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Abstract

3D finite element simulations have been performed in order to assess the ability of four classical
homogenization schemes to model the elastic behavior of solids with parallel cracks, namely the
dilute, Mori-Tanaka, self-consistent and differential schemes. The cracks have been represented
by right circular cylinders with aspect ratios as low as 10−3 in the simulations whose centroids
are randomly located in the REV. Special attention has been paid to the crack aspect ratio vari-
ation predicted by the different schemes, since the goal is ultimately to propose a non-linear
micromechanical model of a cracked solid, taking complete crack closure into account.

The results confirm earlier studies which showed that the differential scheme was best suited for
this kind of morphology when computing elastic moduli, but additionally, we show that changes in
crack aperture are also accurately predicted. It is however noted that the randomness in the positions
of the cracks leads to significant scatter in the magnitude of the aperture variation inside a given
simulation, which suggests that the cracks do not close simultaneously. As a consequence, non-
linear numerical simulations accounting for contact between the crack lips should be performed in
order to completely validate a non-linear micromechanical model in alternate tension/compression
loading cases.

Keywords: Cracked media, strain concentration, crack closure, numerical simulations,
homogenization theory

1. Introduction

Every solid body can be seen as composite at some scale, with the exception of the single
crystal solid. This trivial observation explains the strong interest in the determination of effective
properties of heterogeneous systems developed in the past century. Several different strategies exist
to undertake this challenging task. In the present paper, Eshelby-based micromechanics arguments
and numerical tools are both derived. The first one is based on Eshelby’s solution to the problem
of a single ellipsoidal inclusion embedded in an infinite medium (Eshelby [11]); this method has
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the advantage of being often completely analytical, which is interesting for parametric analysis. Its
main drawback is that a fair number of simplifying assumptions usually have to be introduced in
order to conduct any calculation to the end, which may limit its range of applicability. The second
method relies entirely on numerical tools and is one of brute force; it consists in generating the
desired microstructures and in performing numerical experiments on said structures, using some
finite element software. The main advantages of the second method are that its implementation is
straightforward, that much more complex and realistic geometries can be investigated, and that it
gives access to local information in themultiple phases considered instead of just average quantities.
However, it may require a high computing power. Even creating the geometry can prove to be very
challenging for current softwares, especially in a periodic context, and the resulting mesh is not
always satisfactory, particularly when dealing with singular geometries such as crack tips. That
being said, the recent advances in computer technology have made this method more and more
available to researchers, and it is an interesting tool to investigate the consistency of analytical
estimates.

One area of particular interest for many applications is the behavior of cracked rocks. A number
of researchers have applied the tools of micromechanics to determine the behavior of crackedmedia
in order to account for a coherent coupling between their mechanical behavior and their transport
properties. This approach has been implemented in Dormieux and Kondo [9] to estimate both
the effective stiffness and hydraulic conductivity of rocks in the context of the self-consistent
approximation, whereby the cracks of ellipsoidal shape are endowed with a fictitious permeability
derived from a Poiseuille law in order to reduce the problem to a conductivity homogenization
procedure. The resulting effective hydraulic conductivity is a function of both the aspect ratio of
the cracks X and their uniform radius a, which allows the authors to take into account the impact of
both crack propagation and crack opening/closure on the homogenized transport properties. These
ideas were further investigated by Barthélémy [1], who considered the presence of cracks at two
different scales and studied the differences between their respective mathematical treatments, and
by Lemarchand et al. [20] and Lemarchand et al. [21]; in a similar approach, Vu et al. [29] proposed
to model the impact of crack propagation on the effective permeability; finally, Levasseur et al. [22]
built on Dormieux and Kondo [9] in order to predict the permeability change related to damage
caused by an excavation process. Following the latter, the same kind of methodology can be applied
to the opposite process, i.e. permeability reduction caused by the mechanical closure of fractures
during the service life of a drift. A first attempt was made in Bluthé et al. [4], who proposed
an estimate of the crack closure due to either an applied mechanical load or a hydration-induced
swelling process in the context of the Mori-Tanaka approximation. Restricted to a linear context,
the latter is currently being extended to the non-linear case associated with the complete crack
closure. Complete closure is indeed expected because of radial compression due to the swelling
of both the clay core and that of the damaged zone (see Bluthé et al. [4]).

The extension to non-linearity is entirely possible without much difficulty, since the theoretical
background was laid out by Deude et al. [8]. In this work, the average crack closure is estimated in
the context of the Mori-Tanaka scheme by using the strain concentration rule in the cracks in the
limit of infinitesimal aspect ratios X � 1, and the closure criterion reduces to ∆X < −X0, where
X0 is the initial aspect ratio of the crack and ∆X = X − X0. The effective tangent stiffness of the
cracked medium is then computed as a function of which crack families are still open. Since the
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set of closed crack families is itself a function of the current stress state, the effective mechanical
behavior of the medium is indeed non-linear. However, for such an approach to be valid, use of a
particular micromechanical scheme requires it to predict accurately both the effective stiffness and
the crack closure. Since the homogenization schemes rely on the estimation of the average strain
concentration tensors in the different phases, one could be tempted to imagine that hypotheses that
lead to good stiffness predictions might also lead to good strain concentration predictions. To the
author’s knowledge, this has not received much attention in the past, so this paper mainly aims at
contributing on this aspect. Thus, the goal of this work is to identify a relevant homogenization
scheme in terms of both the effective stiffness and the crack aperture changes during loading, in
order to later use the selected scheme in a non-linear mechanical model at the scale of a structure,
similarly to what can be found in the linear case in Bluthé et al. [4].

Let us first summarize briefly the literature on the confrontation of the standardmicromechanical
schemes with numerical simulations for cracked media. In some of the cases cited below, the
authors studied both the case of randomly oriented cracks and that of parallel cracks, but we
will restrict our discussion to the latter case since this is the context of the present study. The
first attempts can be traced back to the mid 1990s when Huang et al. [17] implemented three
of the most used micromechanical schemes, namely the dilute scheme, the differential scheme
and the self-consistent scheme, for an elastic solid containing parallel cracks, and assessed their
performance in comparison with 2D numerical simulations performed by applying the boundary
element method (BEM) to a unit cell containing 25 cracks. For each value of the crack density
parameter ε , as introduced in Budiansky and O’connell [5], the authors generated 15 different crack
distributions, which allowed for an estimation of the variability in their computation. In the studied
range of crack densities, namely from 0.1 to 0.6, their numerical results lie between the dilute
and the differential approximations. A few years later, Zhan et al. [31] performed the same kind
of numerical experiments but with another method, this time based on Muskelishvili’s complex
potentials. Again, their results seem to lie between the differential and the dilute approximation,
but one of the numerical methods lies closer to the dilute estimate. This point, which may seem
quite odd at first sight since the dilute estimate neglects any interaction between the cracks, will
be discussed in section 2.2. Dahm and Becker [7] used both the finite element method (FEM)
and the BEM to numerically compute the effective moduli of different crack distributions in 2D
and found the differential estimate to fit the results better than the dilute estimate. Orlowsky
et al. [23] confirmed this result by simulating elastic wave propagation, still in 2D. Shen and
Li [27] further established the good performances of the differential scheme using Kachanov’s
approximate method to solve their system of integral equations (Kachanov [18]). However, they
pointed out that the discrepancy becomes significant for crack densities above 0.4. Saenger et al.
[25] and Saenger et al. [26] used the so-called rotated staggered grid technique to evaluate the
dynamic response of cracked rocks in 3D, and their static response in 2D in the context of either
uniform displacement or uniform stress conditions. The authors used this technique to explain
the scatter on the numerical estimates of the moduli found in the literature and concluded that the
differential scheme could not be set aside by any of the analyzed previous results. However, further
3D finite element estimates given by Grechka [12] tend to favor the dilute scheme with respect
to the differential scheme (see discussion below). Note that for these numerical computations,
the cracks were modeled as spheroids of aspect ratio 0.08. More recently, Charpin and Ehrlacher
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[6] proposed to evaluate the relevance of additional schemes in 2D, namely the interaction direct
derivative estimate (IDD, see Zheng and Du [32]) and its modified version named full-range IDD
(FRIDD), based on a comparison with finite element computations performed on periodic cells
containing elliptical holes with an aspect ratio of either 0.1 or 0.01. The authors concluded that
the FRIDD method was good at estimating the poromechanical properties of cracked media, but it
should be noted that the presented results did not include the differential estimate. Finally, the most
recent results are due to Vasylevskyi et al. [28], who performed 3D finite element calculations on
3D periodic cells of ellipsoids with an aspect ratio of 0.01 embedded in an orthotropicmatrix. Here,
the authors identified the differential scheme as giving the best results for out-of-plane moduli, and
the Mori-Tanaka scheme for the in-plane ones. However, as pointed out by the authors, in the limit
of infinitely flat spheroids the presence of these cavities does not impact the in-plane moduli, so
that these results do not appear particularly relevant for choosing the appropriate scheme.

In this paper, we propose to investigate further the performance of five classical homogenization
schemes in comparison with finite element simulations on periodic representative elementary
volumes. As mentioned above, special attention was paid to variations in crack apertures upon
loading. First, the main analytical results are recalled for the chosen approximations, namely the
dilute, Mori-Tanaka, self-consistent and differential schemes and the Ponte-Castaneda and Willis
bound. Both the compliance tensors and crack aperture variations are derived in all cases, and a
few necessary comments on the range of applicability of the dilute scheme are made. Then, the
numerical simulations are described: we specify the geometries and how they were generated, we
explain how the boundary conditions and mesh size were chosen, and assess the quality of our
results. Finally, the numerical results are presented and discussed, and we propose perspectives for
future works.

2. Analytical estimates

2.1. General strategy
Consider a representative elementary volume (REV) Ω of a cracked solid with aligned parallel

cracks. From a micromechanical point of view, cracks are usually assumed to be oblate spheroidal
cavities—meaning that they are treated as spheroidal inclusions with volume fraction f = 4π

3 Na2c,
where N is the number of cracks per unit volume of REV and a and c are the semi-major and
semi-minor axes of the oblate spheroids respectively (see figure 1)—with a vanishing stiffness
tensor (Cc → 0), assumed isotropic for simplicity. Here, all the cavities are additionally assumed
to be self-similar. The solid matrix itself has a volume fraction 1 − f and the stiffness tensor Cm.
The general strategy for the determination of the strain-based estimates of the effective stiffness
and of the crack aperture variation ∆c is briefly recalled, following Dormieux and Kondo [10].

Uniform strain boundary conditions are here applied to the composite, i.e. ξ(z) = E · z is applied
on the boundary ∂Ω of the REV, where z denotes the position vector within the REV. As long as
the geometry is not singular, the strain tensor at any point z of the composite depends linearly on
the loading parameter E through the fourth-rank concentration tensor, i.e. ε(z) = A(z) : E. Here
and in the following developments, the colon denotes the standard double contraction of tensors.
Note that the strain average rule ε = E implies that fA

c
+ (1 − f )A

m
= I, where the following
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Figure 1: Cracked solid Ω (left) and representation of the auxiliary problem (right).

averaging operators have been introduced:

ε =
1
|Ω|

∫
Ω

ε(z) dV ; A
α
=

1
|Ωα |

∫
Ωα

A(z) dV (α = c or m) (1)

andΩc andΩm denote the crack domain and the solid domain respectively. It then follows from the
local constitutive equation of linear elasticity σ(z) = C(z) : ε(z) that the average stress is linearly
related to the average strain, so that the homogenized stiffness tensor Chom may be defined as:

Σ = σ = Chom : E; Chom = C(z) : A(z) (2)

Using this definition, we obtain the relationship between Chom and A
c
:

Chom = Cm + f (Cc − Cm) : A
c

(3)

Introducing the crack density parameter ε = Na3 (Budiansky and O’connell [5]) and the aspect
ratio of the cracks X = c

a , the crack volume fraction reads f = 4π
3 εX , so that (3) yields:

Chom = Cm :
(
I −

4π
3
εXA

c
)

(4)

Within the considered assumptions, (4) is an exact definition of the homogenized stiffness. This
exact definition cannot be used as such in practice, but the tools of micromechanics yield approx-
imations through estimates of the average concentration tensor A

c
over the crack domain. Note

that technically speaking, the previous analysis should be performed in the rate form because
cracks satisfy the condition X � 1 and therefore undergo large strains. However, as explained in
Dormieux and Kondo [10], under this very condition XA

c
may be replaced by its limit as X → 0,

so that the non-linearity disappears and the previous developments do hold.
The average increment of aspect ratio upon loading may then be computed:

c − c0
c
=
∆c
c
= (n ⊗ n) : εc (5)
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where n is the unit normal to the midplane of the crack and c0 is the value of c in the reference
configuration. This quantity is singular as X → 0, but for non-propagating cracks (constant a), the
average increment of aspect ratio is regular and is obtained using the strain concentration rule:

∆X =
∆c
a
= (n ⊗ n) :

(
XA

c)
: Shom : Σ (6)

Taking advantage of (4), it is convenient to express (6) in terms of Shom alone:

∆X =
3

4πε
(n ⊗ n) :

(
Shom − Sm

)
: Σ (7)

which holds for any scheme and is especially convenient when the compliance tensor of the effective
medium is known. It is straightforward to deduce from (7) that ∆X will be independent of ε for
any scheme that predicts an affine dependence of Shom on ε .

Estimates of the concentration tensorA
c
now have to be proposed in order to make quantitative

predictions of the homogenized stiffness. All the analytical micromechanical estimates are based
on Eshelby’s solution to the so-called transformation problem of an infinite elastic medium with
stiffness tensor C0 with a region subjected to a uniform eigenstrain (Eshelby [11]). According to
this result, the strain in a single spheroidal cavity embedded in an infinite matrix which is subjected
to uniform strain boundary conditions ξ(z) = E0 · z at infinity is uniform in the inclusion and given
by:

εc =
(
Qc,0

)−1
: C0 : E0; Qc,0 = C0 − C0 : Pc,0 : C0 (8)

where the Hill tensors of the crack Pc,0 and Qc,0 have been introduced. Both of these tensors are
functions of the shape of the crack (superscript c) and of the stiffness tensor C0 of the reference
medium (superscript 0). Following the classical nomenclature (see Hill [14]), we will refer to this
problem as the auxiliary problem; its solution is then used to estimate the average strain in the
inclusion phase for the actual problem defined above on the composite. This is done by proposing
adequate values for E0 and C0.

2.2. Dilute scheme
In the dilute approximation, the interaction between the cracks is neglected, which means that

each inclusion only "sees" the infinite matrix. This is obtained by setting C0 = Cm and E0 = E in
(8), so that A

c
= (Qc,m)−1 : Cm. Denoting Uc,m = lim

X→0
X (Qc,m)−1, the following estimate for the

effective compliance tensor is obtained:

Shom ∼ Sdil = Sm +
4π
3
εUc,m (9)

This form together with (A.2) make it clear that only the out-of-plane Young’s modulus and shear
modulus are affected, which will be true of all the schemes. These moduli are given by:

Ehom
3
E ∼

Edil
3
E = 1 − 16

3 (1 − ν
2)ε

µhom13
µ ∼

µdil13
µ = 1 − 16

3
1−ν
2−ν ε

(10)
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where E , µ and ν are the Young’s modulus, shear modulus and Poisson’s ratio of the isotropic
matrix. This result is obtained by expansion to first order in ε , because of the assumption of
dilution.

Using (7) and (9), we get the average increment of aspect ratio:

∆Xdil = Uc,m
3333Σ33 (11)

2.3. Mori-Tanaka scheme
The Mori-Tanaka scheme is a first relevant candidate to take some interaction between the

cracks into account. It is based on the assumption that each inclusion is embedded in the actual
matrix, so that C0 = Cm, but that the composite with a single inclusion is subjected to the average
strain in the matrix so that E0 = εm. Using the strain average rule to determine E0 as a function
of E, the following estimate of the effective compliance tensor is obtained:

Shom ∼ SMT = Sm +
4π
3
εUc,m (12)

This is formally equivalent to (9), but there is no need for an expansion to first order in ε this time,
so that the effective moduli read:

Ehom
3
E ∼

EMT
3
E =

(
1 + 16

3 (1 − ν
2)ε

)−1

µhom13
µ ∼

µMT
13
µ =

(
1 + 16

3
1−ν
2−ν ε

)−1 (13)

Since the compliance estimates are identical, (7) shows that theMori-Tanaka estimate of average
increment of aspect ratio is given by (11).

2.4. Self-consistent scheme
It is usually considered that the Mori-Tanaka scheme can only take into account a limited

amount of interaction between the inclusions. Stronger interactions can be obtained in other ways,
the first of which is the self-consistent approximation. It consists in assuming that each crack
is embedded in the sought homogenized medium itself, i.e. C0 = Chom ' Csc, which yields an
implicit equation for Csc. Different kinds of self-consistent estimates exist in the literature, but for
simplicity we chose to follow Hashin [13] and treated the composite as a dispersion in the present
study, leading to the following implicit equation for the effective compliance:

Ssc = Sm +
4π
3
εUc,sc (14)

Note the fundamental difference between (12) and (14) which lies in the superscripts, so that (14)
does not give the homogenized compliance explicitly. This implicit equation is easily solved for
E sc

3 and µsc
13 numerically using a standard software.

Once the homogenized stiffness is known, the average increment of aspect ratio can be computed
using (7) and (14):

∆X sc = Uc,sc
3333Σ33 (15)
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2.5. Differential scheme
As mentioned in Hashin [13], the main criticism of the self-consistent scheme is the existence

of a so-called percolation threshold for certain kinds of porous media, that is, a certain finite
porosity or crack density for which Csc is no longer positive definite. It is the case for spherical
voids as well as randomly oriented penny-shaped cracks, and may be inaccurate since it seems
to contradict several experimental results. The differential scheme has been proposed to account
for a strong interaction between the cracks without percolation effects. It consists in building the
cracked material incrementally by adding an infinitesimal amount of cracks to the material, until
the desired crack density is reached. This process leads to the following differential equation for
the effective compliance:

d
de
Sdi f =

4π
3
Uc,di f (16)

This differential equation is easily solved for Edi f
3 and µdi f

13 numerically using a standard software.
The average increment of aspect ratio is then obtained using (7). It is interesting to note that

since 1
ε

(
Sdi f − Sm)

is the mean value of d
deS

di f (e) over [0, ε], which is given by (16), we also have
the following result:

∆Xdi f =< Uc,di f
3333 > Σ33 (17)

with < • >= 1
ε

ε∫
0
• de.

2.6. Pont-Castaneda and Willis bound
Another class of estimates may be obtained from the Hashin-Shtrikman variational principles.

Details can be found in Ponte Castaneda and Willis [24], but the main points are first that they are
functions of the spatial distribution of the inclusion phase in the composite, and secondly that these
are explicit under the assumption of ellipsoidal symmetry of the distribution. The two simplest
cases are obtained when the distribution is either spherical, or defined by the shape of the inclusions
themselves. As is well known, the latter case reduces to the Mori-Tanaka estimate, and will not be
discussed further, while the former case leads to the following estimates:

Ehom
3
E ∼

EPCW
3
E = 1 − 240ε(1−ν2)

45+16ε(7−15ν2)
µhom13
µ ∼

µPCW
13
µ = 1 − 240ε(1−ν)

45(2−ν)+32ε(4−5ν)

(18)

Again, the average increment of aspect ratio is obtained using (7). An interesting feature of these
estimates is that these are rigorous upper bounds for composites satisfying the spatial distribution
requirements in a certain range for ε , which is why they are often referred to as the Ponte-Castaneda
andWillis (PCW) bounds. For example, (18) are rigorous upper bounds for the out-of-planemoduli
of a composite with parallel cracks and a spherical distribution in the range 0 ≤ ε ≤ 3

4π . Finally,
one should note that the effective Young’s modulus and shear modulus vanish for ε = 45

128 and
ε = 45(2−ν)

16(7−5ν) , so that they do not cover the whole range of values studied here numerically (see
section 3).
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3. Numerical simulations

Let us now turn to the numerical simulations that we performed in order to assess the per-
formance of the previously described homogenization scheme. Although the goal is eventually
to propose a non-linear model accounting for complete crack closure during compression of a
cracked rock, the simulations performed here remain in a completely linear context. The effective
out-of-plane Young’s modulus and increment of crack aspect ratio were determined by applying
a uniaxial tension to the elementary volumes so that the cracks tend to open instead of close, but
compression would only reverse the sign because of linearity.

3.1. Preliminary investigations
First, let us describe the procedures used to generate the volume elements and to assess the

validity of the numerical approach. The sample generation procedure is based on a random
distribution of inclusion centroids of prescribed shape and size in a box, and has been applied to
various studies and contexts, see e.g. Bary et al. [2], Honorio et al. [16] and Bary et al. [3]. It
makes use of the python tool Combs developed in the framework of the CAD platform Salome1. In
the present paper, following Charpin and Ehrlacher [6] and Vasylevskyi et al. [28], it was decided
to introduce cracks with a shape approaching the one considered in the analytical developments,
i.e. with a non-zero volume, and to further avoid a possible crack interpenetration by imposing
a minimal distance (1/100 of the box edge dimension) between cracks, although overlapping is
technically possible with Salome. To limit the mesh size, the number of cracks was restrained in
the range 30 to 60, corresponding to a crack density parameter varying from 0.2 to 0.8. With the
available numerical tools, it is possible to generate geometries with crack aspect ratios as low as
1/1000, to be compared with 1/100 in Vasylevskyi et al. [28]. As a consequence, the numerical
strain/stress fields within the cracks are probably questionable due to elements whose shape is not
well suited for FE simulations.

The meshes were generated from the geometries with automatic softwares plugged in Salome2,
and are composed of tetrahedrons for volumes and triangles for surfaces. A mesh refinement is
systematically imposed on the crack surfaces by increasing the surface triangle density, to improve
the quality of the simulation results. Note that a node is enforced on these upper and lower
crack surfaces at the normal of each crack center, to determine the crack opening from numerical
displacements precisely at this point. The meshes are all periodic, so as to be able to work
with periodic boundary conditions in the finite element software Cast3M3. Note that under these
constraints, it proved difficult for the CAD software to generate the geometries using flat spheroids,
so instead flat right circular cylinders were used, which made the generation more manageable for
the software. The following points thus needed assessment:

• Mesh convergence

• Representativeness of the elementary volumes

1https://www.salome-platform.org
2http://www.distene.com
3http://www-cast3m.cea.fr
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• Impact of using right circular cylinders instead of spheroids

The last point was particularly essential because the main original contribution of the present work
is the comparison of the crack closure/opening during loading obtained from numerical simulations
with that calculated with the homogenization schemes, and the geometry of the inclusions was
likely to have an influence. Let us address it first.

In order to determine the effect of the geometry of the inclusions, 2D axisymmetric numerical
simulations were first performed, since both spheroids and right circular cylinders possess this
symmetry. These simulations consisted in a simple representation of Eshelby’s problem of a single
inclusion embedded in an isotropic linear elastic medium and subjected to a state of uniaxial
tension Σ = Σe3 ⊗ e3 far from the inclusion (for numerical simulations, the width and height of the
domain were 15 times the radius of the crack). Note that we took advantage of the symmetry of the
problem with respect to the mid-plane of the crack and only considered half of the domain, with
the symmetry condition on the displacement ξ3 = 0 at the plane of symmetry. The convergence
of the resulting crack opening with respect to the aspect ratio of the crack was analyzed for both
geometries and compared to Eshelby’s analytical result in the limit X → 0. Two different ways of
quantifying the crack opening ∆X were tested: the domain occupied by the crack was meshed and
given a vanishing Young’s modulus with respect to that of the matrix (contrast: 2 ·10−11) so as to be
able to simply average the strain component ε33 over the crack, and the displacement ξ3 at themiddle
of the crack was also determined. The crack opening ∆X was then calculated from both results.
As can be seen from figure 2, averaging the strain component does not yield satisfactory results
since the right circular cylinder systematically underestimates the crack opening. Furthermore,
convergence of the result as X → 0 is difficult, probably due to the quality of the mesh for X
approaching 10−3, although an effort was made to decrease the mesh size as X got smaller. On
the other hand, the data from ξ3 at the middle of the crack is robust in terms of inclusion geometry
and converges nicely as X → 0. These results validate the use of right circular cylinders but
suggest to analyze crack opening/closure by looking at the relative displacements at the middle of
the cracks lips instead of the average strain in the cracks. This means that meshing the inclusions
is of no use here and can be avoided. More generally, we could consider more simple alternative
representations of the cracks, e.g. by surfaces; this point will be investigated in a future work.

0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.5

1.0

1.5

2.0

2.5

●
■

◆
▲

Eshelby's solution

FEM with spheroids (average strain)

FEM with cylinders (average strain)

FEM with spheroids (displacement)

FEM with cylinders (displacement)

Figure 2: Crack opening assessment: spheroids versus cylinders and strain versus displacement. Here, Σ = 1MPa and
E = 5GPa, ν = 0.2 in the matrix.
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Additionally, 3D simulations on an actual geometry containing 40 aligned cracks with X = 1
1000

(ε = 0.4) were performed so as to check that these results transpose well to the 3D case. The out-of-
plane elastic moduli obtained with the two geometries (spheroidal and cylindrical cracks) were also
compared. Since the 3D geometries were generated randomly, they were not perfectly transversely
isotropic, however, the deviation from transverse isotropy was very small (see below). Thus, the
effective out-of-plane Young’s modulus and shear modulus could be directly computed from two
simulations with prescribed stress and periodic boundary conditions: one with Σ = Σe3 ⊗ e3
and one with Σ = Σ(e1 ⊗ e3 + e3 ⊗ e1). We compared these two effective moduli for identical
geometries, i.e. the centroids of the cracks are at the same locations, so that the only difference is
the shape of the cracks. We found a relative difference of 0.6% and 0.2% on the effective Young’s
moduli and shear moduli respectively, and a relative difference of 0.8% on the average values of the
crack closure among the 40 cracks. These results allow resorting to cylinders instead of spheroids
in the following investigations, the former being easier to work with.

In order to assess the quality of the mesh used, we investigated the convergence of the effective
elastic moduli and crack closure with the growing number of elements in the simulation. Since it
is the crack tips that require a high number of elements, we ensured convergence on the elementary
volume with the greatest number of cracks, namely 60 cracks (ε = 0.8). As can be seen from table
1, the third column presents relative errors with respect to the fourth one of only a few percents.
However, it took about an hour to perform the computation on the elementary volume with 4.32
million elements while it took about ten hours to perform the one with 6.29 million elements. The
quantitative improvement was not worth the computation time, so for convenience, we performed
all the other computations with a mesh size comparable to that of the simulation presented in the
third column.

Table 1: Mesh convergence study. Parameters are identical to those of figure 2. The relative error with respect to the
last column is given in parentheses.

Number of elements ×10−6 0.51 1.83 4.32 6.29
E3/E 0.0718 (35%) 0.0600 (13%) 0.0550 (3.6%) 0.0531
µ13/µ 0.253 (13%) 0.237 (5%) 0.229 (1.8%) 0.225
∆X × 103 1.03 (26%) 1.24 (11%) 1.35 (3%) 1.39

Finally, let us tackle the representativeness of the elementary volumes. This was done for two
values of the crack density, namely ε = 0.4 and ε = 0.8 and calculations were performed for
four types of boundary conditions: periodic stress (PSBC), periodic strain (PEBC), uniform stress
(USBC) and uniform strain (UEBC). Technically speaking, the solver implemented in Cast3M in
the case of linear elasticity is based on a variational approach, namely the principle of minimum
potential energy is applied, under specific constraints related to the boundary conditions. The
surface tractions are directly included in the work of external forces, while the prescribed displace-
ments are accounted for using Lagrange multipliers. Thus, the following functionals are stationary
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in the case of uniform boundary conditions:
W(ξ′) − Σ :

∫
∂Ω

ξ′(z) ⊗ n(z) dS (USBC)

W(ξ′) −
∫
∂Ω

λ(z) · (ξ′(z) − E · z) dS (UEBC)
(19)

where ξ′ is a virtual displacement field, Ω, ∂Ω and n(z) are respectively the domain, its boundary
and its outward unit normal, W is the elastic energy, Σ and E are the applied stress and strain
tensors respectively, and λ(z) represents the Lagrange multipliers. Of course these functionals are
discretized in Cast3M, so that a linear system is eventually solved. Note that for uniform strain
boundary conditions, the functional is stationary with respect to both the displacement field and
the Lagrange multipliers. In the case of periodic boundary conditions, linear relationships between
the displacement vectors on the different faces are applied. If l is the length of the side of the cubic
simulation box, and assuming that the coordinate axes are chosen so that three faces of the domain
correspond to zi = 0 with i ∈ {1, 2, 3}, the following functional is stationary in the case of periodic
stress boundary conditions:

W(ξ′) − Σ :
∫
∂Ω

ξ′(z) ⊗ n(z) dS

−

3∑
i=1

∫
zi=0

λ(z) ·
{
[ξ′(z + lei) − ξ

′(z)] − [ξ′(lei) − ξ
′(0)]

}
dS

(20)

where ei is the unit vector along the Ozi axis. The last term in (20) ensures that the solution is of
the form ξ(z) = E · z + ξ per(z), where ξ per(z) is the periodic part of the displacement, without
having to specify the value of E, since the loading is here controlled via the stress tensor. On the
other hand, the following functional is stationary in the case of periodic strain boundary conditions:

W(ξ′) −
3∑

i=1

∫
zi=0

λ(z) ·
{
[ξ′(z + lei) − ξ

′(z)] − E · z
}

dS (21)

As in the case of uniform strain boundary conditions, the two functionals (20) and (21) are
stationary with respect to both the displacement field and the Lagrange multipliers. Note that
formally speaking, (20) and (21) are stationary for the exact same displacement field and Lagrange
multipliers if the prescribed average stress and strain tensors are related byΣ = Cper : E, whereCper

is the effective stiffness tensor of the periodic composite. Indeed, Σ and E are conjugate variables,
and using one or the other is simply a matter of convenience. This is why the strain-based and
stress-based periodic boundary conditions should systematically yield the same stiffness tensors.
Nonetheless, they were both used here to ensure consistency of the procedures implemented in
Cast3M, and so that the desired loading parameter (here the stress tensor) may be applied later on.
On the contrary, the two functionals given in (19) have nothing in common in general, and they do
yield two different stiffness tensors. However, the discrepancy between the stress-based and strain-
based effective stiffness tensors determined with uniform boundary conditions vanishes as the size
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of the volume element becomes much larger than the characteristic size of the heterogeneity. They
may thus be used to determine whether or not the domain is large enough.

For the four different kinds of boundary conditions, we computed the full effective stiffness
tensor, and we first evaluated the departure from transverse isotropy. This was quantified by
calculating the distance of the full tensor to the linear subspace of fourth-ranked transversely
isotropic tensors with axis of isotropy along e3. The distance was defined according to the dot
product on 6×6matrices using theMandel representations of the tensors. It can be computed easily
since the projection of any symmetric fourth-ranked tensor (with no particular material symmetry)
on this subspace is explicitly known as a function of its components, as is shown in Appendix B.
Denoting | | • | | the norm associated to this dot product, and Π(C) the projection of C, the relative
distance to the linear subspace considered is | |C−Π(C)| |

| |C| | . The relative distances obtained are given in
table 2. As can be seen, the full tensors are very close to being transversely isotropic. If the effective
medium were far from being transversely isotropic, then we could conclude that the elementary
volumes were not representative. Note that the converse is not true, which means that although
these results are positive, they do not prove the quality of our elementary volumes. However,
they do justify the introduction of the five elastic moduli of a transversely isotropic medium (see
equation (A.1)). In order to truly quantify the quality of the elementary volumes, the out-of-plane
Young’s moduli and shear moduli were compared. As expected, the stiffest effective medium is
obtained for uniform strain boundary conditions, while the softest is obtained for uniform stress
boundary conditions (see table 3). As the size of the elementary volume increases, these lower and
upper bounds should theoretically converge towards the same value when the volume is big enough
to contain many inclusions. This limit is the actual effective stiffness of the medium. The values
reported in table 3 show an important discrepancy between the uniform strain and uniform stress
boundary conditions for a given value of ε , which suggests that the domain considered is either
not big enough compared to the size of the inclusions, or does not contain enough of them. Since
the periodic boundary conditions yield intermediate values, these are the boundary conditions that
will be considered in the rest of this paper, despite the additional computation time required.

Table 2: Relative distances from the subspace of transversely isotropic tensors for different boundary conditions and
crack densities.

ε 0.4 0.8
Rel. Dist. (PSBC) 1.5% 0.9%
Rel. Dist. (PEBC) 1.5% 0.9%
Rel. Dist. (USBC) 0.8% 0.7%
Rel. Dist. (UEBC) 1.3% 1%

3.2. Results and discussion
We now present the results in terms of out-of-plane Young’s modulus (E3) and shear modulus

(µ13), as well as crack opening. The two elastic moduli were systematically determined with
periodic boundary conditions with prescribed average stress, since only two simulations are then
necessary, as described in section 3.1. Four values of ε were considered, namely 0.2, 0.4, 0.6 and
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Table 3: Quantitative evaluation of the representativeness of the elementary volumes. E3, µ13: effective out-of-plane
Young’s modulus and shear modulus. Parameters are identical to those of figure 2.

ε 0.4 0.8 ε 0.4 0.8
E3/E (PSBC) 0.181 0.047 µ13/µ (PSBC) 0.462 0.228
E3/E (PEBC) 0.181 0.047 µ13/µ (PEBC) 0.462 0.228
E3/E (USBC) 0.056 0.021 µ13/µ (USBC) 0.340 0.156
E3/E (UEBC) 0.389 0.170 µ13/µ (UEBC) 0.596 0.390

0.8, with respectively 30, 40, 50 and 60 inclusions. In each case three geometries were generated
to investigate the scatter in the data. One such geometry is shown on figure 3 for each value of ε .

Figure 3: Four periodic geometries generated.

The evolution with respect to ε of the effective Young’s moduli and shear moduli are shown on
figure 4 (symbols) and are compared with the analytical estimates (solid lines). For the numerical
simulations, the symbols represent the average values of the moduli over the three simulations for
each value of ε . The scatter could not be shown in this figure because it is smaller than the size
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Figure 4: Effective elastic moduli as a function of crack density parameter. Five classical approximations versus
numerical simulations.

of the symbol, which is evidence of its small amplitude. As can be seen, the differential scheme is
the one that best fits the numerical simulations.

A couple of remarks deserve to be made at this point. First, concerning the fact that a number
of authors found the dilute scheme to be the best fit (Zhan et al. [31], Grechka [12]), although it
is supposed to neglect interactions between the inclusions, it should be noted that these authors
followed Kachanov [19] and used stress-based estimates of the elastic moduli. The stress-based
dilute estimate of the compliance tensor is indeed given by (9), which directly yields:

E
E hom

3
∼ 1 +

16
3
(1 − ν2)ε (22)

Given this result, it is tempting to then write E hom
3 ∼ E

(
1 + 16

3 (1 − ν
2)ε

)−1
, as the previously

mentioned works did, without considering low crack densities. However, since the dilute estimate
is only relevant to first order in ε , one should take the expansion up to first order in ε of the
previous formula, which yields (10). The same logic applies to the out-of-plane shear modulus. As
explained in Dormieux andKondo [10], one should be careful when using the dilute approximation,
because the stress-based dilute estimate of the compliance tensor is not rigorously the inverse of
the strain-based dilute estimate of the stiffness tensor. In fact, one can show that Sdil : Cdil − I is of
the order of ε2, where I is the fourth-rank identity tensor. Thus, the previously mentioned authors
actually used the Mori-Tanaka estimate instead of the dilute estimate.

Secondly, it is important to consider the distribution of the cracks and how it relates to the
status of the PCW bound with respect to the present numerical results. In the present study, the
crack centroids were positioned randomly in the elementary volumes, but because of the flatness
of the cracks the statistical distribution of the crack phase is not isotropic. On the contrary, since
the width of the cracks is much larger than their thickness and the centroids are equally spaced
on average in all directions, the distances between the cracks are much lower in the (e1, e2) plane
than in the e3 direction. Moreover, the geometries and the boundary conditions applied here are
periodic, which means that the associated two-point correlation functions are also periodic. As a
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consequence, the hypotheses of ellipsoidal symmetry and of no long-range order, which are central
to the analysis proposed in Ponte Castaneda and Willis [24], do not hold. The PCW bounds are
therefore not rigorous bounds for the effective properties determined numerically in this work,
which is why they are not respected in figure 4. Of course, the generated samples have a certain
spatial distribution of cracks which results from the random positions of the centroids, but it is not
so easily characterized, and one should keep in mind that the differential scheme is the best fit for
this particular spatial distribution. Taking another distribution would most likely lead to a different
result, so that it would be necessary to investigate the kind of distribution that is actually observed
on cracked samples.

Figure 5 shows the crack openings when the elementary volume is subjected to a uniaxial
tension of 1MPa. Again, there is very good agreement between the numerical results and the
differential scheme. However, the scatter in the average values per simulation is much greater
than for the elastic moduli, especially for ε = 0.8, and can here be seen. The scatter is indeed
represented by the maximum (top of the symbol), minimum (bottom of the symbol) and average
(central dot) values of the three simulations. This could have been expected since the moduli
are macroscopic averages over the whole simulation cell while the crack opening is a very local
information. Indeed, recall that the latter is estimated through the displacements of two opposite
points of the crack lips, which may bias the results in case of strong crack-to-crack interaction.
A direct consequence is that more realizations of samples should probably be generated and with
more cracks so as to have a better characterization of this spread.
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0.0

0.5

1.0

1.5

2.0

2.5

3.0
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Mori-Tanaka scheme

Self-consistent scheme

Differential scheme

FEM

PCW bound

Figure 5: Crack opening as a function of crack density parameter for a 1MPa uniaxial tension. Five classical
approximations versus numerical simulations.

Still, with the data already collected, we were able to look more closely at the statistical
distribution of ∆X on the different simulations. Indeed, the values shown are the average values
per simulation, but there is also scatter in each one of them, as can be seen from figures 6 and 7,
where a smooth histogram is shown from combining all the simulations in the case ε = 0.2 and
ε = 0.8 respectively, and vertical straight lines represent the predictions of the homogenization
schemes. The predictions of the self-consistent scheme are not included because they are out of
the plotted ranges. The two figures are quite different, since for ε = 0.2 the distribution is rather
symmetric about its mean, while it is right-skewed for ε = 0.8. As was to be expected from
figure 5, the prediction of the differential scheme is slightly above the average value for ε = 0.2
and slightly below for ε = 0.8, so that this scheme neither overestimates nor underestimates crack
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closure consistently. The spread in the distributions shown suggests that the hypothesis made in
Deude et al. [8] that all the cracks close simultaneously in the non-linear model during compression
should be further investigated on an actual non-linear simulation.

Dilute scheme

Mori-Tanaka scheme

Differential scheme

Kernel density estimate

Average value in simulations

PCW bound

P
ro

ba
bi

li
ty

 d
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 6: Crack opening distribution over the three simulations with ε = 0.2.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Dilute scheme

Mori-Tanaka scheme

Differential scheme

Kernel density estimate

Average value in simulations

P
ro

ba
bi

li
ty

 d
en

si
ty

Figure 7: Crack opening distribution over the three simulations with ε = 0.8.

4. Conclusion

Deude et al. [8] proposed a non-linear micromechanical model of cracked media that takes into
account complete crack closure. This approach was initially restricted to the Mori-Tanaka scheme,
probably for convenience since its implementation only requires computation of the Hill tensor
of a crack in an isotropic matrix. The non-linearity hinges on the computation of the closure of
the cracks, which thus needs to be accurate enough not to overestimate/underestimate the stiffness
of the material. Until now, the confrontation between the different micromechanical schemes and
numerical simulations had focused exclusively on the effective stiffness that they predict, and not
on the strain concentration in the cracks, so that it was difficult to assess how realistic the non-linear
model of Deude et al. [8] was. The aim of this paper was precisely to shed light on this.

We focused here on five classical micromechanical estimates: the dilute, Mori-Tanaka, self-
consistent and differential schemes and the PCW bounds (section 2). Direct application of these
schemes to cracked media shows that they differ in terms of both stiffness and strain concentration.
The Mori-Tanaka and self-consistent schemes are the stiffest and softest respectively, and the dilute
and Mori-Tanaka schemes have the particular feature that the crack closure does not depend on
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the crack density but only on the stiffness of the solid matrix and the mechanical load. It is thus
tempting to think that these schemes will underestimate the actual crack closure.

Numerical simulations were performed using the finite element software Cast3M to investigate
the validity of these results (section 3). Several periodic geometries were generated at different
crack densities from 0.2 to 0.8, and were subjected to periodic boundary conditions. Consistency
of the geometrical representation of the cracks was ensured by comparing different shapes with
small aspect ratios, and the representativeness of the simulation box was investigated. The results
show that both out-of-plane effective elastic moduli are very well predicted by the differential
scheme, which confirms previous results of the literature (Dahm and Becker [7], Orlowsky et al.
[23], Shen and Li [27], Vasylevskyi et al. [28]). A new interesting result obtained in the present
study is that this scheme is also very good at predicting the average crack opening. These results
suggest that the differential scheme should be preferred to estimate both the out-of-plane moduli
and crack closure of a cracked medium with parallel cracks over the Mori-Tanaka scheme, which
means that it is also better suited for a non-linear model. However, it should be stressed that the
nature of the sample generation process determines the spatial distribution of the phases. The
present result thus only holds for randomly placed crack centroids, and actual spatial distribution
in cracked media should be investigated in order to confront the present results to real geometries.

As noted in section 3.1, we have shown that it is more relevant to measure the crack aperture
variation from displacements at the middle of the cracks than from the average strain in the volume
of the cracks. One way to improve on our simulations would thus be to dispense with meshing the
interior of the cracks, and even with giving the cracks a finite volume. Indeed, it would actually
be easier to simply consider the cracks as perfectly flat, that is, as two initially coinciding surfaces
which are free of surface tractions. In that case, one could contemplate using XFEM to perform
the computations, since this technique can deal with such geometries. These improvements might
allow us to deal with higher numbers of cracks in the simulations, which in turn should lead to
more accurate results, given the difference observed here between uniform stress and uniform strain
boundary conditions.

Finally, we have discussed the presence of a crack opening distribution within the simulations.
This suggests that working with only its average value in a non-linear model might be insufficient,
since there will exist a range of loads for which some cracks are closed and some are open. It
would thus be interesting to perform non-linear numerical experiments whereby contact between
the crack faces is accounted for, either explicitly if the cracks are given a finite volume, or through
a fictitious non-linear spring between the crack surfaces if they are perfectly flat, as suggested
above. This spring should have a negligible stiffness as long as the displacement jump does not
exceed a specified value, and a very large one when this value is reached. Comparison with the
non-linear analytical model whereby all the cracks close simultaneously would allow to conclude
on the importance of this phenomenon. The difficulty may lie in the fact that it is not guaranteed
that periodic boundary conditions lead to existence and uniqueness of the solution in this non-linear
context. If uniform strain/stress boundary conditions are used instead, much larger unit cells have
to be used, so that the upper and lower bounds given by the uniform strain and uniform stress
boundary conditions be relatively close to each other, which could make the computation cost
prohibitive.
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Appendix A. Concentration tensor for a flat spheroid in a transversely isotropic matrix

Let B = (e1, e2, e3) be an orthonormal basis of the Euclidean space. Let C0 be the stiffness
tensor of a transversely isotropic linear elastic medium with its axis of transverse isotropy parallel
to e3. We will use the Mandel representation of second-rank and fourth-rank symmetric tensors,
that is, both stress and strain tensors are represented by (6× 1) column vectors denoted [α]B using
their components in B with the convention [α]B =

(
α11, α22, α33,

√
2α23,

√
2α13,

√
2α12

)T
, where

()T denotes the transpose of a row vector. The representation of fourth-rank symmetric tensors
follows directly from the convention for second-rank symmetric tensors, so that both stiffness
and compliance tensors have the same

√
2 and 2 factors in their representations. Then, following

Hoenig [15], the representation of the compliance tensor S0 reads:

[S0]B =
1
E

©­­­­­­­­­­«

1 −ν1 −ν2 0 0 0
−ν1 1 −ν2 0 0 0
−ν2 −ν2

1
H 0 0 0

0 0 0 1+ν1
Γ

0 0
0 0 0 0 1+ν1

Γ
0

0 0 0 0 0 1 + ν1

ª®®®®®®®®®®¬
(A.1)

The representation of the tensor Uc,0 for a circular crack with unit normal e3 can then be deduced
from Hoenig [15]:

[Uc,0]B =

©­­­­­­­­­­«

0 0 0 0 0 0
0 0 0 0 0 0
0 0 A 0 0 0
0 0 0 B 0 0
0 0 0 0 B 0
0 0 0 0 0 0

ª®®®®®®®®®®¬
(A.2)

with: 
A = 4

π
1
E S

√
1
H −ν

2
2

1−ν2
1

B = 4
π

1
E

S
1+ S

T

(A.3)

where S and T are given by:
S =

√
1−ν2

1
2

√
(1 + ν1)

(
1
Γ
− ν2

)
+

√
(1 − ν2

1)
(

1
H − ν

2
2

)
T = 1+ν1√

Γ

(A.4)
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Note that we have corrected the missing parentheses in the expression for S as found in Hoenig
[15]. In the isotropic case, ν1 = ν2 = ν and H = Γ = 1, so that S = 1 − ν2 and T = 1 + ν and:{

A = 4
π

1−ν2

E

B = 4
π

1−ν2

(2−ν)E
(A.5)

Appendix B. Projection on the linear subspace of transversely isotropic fourth-ranked ten-
sors

Let W = (E1,E2,E3,E4, F,G) be the basis of the linear space of transversely isotropic tensors
with n as axis of transverse isotropy defined in Walpole [30]. According to their definitions,
in any orthonormal basis B = (e1, e2, e3) such that e3 = n, they have the following Mandel
representations:

[E1]B =

©­­­­­­­­­­«

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ª®®®®®®®®®®¬
; [E2]B =

©­­­­­­­­­­«

1
2

1
2 0 0 0 0

1
2

1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ª®®®®®®®®®®¬
; [E3]B =

©­­­­­­­­­­«

0 0 0 0 0 0
0 0 0 0 0 0
1√
2

1√
2

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ª®®®®®®®®®®¬
[E4]B =

©­­­­­­­­­­­«

0 0 1√
2

0 0 0
0 0 1√

2
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ª®®®®®®®®®®®¬
; [F]B =

©­­­­­­­­­­«

1
2 −1

2 0 0 0 0
−1

2
1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

ª®®®®®®®®®®¬
; [G]B =

©­­­­­­­­­­«

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

ª®®®®®®®®®®¬
(B.1)

Note that E3 and E4 are unsymmetric. The rules of multiplication between these tensors are
easily recovered using matrix multiplications on these representations. The dot product defined
on (6 × 6) matrices is Tr

(
AT B

)
, where A and B are two such matrices, AT is the transpose of A

and Tr(•) is the trace operator. This dot product is actually simply equal to AT :: B, where A and
B are the two unsymmetric fourth-ranked tensors associated to A and B, and :: is the quadruple
contraction of tensors defined as:

A :: B = Ai j kl Blk ji (B.2)

where Einstein’s summation convention on repeated indices was used. Note that all the fourth-
ranked tensors considered here possess the minor symmetries (i.e. Ai j kl = A jikl = Ai jlk), so that
they do have a Mandel representation, and the words "symmetric" and "unsymmetric" only refer
to the major symmetry (Ai j kl = Akli j). The transpose of A is thus to be understood as the tensor
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whose components are Akli j . Its Mandel representation is obviously the transpose of the Mandel
representation of A.

Using these rules, it is straightforward to show that W is orthogonal, but it is not orthonormal,
since F :: F = G :: G = 2. An orthonormal basis of the linear subspace of transversely isotropic
symmetric tensors can easily be obtained:

W ′ = (E1,E2,
1
√

2

(
E3 + E4

)
,

1
√

2
F,

1
√

2
G) (B.3)

Since this basis is orthonormal, the orthogonal projection of any fourth-ranked symmetric tensor
on the subspace of transversely isotropic tensors is obtained by taking its dot product with the five
tensors of the basis. The components of the projection Π(C) in W ′ are:

a = C3333

b = 1
2 (C1111 + 2C1122 + C2222)

c = C1133 + C2233

f = 1√
2

(
C1111+C2222

2 − C1122 + 2C1212

)
g =
√

2 (C2323 + C1313)

(B.4)

and the more classically used components follow:

Π(C)1111 =
1
4

(
3C1111+C2222

2 + C1122 + 2C1212

)
Π(C)1122 =

1
4

(
C1111+C2222

2 + 3C1122 − 2C1212

)
Π(C)1133 =

C1133+C2233
2

Π(C)3333 = C3333

Π(C)2323 =
C1313+C2323

2

(B.5)

It is easily seen that if C is transversely isotropic with e3 as axis of transverse isotropy, then the
original components of C are recovered in (B.5), since we then have C1111 = C2222, C1133 = C2233,
C1313 = C2323 and 2C1212 = C1111 − C1122.
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