses, we studied a simplified system inspired by cyclically fluctuating montane wa-102

ter voles (Arvicola scherman), small mustelids (stoats, weasels) that mostly eat voles (specialists),103

and foxes (generalists), with voles and mustelids as food items. We used a process-based model104

using differential equations to explore 5 FFR types of AR spread, combining population dynamics,105

predator-prey interactions and rodenticide transfer across the trophic chain. Model parameters and106

FFR were inspired by farming systems in the Jura Mountains, Franche-Comté (France), the region107

of Comté cheese production. In Franche-Comté, farmers shifted from polyculture to almost exclu-108
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sively grass production for milk used to produce cheese from the early 1970s (Giraudoux et al.,109

1997). Due to recurrent vole outbreaks and damages to grasslands, massive rodenticide treatments110

were implemented from the early 80s with consequences on non-target wildlife. Practices were de-111

veloped technically under pressure from public opinion, farmer unions and farmer technical orga-112

nizations collaborating with researchers to find treatment regimes with less harmful consequences113

for biodiversity (Delattre and Giraudoux, 2009).114

Hence, our main objective was to explore the properties of FFR in relation to varying population115

sensitivity to AR on the global tri-trophic population dynamics made of vole outbreak frequencies116

and guild of interacting predators.117

2 Materials and Methods118

We specified and parameterized the tri-trophic system of voles-mustelids-foxes with use of AR by119

farmers in response to vole density. We considered several FFR depending on the AR amount and120

vole threshold triggering AR spreading to assess AR upward transfer through the trophic web. In121

all cases, parameterization units are on hectare−1 and day−1.122

2.1 Model for the tri-trophic dynamic123

We considered a tri-trophic system described by Figure 1 and equations (1-5); parameterization is124

provided in Table 1. Voles, denoted V , were the primary prey, Mustelids, M , intermediate preda-125

tors, and Foxes, F , were top predators, consuming voles and mustelids. For each species, the126

instantaneous variation of population size over time is:127 

dV

dt
= V rV

(
1− V

KV

)
− ΦV,M (V )M − ΦV,F (V,M)F

dM

dt
= εMΦV,M (V )M −mMM − ΦM,F (V,M)F

dF

dt
= FrF

(
1− F

KF

) (1)

The vole population followed a logistic growth rate, with rV the maximal reproduction rate,128

fixed at rV = ln(2× 600)/365 per day, since montane water vole populations can increase from 0 to129

600 individuals ha−1 or more (Giraudoux et al., 1997), resulting in the equilibrium density being130

fixed at KV = 600 individuals. The vole population was preyed upon by mustelid and fox popula-131

tions. The vole consumption rate at different vole densities was described by functional responses132

(ΦV,M for mustelids, ΦV,F for foxes), see equation (2). We assumed small mustelids behave as spe-133

cialist predators (King and Powell, 2006), we considered a numerical response linearly dependent134

on the functional response with parameter εM (dimensionless) as conversion efficiency of prey into135

newborn predator (see Supporting Information - Appendix S1). The mustelid background mortality136

rate (i.e. all other reasons of death: ageing, disease, etc.) was mM parameterized has the inverse137
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of life expectancy (Table 1). We assumed foxes had a logistic growth rate function, parameterized138

with maximal growth rate rF = ln(3)/365 and equilibrium density KF = 0.03 individuals ha−1
139

(Ruette et al., 2003) without numerical response (Weber et al., 2002).140

Since we treated small mustelids as vole specialist predators, we assumed a Holling Type II141

functional response with attack rate aM and handling time hM (equation (2)). We then represented142

foxes feeding on voles and mustelids by a multi-species functional response derived from Holling143

Type III, referring to generalist feeding behaviour (Baudrot et al., 2016). For that, we denoted144

aV F and aMF the fox attack rate on voles and mustelids respectively. The parameter hF was the145

handling time for foxes.146

ΦV,M (V )M =
aMV

1 + hMaMV

ΦV,F =
aV FV

aV FV + aMFF
× (aV FV + aMFM)2

1 + hF (aV FV + aMFM)2

ΦM,F (V,M)F =
aMFV

aV FV + aMFF
× (aV FV + aMFM)2

1 + hF (aV FV + aMFM)2

(2)

Parameterization of functional responses was estimated to fit the daily satiation level of preda-147

tors for handling times, and the observed 5-6 year vole cycles for attack rates (Table 1). We assumed148

foxes spent longer searching for voles than mustelids, based on each species diet and daily number149

of individuals captured. Therefore, aV F was considered larger than aMF and selected to produce150

6-year vole cycles without AR.151

2.2 Model with rodenticide152

Figure 1 represents the whole study system. Rodenticide is spread in grasslands during treatments,153

denoted TBroma(V ), triggered by vole density V . Firstly, baits (50 mg kg−1 of bromadiolone, here-154

after AR) were spread in grasslands at quantity 7.5 to 20 kg ha−1 day−1. Notation day−1 stands155

because of the daily time resolution. Such quantity, C, was available for voles, and a proportion156

disappeared in the environment at rate k0 (set at k0 = 0.0815) (Sage et al., 2008). The proportion157

consumed per vole, with rate κ(C), was assumed to be an increasing function. The function κ(C)158

was characterized by a maximum ingestion Min, and a half-saturation constant for ingestion Din in159

[mg kg−1]:160

κ(C) =
Min × C
Din + C

(3)

For the toxicokinetics of AR (i.e. internal compound dynamics) leading to AR concentrations161

in animal body (voles, mustelids and foxes), we considered an uptake without biotransformation162

and time-regulated distribution, (i.e. AR concentration in the body of animals was instantly ho-163

mogeneous) and that the whole body was consumed or scavenged without selection/rejection of164

tissues-organs. We also assumed disappearance including excretion of the parent compound and165

metabolisation, and that metabolites were non-toxic and/or excreted in the scats. For the toxi-166
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cokinetics of AR ingested by voles, a fraction CV was assumed to remain active and available to167

predators ingesting voles. The absorption rate of ARs (η) exceeds 50% in less than 24h (Jacquot168

et al., 2013). The excretion rate from voles, kout, V was 0.4 day−1 (Sage et al., 2008). The mortality169

rate through ARs was µ(DV ). Death through poisoning created a dead vole population (Vd) with AR170

concentration CV . Dead voles could either be scavenged by mustelids/foxes or decompose at rate171

d. We assumed AR in dead voles disappeared from the system when voles decomposed (assumed172

in one week: d = 1/7 day−1). Mustelids could feed on live voles V , or non-decomposed dead voles173

Vd and we assumed a Type II functional response adapted for a multi-species functional response174

(Baudrot et al., 2016). Mustelids ingested AR with absorption rate ηM (ratio between biomasses of175

voles, BV , and mustelids, BM) and the total of ingested voles (alive V and dead Vd) was defined176

by function ΘM (V, Vd = (Table 1).177

A fraction of AR ingested was accumulated in weasels while the rest was excreted with rate178

kout,M . AR contaminating weasel though vole poisoning, is denoted DM , induces lethal effect at179

rate µM (DM ), additive to natural mortality rate mM . Parameter definitions are further detailed180

in Supporting Information (Appendix S1). AR was ingested by foxes with a rate proportional to181

the functional response of foxes to voles, dead voles and mustelids. Foxes also accumulated AR182

available in their prey, resulting in upward AR transfer in the trophic chain. Foxes accumulated AR183

in concentration CF . A fraction of AR was excreted by foxes at rate kout,F at a rate between 0.38184

and 0.72 day−1 (Sage et al., 2010), and AR caused fox mortality at rate µF (DF ).185

We used log-logistic equations for describing dose-dependent mortality of animals exposed to186

AR. Vole and predator mortality rates due to AR µX(DX) (X referring to the considered species)187

were expressed by equation (5):188

µX(ζX) = 1− 1

1 + (LD50/ζX)H
(4)

The parameter LD50 is the daily median lethal dose (50% of population dying), parameter H189

is the Hill’s coefficient modulating the curve steepness (see Table 1). Parameterization of LD50 is190

important since it defines the inflexion point of the ecotoxicological effect. While it is a classical191

parameter targeted in experiments, empirical estimates of its value are highly uncertain and indeed192

span different order of magnitude for the same species and under the same experimental design193

(Grolleau et al., 1989; Erickson and Urban, 2004; Sage et al., 2010; Karmaus et al., 2018). We194

therefore carefully explored this parameterization through a wide-range sensitivity analysis detailed195

here-after (see also Figure 2).196

2.3 The farmer functional responses (FFRs) explored through simulation197

We considered a range of realistic FFRs spanning treatments during vole outbreaks only and a198

precautionary approach in which treatments only takes place at intermediate or low vole density199

threshold. These scenarios are inspired by historic and contemporary protocols of bromadiolone200
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use to control montane water voles in Franche-Comté, but also representative of practice globally201

(Delattre and Giraudoux, 2009): (A) a scenario without AR treatment, (B) a scenario with high202

vole density threshold triggering treatment (500 ind ha−1) and high AR amount per treatment (20203

kg ha−1), (C) a third scenario with intermediate triggering threshold (250 ind ha−1) and high AR204

per treatment (20 kg ha−1), (D) scenario with intermediate threshold (250 ind ha−1) and low AR205

amount (7.5 kg ha−1) and (E) scenario with low threshold (50 ind ha−1) and low treatment (7.5206

kg ha−1). To check the influence of predators such as foxes and intraguild predation on the system207

dynamics, we also simulated scenarios with and without foxes. Our simulations tracked the linked208

vole-mustelid-fox dynamics for 40 years, after a “burn-in” period of 10 years to reduce dependency209

of results upon initial conditions, to observe several vole cycles and to characterise AR effects on210

these species population dynamics. This burn-in period also had AR treatment triggered at specific211

vole densities and with a given rodenticide quantity for each FFR. The burn-in phase was selected212

according to a set of simulations with different initial conditions. Those simulations showed that in213

a given FFR (i.e., same threshold of vole density and amount of AR spread), the dynamics of the214

population were converging toward a similar pattern.215

2.4 Numerical Simulation and Sensitivity Analysis216

All numerical analysis have been done using the open language R and particularly the ODE solver217

package deSolve (Soetaert et al., 2010). Model implementation and code to run analysis are avail-218

able on a Github repository (Baudrot et al., 2020).219

We applied a wide-range sensitivity analysis on lethal dose parameters (i.e. LD50) for voles,220

mustelids and foxes, to explore changes in dynamical patterns. While wide-range variations of each221

parameter is likely to impact the global pattern, the lethal dose parameter is a direct characteristic222

of the toxicological part of the model. The variability of LD50 from in vivo acute systemic toxicity223

studies under same experimental design spans 2 to 3 order of magnitude (see rat oral acute toxicity224

in Karmaus et al. (2018)), which makes it challenging to assess risk with exposure models. Since225

the LD50 parameter of fox appears to have low impact on dynamical pattern in our model, we226

evaluated only 4 different values (i.e. 0.5, 1.5, 2 and 7 ppm) which are consistent with a large227

range covering such a parameter (Erickson and Urban, 2004; Sage et al., 2010). For the prey and228

the specialist predator, this parameter was much more sensitive, so we explored 10 values for both,229

respectively in the range [0.7 − 7] ppm and [1 − 25] ppm following consistent ranges (Grolleau230

et al., 1989; Erickson and Urban, 2004). We classified the subsequent 1600 simulations according231

to the dynamical pattern of mustelids population: either "periodic regulation by mustelid" or "AR232

permanent regulation" where mustelids collapse.233

Then, we performed a local sensitivity analysis to study changes in model outputs apportioned234

to small variation around model parameters input (Saltelli et al., 2019). We applied a first-order235

Sobol’s sensitivity index Si defined as Si = V(E−i(y|xi))/V(y), where V(y) is the variance of y when236

all factors are allowed to vary, Ex∼i(y|xi)) the mean of y when one factor is fixed (Sobol and Saltelli,237
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1993). We defined the domain of variation with a beta distribution within an hyperspace of plus238

or minus 10% from the original value for all parameters. For output variable of local sensitivity239

analysis, we estimated the following cost functions: (i) Number of treatment events per FFR; (ii)240

Cumulative amount of AR (kg); (iii) Proportion of time when the AR-induced mortality of mustelids241

higher than 50% (i.e. lethal exposure profile killing 50% of mustelid population); (iv) Proportion of242

time when the mortality of mustelids was higher than 50% due to natural mortality (see Supporting243

Information - DATA available); (v) Proportion of time when the vole density was below 50 voles244

ha−1, as a proxy for time when forage grass grows with low herbivore influence; (vi) Mean vole,245

mustelid and fox densities.246

3 Results247

Allowing for mortality by predators ingesting AR-poisoned voles changed the outcome of predator-248

prey dynamics involving vole, mustelid and fox populations. Secondary poisoning led to a rich249

spectrum of emergent dynamics according to the FFR to vole abundance. Without AR (scenario250

A), vole dynamics were regulated by mustelid predation that gave rise to a 6-year cycles (Figure 3)251

typical of prey-specialist dynamics, while the generalist fox population remained at its carrying252

capacity (i.e., 0.03 ind ha−1, see Table 1). Based on this null model, we explored 4 scenarios of253

treatment described earlier and denoted respectively B, C, D and E, defined by the vole density254

threshold triggering treatment (respectively: 500, 250, 250 and 50 ind ha−1) and the AR amount255

per treatment (respectively: 20, 20, 7.5 and 7.5 kg ha−1).256

3.1 Sensitivity analysis of model parameters257

The exploration of ecotoxicological uncertainties on population dynamics was performed for the258

lethal dose parameters LD50 for voles, mustelids and foxes (see Figure 2). From the 1600 pat-259

terns explored two typical patterns emerged. On the one hand (i) vole dynamics were sequentially260

regulated by either AR treatments, which we refer to as farmer-regulated phase, or by mustelids,261

mustelids-regulated phase (see in Figure 3 panel c. B-2). This succession of farmer-regulated and262

mustelids-regulated phases are denoted "Mustelid periodic regulation" in Figure 2 (black pixels).263

On the other hand, (ii) vole dynamics were permanently regulated by AR treatments, because of264

crashes of the mustelid population we refer to as "Permanent AR regulation" in Figure 2 (grey pix-265

els). We see that LD50 for foxes does not change the general pattern of dynamics. Both scenario B266

and D exhibited the highest fractions of "Mustelid periodic regulation" compared to scenarios C and267

E. This illustrates the tight line that exists between resource and AR impact to benefit from predator268

regulation periods.269

For other parameters, we performed a local sensitivity analysis where we computed a first order270

sensitivity index (Sobol and Saltelli, 1993; Saltelli et al., 2019) given the contribution of each271

parameter to the variance (in Figure 5 for scenario D - intermediate amount of 7.5kg AR at threshold272
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density of 250 voles). Parameter values were moved within +/- 10% interval around the fixed273

value as defined in scenario D (see Table 1). Crossing all cost functions to test the sensitivity of274

model parameters (Figure 5), the influence of each parameter was quite homogeneous. There was275

no redundant or conversely any parameters with a dominant influence on model behaviour. The276

homogeneity of the sensitivity to parameters was particularly true for densities of predators to which277

we focused our attention.278

3.2 Population dynamics279

While both "Mustelid periodic regulation" and "Permanent AR regulation" pattern occurred under280

the 4 scenarios with AR (B, C, D and E) (see Figure 2), we illustrate in Figure 3 the most contrasting281

population dynamics for each of scenario in order to better describe their underlying mechanism.282

The boundary between contrasting dynamics lies for vole LD50 around 1.5 to 2 ppm and in the283

range 2 to 2.25 ppm for mustelid LD50.284

From Figure 3, we see that scenario B (high vole density threshold triggering treatment and285

high AR amount per treatment) and scenario D (intermediate threshold and low AR amount) ac-286

counts for the most of dynamics with sequential farmer-regulated phase and mustelids-regulated287

phase. Farmer-regulated periods started when densities of living voles triggered treatments. This288

produced sudden declines of live voles followed by increases of dead voles. However, the vole pop-289

ulation recovered quickly which triggered repeated further treatments and pulses of availability of290

contaminated (both live and dead) voles. Also, in scenario D, vole declines were not as deep as291

when pulses of AR amount were high like in scenario B (see Supporting Information), owing to the292

reduced AR amount per treatment. Mustelids and sometimes foxes also experienced AR-induced293

declines during this period (Figure 3-c,f,g,h and Figure 4). For the predators, mustelid-regulated294

periods started when mustelid numbers grew slowly to a peak, which depressed vole density, pre-295

cluding AR treatments and releasing the fox population from secondary poisoning, such that its296

abundance rebounded. Vole depletion by mustelids and subsequent mustelid declines allowed the297

vole population to grow again up to threshold densities that initiated a new period of regulation by298

farmers.299

For scenario C (intermediate threshold and high AR), vole dynamics were mostly regulated by300

AR treatment only (e.g. Figure 3-e). Populations of live and dead voles experienced high frequency301

fluctuations driven by AR. As AR treatments were frequent, being triggered by vole peaks, contami-302

nated dead voles were always abundant (see Supporting Information: peaks at 90 ind ha−1). With303

scenario E (low threshold, low AR) vole populations were maintained by farmers at around 50 voles304

ha−1 (See Figure 3 and Supporting Information). The population of live voles was regulated by305

treatments. For most of simulations (except when vole LD50 with high, Figure 2), whenever voles306

reached densities triggering treatment, predator populations experienced strong declines. However,307

fox densities were higher compared to scenario C (intermediate threshold, high AR) (see Support-308

ing Information), reflecting the reduced amount of AR used (7.5 kg) and transferred to foxes as309
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there were lower vole densities. The maximum numbers of dead voles under this scenario E was310

relatively low (highest around 15 ind ha−1) but, due to frequent treatments, there was a steady311

replenishment of contaminated dead voles. This, in turn, induced mustelid and fox mortality and312

population declines (Supporting Information). Additionally, low availability of live voles triggered313

small mustelids mortality through starvation, down to abundances similar to those resulting from314

AR use (Supporting Information).315

3.3 Influence of intra-guild predation316

Figure 4 shows the system dynamics under a scenario D, where successive farmer-regulated and317

mustelids-regulated phases occurred. This simulation shows that the removal of foxes did not elim-318

inate the successions of mustelids-regulated and farmer-regulated phases. However, the mustelid319

regulated period allowed short-term peaks of voles, suggesting the emergence of a classical one-320

predator - one-prey cycles interrupted by a farmer-regulated period. Without foxes, population321

dynamics of mustelids presented a more chaotic behaviour, while it presented regular cyclic pattern322

with fox occurrence. Therefore, this simple model suggests a stabilizing role of a generalist predator323

(foxes in this system) during the mustelid-regulated period. At the end of the mustelid-regulated324

period, foxes strongly contributed to vole mortality and, to a lesser degree, mustelid mortality. Con-325

sequently, the removal of foxes implied less predation on voles during the mustelid regulated period,326

and short-term vole releases from mustelid predation. The 2-year rolling mean of vole density (blue327

lines in Figure 4) illustrates the change of regime from farmer-regulated to mustelids-regulated328

alternating phases. Indeed, the amplitude of averaged vole densities (i.e., the amplitude of vole cy-329

cles for the 2-year rolling mean) was relatively stable at the beginning of farmer regulation periods330

and then suddenly decreased to become minimal before sharply increasing, announcing a regime331

change. These changes in density amplitude may be used as an early-warning signal of the regime332

transition.333

4 Discussion334

Considering that rodenticide kills not only voles but also their predators through secondary poison-335

ing, our models show that AR profoundly changes the modeled outcome of predator-prey dynamics336

involving vole, mustelid and fox populations beyond what mere intuition could elucidate. Our study337

reveals how the dual influences of the amount of pesticide spread and the vole density threshold338

triggering AR spread drive (i) pesticide spreading frequency, (ii) predation ecosystem service, and339

subsequently (iii) the control of pest outbreaks. Two types of a rich spectrum of emergent dynam-340

ics, including farmer or mustelid regulation changing from classical predator prey dynamics arose341

because poisoned voles acted as global stressor on the food chain.342
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4.1 Modelling farmer regulation into a classical predator-prey system343

The threshold functional response of farmers deciding when to apply varying amounts of rodenti-344

cides according to prevailing vole density was crucial in selecting the emergent ecosystem dynamics,345

resulting in much variability in ecosystem and conservation and farming production interests. In346

the idealised ecosystem our models depict, farmers spreading rodenticide not only depleted vole347

prey exploited by specialist and generalist predators but also created pulses of lethally or sub-348

lethally poisoned voles that subsequently poison their predators. Arguably this set of ecological349

interactions has similarities with circumstances where a pathogen affecting prey species also in-350

fects predators, as in the case with the flea vectored plague (Yersinia pestis) infecting prairie dogs351

(Cynomys spp.) and black footed ferrets (Mustela nigripes) in central US (Matchett et al., 2010).352

However, to our knowledge, the behaviour of such tri-trophic model with multiple reciprocal in-353

teractions has not been explored. This is despite the obvious relevance to the management of the354

globally widespread circumstances where keystone small mammals are poisoned and may secon-355

darily poison their predators (Delibes-Mateos et al., 2011).356

Under the "reference" scenario without AR spreading (A), we assumed a predator-prey cycle357

which is a plausible pattern thoroughly explored theoretically (Hanski et al., 2001), though with358

debated empirical support (Lambin, 2018). There is no controversy on the role of small mustelids359

tracking vole dynamics, though it is not yet well understood whether there is sufficient lag between360

predators and prey for predation to drive steep declines (King and Powell, 2006). Parameters of361

the reference scenario for our predator-prey model were biologically realistic and tuned to generate362

population fluctuations similar to those observed in the studied cyclic system (Delattre and Girau-363

doux, 2009). The addition of pulses of rodenticide and their toxicokinetics in vole and predators364

are based on previous experiments with bromadiolone, a widely used AR, ensuring biologically365

realistic functional forms and their parameterization. Irrespective of the FFR considered, the fre-366

quency of vole cycles dramatically increased compared to the reference scenario, except during367

mustelid-regulated phases emerging under some FFR scenarios.368

4.2 How specialist predators may protect generalists from poisoning369

An interesting model behaviour with farmer- and mustelid-regulated phases alternating with low370

frequency was seen with scenarios B (high vole threshold, high AR) and D (intermediate vole thresh-371

old, intermediate AR), and to a lesser extend scenario C (intermediate vole threshold, high AR) and372

rarely with scenario E (lowest vole density threshold). Such flipping between alternative states in373

population dynamics has been previously described in predator-prey model where weasels rely on374

a primary prey and entrain the dynamics of secondary prey (Hanski and Henttonen, 1996) but not375

for the kind of indirect interaction we explore here. It further demonstrates that adding biologically376

realistic complexity to simple models may drastically change the emergent properties of trophic377

interactions. From these scenarios, we understand that the emergence of successive farmer- and378

mustelid-regulated phases is neither driven by vole density threshold alone nor by AR amount, but379
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instead by a subtle combination of both. Also, under scenarios with low LD50 for fox, the mod-380

elling description of these patterns uncovered the dual key roles of mustelids on fox dynamics, as381

intraguild competitors and as a vector for poisoning. This led to a surprising form of facilitation382

for foxes: mustelids protect foxes from collapses. The establishment of such a response can be383

described in 3 steps. Firstly, low mustelid densities inhibit their regulation of voles and contribute384

to farmer AR use. In line with empirical evidence, the latter directly impacts foxes by poisoning385

(Jacquot et al., 2013). Secondly, fox predation on mustelids is reduced, and with an intermediate386

AR amount, this allows mustelids to slowly recover. Vole outbreaks and subsequently farmer AR387

treatments are then gradually delayed, benefitting mustelids recovery. This is the point of transi-388

tion from farmer to mustelids regulation regimes, starting the third step: mustelids increase faster,389

suppressing vole densities and precluding the need for AR treatments, and eventually indirectly390

allowing the fox population growth.391

Our findings that complexities in trophic interaction, induced by the poisoning of predator by392

poisoned prey, may cause the system to flip between alternative states is novel and robust. However,393

given we only explored deterministic and spatially homogeneous versions of our model, any infer-394

ence on the frequency of flipping between states should be cautious given the inherent stochastic395

nature of natural and farmland environments. If such dynamics occur within real farming sys-396

tems, flipping between states is unlikely to emerge with regularity where many other factors impact397

population dynamics. While generalists are known to have stabilising effect (Hanski et al., 1991),398

the benefit of specialist predators imparted to generalist predator and resulting increase in the399

prevalence of intraguild predation would be difficult to detect in empirical studies. Nevertheless,400

other generalist predators such as the endangered red kite (Milvus milvus) which feed on voles op-401

portunistically, occupy areas with bromadiolone treatments and are also affected by rodenticides402

(Coeurdassier et al., 2014) and may therefore also benefit from the presence of mustelids in the403

ecosystem.404

4.3 How region-wide vole suppression may inhibit ecosystem services405

In many situations, notably scenario E and C and when vole and mustelids are highly sensitive406

to AR, the whole system was solely driven by farmer regulation, whereby the chronic use of AR407

completely suppressed the pest-regulation ecosystem service of predators. It has previously been408

shown empirically that repeated rodenticide treatments are highly detrimental to the populations of409

predators and reduce their densities (Jacquot et al., 2013). Secondary poisoning of predators is an410

established reality (Berny, 2007). Through modelling, we formalised the insight that some poison411

deployment protocols, including those presently used in the empirical system which motivated our412

study, are counterproductive if employed on a large scale, suppressing natural predator regulation413

of pest rodents. It has been long known that poisoning rodents with AR permeates the food chain414

at peak abundance, achieves little in terms of protecting crops and may have strong deleterious415

impact (Olea et al., 2009). In Franche-Comté, a change in treatment protocols, from controlling416
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voles at high densities to low-intermediate densities, has reduced the mortality of non-target species417

(including foxes) (Jacquot et al., 2013). Nevertheless, deployment regimes of pesticides that can418

contaminate the food chain should also include periods of time which permit predator populations419

to rebound and avoid extirpation from the ecosystem. We have shown that, over time, farmers who420

strictly maintain voles at low density thresholds would likely suppress predation services provided421

by vole predators and, in so doing, instigate pesticide dependence. In addition, small mammals422

like voles certainly have ecosystem functions. Our results also suggest that the presence of small423

mustelids in ecosystems is beneficial for biodiversity conservation (see above) and agriculture inter-424

ests. Given the importance of vole cycles and their trophic interactions, it is desirable to maintain425

vole population fluctuations of sufficient amplitude to maintain ecosystem processes.426

4.4 Managing rodents and ecosystems427

Presently, in Franche-Comté, farmers relying on bromadiolone alone can only treat pre-emptively428

when voles are at low densities (scenario E) whereas those also using alternative methods (i.e.,429

mechanical, not pesticide-based) are allowed to spread AR in low quantity up to intermediate vole430

densities (scenario D). Spreading AR in low quantity seems superficially desirable, but our heuris-431

tic model, assuming an idealised homogenous landscape, shows this is associated with frequent432

treatments. Consequently, it would induce a near permanent availability of a small number of in-433

toxicated voles which, combined with low availability of non-contaminated voles, would reduce434

predator populations. Therefore, the extreme situation of using a low vole density threshold (sce-435

nario E) at a large scale is undesirable because it depletes the prey resources of foxes and mustelids436

and their populations. Triggering treatment at intermediate vole density with a low amount of AR437

(scenario D) allows for temporal refuges, i.e. longer periods free of rodenticide necessary for preda-438

tor densities to rebound while simultaneously avoiding episodes with high vole density, as required439

by farm production interests. Under a landscape management approach, such temporal refuges440

could arguably be substituted for by spatial refuges, with parts of the landscape free of pesticides441

and fuel the recolonisation of the farming landscape by predator populations.442

Our key result and the basis for management prescriptions is that allowing for refuges where443

voles are not poisoned and allowed to persist at medium-high densities such that they can be444

exploited by mustelids is crucial for predator population recovery and preserving the ecosystem445

services mustelids deliver. Treatment regimes allowing temporal and/or spatial refuges seems com-446

patible with both conservation and farming interests. A critical insight is to avoid potential side447

effects of chronic low-dose AR prescription (e.g., depletion of community services, stimulation of448

resistances), as is well known with antibiotics, by demanding regularly long-term period without449

treatment. However, combining chronic treatments and long periods free of AR may be difficult450

to achieve in real systems. Our model only considers temporal refuges, and the conceptualization451

of untreated areas as equivalent to triggering treatment at intermediate vole density cannot pro-452

vide guidance on the size of these spatial refuges. Nevertheless, while management of voles is453
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implemented at the scale of fields, mustelids and foxes roams over much larger areas (King and454

Powell, 2006), such that large refuges with medium-high vole densities voles would be required455

while maintaining low vole density at local scale.456

4.5 Conclusion and perspectives457

Our process-based model revealed pesticides that permeate the food chain upward can lead to di-458

verse population dynamics with alternative states regulated by predators and farmers. It also shows459

that the practice currently promoted to use low-dose AR treatments at low vole density could have460

the undesirable side-effects of leading to chronic application of AR on a large scale, in the absence461

of refuges, and the depletion of the vole predator community. This emerging question would benefit462

from a landscape modelling approach to characterize spatial refuges. An other prerequisite for this463

work becoming applied and guiding management practice would be to further explore toxocologi-464

cal lethal and sublethal (e.g. growth, reproduction, behaviour) effects of pesticides on population465

dynamics. We have also uncovered a counterintuitive mechanism whereby, owing to intraguild466

predation, mustelids could rescue foxes from poisoning. This suggest that contemporary Environ-467

mental Risk Assessment of pesticides that mostly consider one-species - one-compound experiments468

fail to capture the impact of pesticides on trophic links. Assessing risk at the ecosystem level is469

empirically challenging such that process-based modelling can play a critical role.470
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Table 1 – Populations dynamics and toxicological parameters used in the model simulations. Nota-
tion ppm stands for parts-per-million [mg kg−1] and n.d. denotes a dimensionless parameter. See
description in Methods.

Parameters Definitions Units Value
Population dynamics parameters
rV Maximal growth rate of voles day−1 ln(2× 600)/365
KV Carrying capacity of voles ind ha−1 600
aM Attack rate of mustelids on voles day−1 1/30
hM Handling time of mustelids on voles day 1/3.5
aV F Attack rate of foxes on voles day−1 1/10
aMF Attack rate of foxes on mustelids day−1 1/10× 80/300
hF Handling time of foxes on voles day 1/6
εM Conversion efficiency of ingested food n.d. 0.0025
mM Natural mortality rate of mustelids day−1 1/(0.8× 365)
rF Maximal growth rate of foxes day−1 ln(3)/365
KF Carrying capacity of foxes ind ha−1 0.03
BV Mean biomass of a vole individual g 80
BM Mean biomass of a mustelid individual g 300
BF Mean biomass of a fox individual g 5800
d Degradation rate of dead vole ind.day−1 1/7

Toxicological parameters
Tbroma(V ) Farmer input AR function of vole density mg ha−1 day−1 Scenarios
k0 Disappearance of AR in the field day−1 (0.106 + 0.057)/2
Min Maximal intake rate of vole ppm day−1 6× 1/5
Din Half saturation intake rate of vole ppm 100
HV , HM , HF Hill’s coefficient dose-response curve n.d. 4
LD50,X Lethal Dose for 50% of individuals of X ppm see Text
ηM AR uptake rate in mustelids n.d. 0.5
ηF AR uptake rate in foxes n.d. 0.5
kout,V Excretion rate of AR by voles day−1 0.4
kout,M Excretion rate of AR by mutelids day−1 0.6
kout,F Excretion rate of AR by foxes day−1 0.6
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Figure 1 – Flow diagram of the fate and impacts of anticoagulant rodenticide (AR, bromadiolone)
in a tri-trophic food web. Black arrows and equations correspond to natural dynamics with trophic
interactions, red arrows and equations represent the transfer of AR through the system and its
accumulation into the different compartments. The arrows and equations in blue correspond to its
impact (i.e., death of individuals) on the three species populations.
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Figure 2 – Global sensitivity analysis of Lethal Dose for voles, mustelids and predators on the pop-
ulation dynamics of mustelids: "Mustelids periodic regulation" (see Figure 3-c,f,g,h) or "Permanent
AR regulation" (see Figure 3-b,d,e,i,j). Points are simulations in Figure 3.

20



Figure 3 – Variation of population densities simulated over 50 years (10 years of burn-in period
in grey area). Capital letter corresponds to farmer functional response: A the null model (no
AR), B (vole threshold: 500in/ha, AR 20kg/ha), C(250,20), D(250, 7.5) and E(50,7.5). Numbers
correspond to points in Figure 2. Panel c (B-2) illustrates predator-regulation and farmer-regulation
phases, that can also be found in other graphics (C-2, D-1, D-2).
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Figure 4 – Effects of intraguild predation. Top panels: daily densities of voles (in black) and 2-years
rolling means of densities (in blue) for the farmer functional response d (i.e., 7.5kg of rodenticide
at threshold density of 250 voles) with and without foxes (left and right respectively). Bottom
graphics: stacked charts of ingestion and mortality proportion.
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Figure 5 – Local sensitivity analysis: First-order Sobol’s sensitivity index (denoted Sp for parameter
p) providing the global sensitivity of cost functions to parameters of the model (Sobol and Saltelli,
1993) for the model d (i.e., 7.5kg of AR at threshold density of 250 voles). Analysis is based on
4200 simulations. Values reflect the expected fractional reduction in the variance for each cost
functions that would be achieved if a specific parameter is fixed. Values of Sp may be greater than
one due to the potential correlation between variables.
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