
HAL Id: hal-02538241
https://hal.science/hal-02538241v1

Submitted on 9 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of Lagrangian and Eulerian frames of
passive scalar turbulent mixing

Paul Götzfried, Mohammad Emran, Emmanuel Villermaux, Jörg Schumacher

To cite this version:
Paul Götzfried, Mohammad Emran, Emmanuel Villermaux, Jörg Schumacher. Comparison of La-
grangian and Eulerian frames of passive scalar turbulent mixing. Physical Review Fluids, 2019, 4,
�10.1103/PhysRevFluids.4.044607�. �hal-02538241�

https://hal.science/hal-02538241v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW FLUIDS 4, 044607 (2019)

Comparison of Lagrangian and Eulerian frames
of passive scalar turbulent mixing

Paul Götzfried,1 Mohammad S. Emran,2 Emmanuel Villermaux,3,4 and Jörg Schumacher1,5,*

1Institut für Thermo- und Fluiddynamik, Postfach 100565, Technische Universität Ilmenau,
D-98684, Ilmenau, Germany

2Max-Planck-Institut for Dynamik und Selbstorganisation, Am Faßberg 17, D-37077, Göttingen, Germany
3Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, 13384 Marseille, France

4Institut Universitaire de France, 75231 Paris, France
5Tandon School of Engineering, New York University, New York, New York 11201, USA

(Received 23 January 2019; published 29 April 2019)

The mixing of a passive scalar in a three-dimensional, statistically stationary turbulent
Navier-Stokes flow at a constant and moderate Taylor microscale Reynolds number Rλ =
42 is studied by means of direct numerical simulations for Schmidt numbers between 1
and 64. The freely decaying passive scalar is represented in two different ways: (1) in the
Lagrangian frame of reference as a cloud of up to 4.8 billion individually advected massless
tracer particles subject to a stochastic Wiener process along the tracer tracks that describes
scalar diffusion or (2) in the standard Eulerian frame of reference as an advection-diffusion
equation of the continuum concentration field. In both cases, the scalar is initially seeded
in a small cubic subvolume. The mean mixing time 〈ts〉 is determined by the mean
compressive strain rate 〈λ3〉 < 0 which is obtained from the probability density functions
of the local finite-time Lyapunov exponents in the Lagrangian frame, λi(t ) with i = 1, 2
and 3. The direct comparison of freely decaying Lagrangian and Eulerian passive scalars
gives a good agreement of the scalar variance for times t � 10〈ts〉 and for the probability
density functions P(�, t ) taken with respect to the whole simulation domain. We also show
how the multilayer aggregations of scalar filaments and sheets in the Lagrangian frame are
increasingly influenced by the noise due to discreteness with progressing dilution of the ini-
tially high tracer particle concentration. This limits the Lagrangian approach in its present
form and for the obtainable Schmidt numbers to studies of shorter time periods. A simple
one-dimensional advection-diffusion model of a solitary strip is finally applied to the prob-
lem at hand to derive the probability density function of the scalar concentration, P(�, t ),
from the one of the compressive local finite-time Lyapunov exponent, p(λ3, t ). Model
prediction with and without self-convolution and numerical data of the scalar distributions
agree qualitatively, however with quantitative differences particularly for small scalar
concentrations. The present Lagrangian approach to passive scalar mixing in turbulence
opens the application of more flexible passive scalar injection and boundary conditions
and allows to relax the resolution constraints for high-Schmidt number mixing studies.

DOI: 10.1103/PhysRevFluids.4.044607

I. INTRODUCTION

A better understanding of mixing in turbulent flows is of central interest for numerous applica-
tions in engineering and nature. The overall concern in mixing is to understand the interplay between
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the flow kinematics and molecular diffusion, ultimately responsible for reducing the concentration
or temperature differences in the flow. If the concentration of the mixed substance �(x, t ) is small,
then no feedback on the advecting velocity field u(x, t ) is expected; the scalar is advected passively
in the (turbulent) flow with a kinematic viscosity ν and subject to molecular diffusion quantified by
the diffusivity constant D. The ratio of both material parameters defines the Schmidt number,

Sc = ν

D
. (1)

Based on the Schmidt number, two different regimes of passive scalar mixing in turbulence are
traditionally distinguished. The first regime is the Obukhov-Corrsin regime [1,2] at Sc � 1 for which
the passive scalar is advected mostly in the inertial cascade range of the turbulent velocity field, i.e.,
on scales larger than the viscous Kolmogorov dissipation length, � > ηK . The Kolmogorov length
ηK is given by

ηK =
(

ν3

〈ε〉
) 1

4

, (2)

with the mean kinetic energy dissipation rate 〈ε〉. The kinetic energy dissipation rate field is given
by ε(x, t ) = (ν/2)(∇u + (∇u)T )2. The second regime is the Batchelor-Kraichnan regime [3,4] for
Sc > 1 which is of interest in the present work. When Sc is increased beyond unity a growing
fraction of scalar filaments is mixed by the spatially smooth fraction of the turbulent flow in the
viscous cascade range below the Kolmogorov length ηK . The smallest mean length scale of the
passive scalar is then given by the Batchelor scale,

ηB = ηK√
Sc

< ηK . (3)

The Batchelor regime is present in the viscous-convective range at scales ηB < � < ηK . The
velocity field is spatially smooth in this range and can thus be written as a Taylor expansion,
ui(x, t ) = Ai j (t )x j with the velocity gradient tensor Ai j (t ) = ∂ui/∂x j where i, j = 1, 2, 3. Here,
x = (x1, x2, x3) or x j in index notation. The motion is mostly a pure straining motion, i.e., local
shear layers stretch, twist and fold the scalar filaments. Both regimes of passive scalar turbulence
have been studied in many experimental, theoretical and numerical investigations as reviewed in
Refs. [5–11].

In case of the Batchelor-Kraichnan regime at high Schmidt numbers, numerical simulations in
the Eulerian frame of reference studied the scalar variance spectra, in particular, their decay for
wavenumbers k > η−1

B [12,13], the local isotropy properties of high-Schmidt number mixing [14],
the microstructure of the scalar field [15–17], or geometric properties of scalar dissipation sheets
[18], to list a few research directions only. Passive scalar mixing was alternatively discussed as an
ongoing aggregation process of initially isolated sheets, also denoted as solitary strips or sheets.
High-Schmidt-number mixing in this framework has been investigated in turbulent laboratory flows
and simulations in simple laminar flows in Refs. [19–24]. In the Lagrangian perspective, the mixing
of a passive scalar can be connected to the statistics of the local finite-time Lyapunov exponents
(FTLEs), λi(x0, t ) (see also Refs. [6,25–28]), which describes the local stretching and compression
rates of material lines along the trajectory of a massless point particle that is seeded in the flow at
x0 and follows the streamlines of velocity field perfectly.

In this work, we want to describe the passive scalar substance for Sc � 64 as a very large
ensemble of individual particles advected by a three-dimensional (3D) Navier-Stokes flow and
subject to Brownian motion. Our study is based on direct numerical simulations (DNS). Such a
treatment of a scalar substance has been discussed recently by Okabe et al. [29] in a two-dimensional
random sine flow. Here, we will extend this approach to a tracer particle ensemble in a 3D turbulent
flow. Our Lagrangian studies are compared with standard Eulerian DNS of passive scalar mixing
in which the concentration of the substance is described as a continuum field. This comparison
includes the variance and probability density functions (PDFs) of the scalar concentration field
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�(x, t ). We also shed light on the advantages and problems of the Lagrangian implementation. One
advantage of a discrete particle-based description is a higher flexibility in the implementation of
boundary and injection conditions of the scalar, such as absorbing planes or point sources without
and with continued (time-dependent) seeding. Limitations of the Lagrangian approach result when
a continuum concentration field has to be reconstructed from discrete particle number densities.

The flow domain in the present study is a three-dimensional slab with periodic boundary condi-
tions in all three space directions. Statistically stationary turbulence is sustained by a combination of
a random large-scale forcing and a shear forcing which sustains a jetlike turbulent flow in a simple
geometry and approximates the passive scalar mixing experiments in a confined jet by Duplat et al.
[20,21,30]. The flow Reynolds number Re is left constant at a moderate value in our study as listed
in Sec. IV of this work.

We will consider two classes of particles advected in the flow. Massless particles that are advected
by the velocity field and subject to white-in-time noise along their path are called tracer particles.
They describe a passive scalar at finite Sc. Contrary, Lagrangian particles are massless particles
that follow the streamlines of the velocity field perfectly without white-in-time noise. The latter
class of particles is used in our work for the determination of the local FTLEs and their statistical
distribution. The spectrum of the mean FTLE allows us to define a mean Lagrangian mixing time,
a typical time scale that will be used for the comparison of the mixing process at different Sc.
Also, a simple one-dimensional advection-diffusion model of a solitary strip [20] is finally applied
to the problem at hand to derive the PDF of the scalar concentration, P(�, t ), from the one of
the compressive local FTLE, p(λ3, t ). The predicted PDF and self-convolutions of it will also be
compared with the numerically obtained scalar distributions. We note here, that the same Lagrangian
description of 3D turbulent mixing has been used in Ref. [31] to investigate the particle dispersion
in flows at different Sc.

The outline of this work is as follows. In Sec. II, the numerical model is explained in the Eulerian
and Lagrangian frames of reference as well as the pseudospectral method for the simulation of the
advecting turbulent flow. In Sec. III, the results of the finite-time Lyapunov exponent analysis are
presented. In Sec. IV, we compare the Lagrangian and Eulerian model of passive scalar mixing
directly for the case of a freely decaying scalar at different Schmidt numbers up to Sc = 64.
Furthermore, we investigate the effect of noise due to discreteness. Section V gives a summary
and a brief discussion of future applications of this Lagrangian approach.

II. NUMERICAL MODEL

A. Eulerian model of passive scalar

The equations of motion are solved in a Cartesian slab Lx × Ly × Lz = 8L × L × L with periodic
boundary conditions in all three space directions. Direction x1 will be denoted to as the downstream
direction. The standard numerical model to study passive scalar turbulence combines an Eulerian
description of the velocity field ui(x, t ) and the scalar concentration field �(x, t ). Therefore, one
solves the three-dimensional Navier-Stokes equations for an incompressible fluid together with
an advection-diffusion equation for the freely decaying passive scalar (Einstein sum convention
is used),

∂u j

∂x j
= 0, (4)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ0

∂ p

∂xi
+ ν

∂2ui

∂x2
j

+ fi, (5)

∂�

∂t
+ u j

∂�

∂x j
= D

∂2�

∂x2
j

. (6)
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FIG. 1. Snapshot of the advecting turbulent velocity field. Velocity field vectors are projected into the
x − y plane at z = Lz/2. The arrows are colored by the velocity magnitude which is given in units of the
root-mean-square velocity urms taken as a combined volume-time average with respect to all three components.

Here, p is the pressure field and ρ0 is the constant mass density of the fluid. The passive scalar field
is freely decaying. The volume forcing field fi in the Navier-Stokes equations contains here two
contributions—a random forcing and the shear forcing—which are applied together and sustain the
advecting flow in a statistically stationary state. Figure 1 displays a slice cut of a snapshot of the
advecting three-dimensional turbulent flow. The forcing is given by

fi(x, t ) = f (L)
i (x, t ) + f (S)

i (x2)δi1. (7)

This combination of both forcing schemes approximates a confined jet flow in a large tank which
was set up in the mixing experiments by Duplat et al. [20,21,30]. The random large-scale forcing
f (L)
i is implemented in the Fourier space for a subset K of low-wave-number Fourier modes. In

accordance with Ref. [32] it is given by

f (L)
i (k, t ) = εin

ui(k, t )∑
k(i)

f ∈K

∣∣ui
(
k(i)

f , t
)∣∣2 δk,k(i)

f
, (8)

with a prescribed injection rate of turbulent kinetic energy εin and the Kronecker δ,

δk,k(i)
f

= 1 if k = k(i)
f and δk,k(i)

f
= 0 otherwise. (9)

The subset K of wave vectors contains the vectors

K = {
k(i)

f

}
i=1,..,48 = 2π

L

{(
± 1


,±1,±2

)
,

(
± 1


,±2,±2

)}
, (10)

which includes all combinations of signs and permutations of components, such as (±2/,±1,±1),
(±2/,±2,±1). The downstream wave number is always rescaled by  = Lx/Ly = 8. This random
forcing injects turbulent kinetic energy at a fixed rate εin into the flow and was used to sustain the
turbulence in isotropic box turbulence. If f (S)

i = 0, then the rate εin prescribes the magnitude of the
mean kinetic energy dissipation rate in a statistically stationary regime (see Ref. [32] for detailed
discussion). The additional shear forcing f (S)

1 sustains a cosine shear mode in the flow which is
given by

u(S)
1 (x2) = −A cos

(
2π

L
x2

)
, (11)

and thus results to

f (S)
1 (x2) = Aν

4π2

L2
cos

(
2π

L
x2

)
. (12)

If f (L)
i = 0 and the Reynolds number sufficiently small, then this forcing sustains a steady and

laminar shear flow Eq. (11) in the slab domain [33]. This steady forcing is implemented again
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FIG. 2. Mean profile of the streamwise velocity field component u1 with respect to x2. The profile is
obtained by a combined average over coordinates x1, x3 and time t . This flow property is unchanged for all
cases discussed below. Amplitude is given in units of the root-mean-square velocity urms.

in Fourier space. An amplitude of A = 50 was chosen throughout the runs. Figure 2 displays the
mean profile of the u1 velocity component versus x2. The figure shows that the additional shear
forcing indeed generates a mean jetlike advection as in the laboratory experiments by Duplat et al.
[20,21,30]. This is established here in a simple domain with periodic boundary conditions and for a
uniform computational mesh. The system size, kinematic viscosity and time units are originally set
up in cgs units. The results will be discussed in units of box size L and the mean mixing time 〈ts〉
that has to be determined first in Sec. III (see also the captions of both tables).

The equations of motion, Eqs. (4)–(6), are solved by an exponentially fast converging pseu-
dospectral scheme. Fields are expanded in Fourier series and the code uses Fast Fourier Transform
(FFT) package P3DFFT [34] with a two-dimensional domain decomposition into stencils. The time
stepping is done by a second-order integration scheme. The smallest cell size of the uniform grid,
a, was chosen such that the Batchelor scale ηB is resolved properly. The spectral resolution satisfies
the condition kmaxηB � 1.4 with kmax = 2

√
2πN2/(3L) being the maximum wavenumber. We find,

that it is a good compromise between sufficient resolution and computational cost.

B. Lagrangian model of passive scalar

In the Lagrangian description of the passive scalar, we substitute Eq. (6) by a set of 3Np stochastic
ordinary differential equations (also known as Langevin equations), which are given by

dX l
m

dt
= um

(
X l

n , t
) +

√
2DW l

m(t ). (13)

Here, X l
m is the position of the lth tracer particle and W l

m a vectorial, independent stochastic Wiener
process with zero expectation value

E
[
W l

m(t )
] = 0, (14)

and the following covariance:

Cov
[
W l

m(t ),W l
n (t ′)

] = δmn min(t, t ′). (15)

Our Brownian motion tests of the weak second-order predictor-corrector scheme [35], which is
used to advance the Langevin equations for the tracer particles, are described in the Appendix.
The index l runs from 1 to Np. Up to Np = 4.8 × 109 individual particles were used. In case of a
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diffusion constant D = 0, a particle would follow the velocity streamlines perfectly and is denoted
as a Lagrangian particle. As already stated in the Introduction, we are interested in cases Sc � 1.
Equation (13) describes classical Brownian motion with an additional deterministic drift due to the
turbulent velocity field. The advection-diffusion Eq. (6) can be considered as the Fokker-Planck
equation for the tracer distribution [36].

A trilinear interpolation is applied to map the Eulerian velocity from the grid to the exact
tracer position X l

m. This operation is required to advect the tracer particles in the turbulent flow.
A backward interpolation from the tracer location X l

m onto the Eulerian grid is required to construct
the concentration field (or a tracer distribution function) �(x, t ) by a weighted sum of all nearby
particles. In detail, the scalar concentration at the grid position (i, j, k) at a time instant t0 is given
by

�i, j,k = Ni, j,kwi, j,k

N1N2N3
, (16)

where Ni, j,k is the number of all tracers in the eight mesh cells a3 that have a joint corner in grid
point (i, j, k). The corresponding weight factors are determined from the distance of the particle
position X l

m to the grid point (i, j, k), similar to the velocity in the tri-linear interpolation routine.
Thus, the sum over all grid points, which is given by N1N2N3, reproduces the total number of tracer
particles Np which are used in the simulation, i.e.,

N1∑
i=1

N2∑
j=1

N3∑
k=1

Ni, j,kwi, j,k = Np. (17)

The discrete particle concentration is smeared out over the scale, a which is of the order of the
Batchelor scale, a ∼ ηB. The total tracer particle number and thus the mean scalar concentration �

are conserved quantities in all our simulation runs. The latter is given for the uniform grid at hand
by

� = 〈Ni, j,k〉 = Np

N1N2N3
= const. (18)

III. FINITE-TIME LYAPUNOV SPECTRUM

A. Calculation of the Lyapunov exponents

The finite-time Lyapunov spectrum comprises all three exponents in a three-dimensional flow. In
the following, we describe in brief how they are determined in our work. A small cubic unit volume
is assigned to each Lagrangian particle at the beginning which is spanned by three unit vectors e1,
e2, and e3 [37]. Once the Lagrangian particle moves with the fluid this attached volume experiences
deformations which are determined by the velocity gradient tensor Aik along the tracer track. The
computation algorithm starts with a matrix Mi j containing the three unit vectors as columns, M̂ =
[e1, e2, e3]. The evolution equation for n time steps �t of the lth particle with initial (M0

i j )
l = δi j is

given by

(
Mn

i j

)l =
[
δik +

(
∂ui

∂xk

∣∣∣∣
X l

m

)
�t

](
Mn−1

k j

)l
. (19)

For simplicity, we list the algorithm in Eq. (19) as a simple Euler step method. In the numerical
analysis, we take again a predictor-corrector scheme that is second order in time. For each time step
a QR-decomposition is done with (Mn

i j )
l = (Qn

ik )l (Rn
k j )

l , where (Qn
ik )l contains the eigenvectors

and (Rn
k j )

l is an upper triangular matrix for the time step n�t . Finally, the finite-time Lyapunov
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FIG. 3. Finite-time Lyapunov exponents (FTLE) analysis. (a)–(c) Contour plot of the calculated first FTLE,
λ1, for times at t = 0.8, t = 2, and t = 5 s, the dark color represents zones of high stretching rates or where
particle trajectories separate most strongly. (d)–(f): The corresponding probability distributions of all three
Lyapunov exponents. The first exponent λ1 is strictly positive and the third exponent λ3 is strictly negative.
With increasing time the distributions converge slowly to the limit of Gaussian distributions with decreasing
width. The dashed red line in panel (f) is the corresponding Gaussian distribution. The legend is the same for
panels (d)–(f).

exponents are obtained by

(
λn

i

)l = 1

n�t

n∑
m=1

ln
∣∣(Rm

ii

)l ∣∣. (20)

Note that there is no Einstein summation rule applied for the index i here. The evaluation of the
spectrum has been tested using a 2D oscillating double gyre flow with two counter rotating vortices
[38]. The results are also in agreement with alternative calculation methods [39].

B. Lyapunov spectrum in turbulent flow

For 3D incompressible turbulence all three FTLE values are non-zero and can be ordered as
λ1 > λ2 > λ3. The incompressibility implies also that λ1 + λ2 + λ3 = 0 (see, e.g., Refs. [40,41]).
The largest one is strictly positive, λ1 > 0, probing local expansion while the smallest exponent is
strictly negative, λ3 < 0 probing local compression. The second exponent is positive on average but
can have negative and positive values in the course of the dynamical evolution.

We calculate the probability density functions of all three exponents of the Lyapunov spectrum
by seeding tracers at the positions of the computational grid initially. A total of 2048 × 256 ×
256 individual Lagrangian particles (which are about 13.4 million) are therefore advanced in time.
Figure 3 shows contour plots of the largest finite time Lyapunov exponent λ1 at different time
instants in the top row and the corresponding probability density functions for all three exponents
in the bottom row. As visible from the distributions, the largest and smallest exponents are indeed
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strictly positive and negative, respectively. The second exponent is distributed around zero. This
indicates that initially spherical blobs will deform to sheetlike structures or filaments which have
mostly two stretching and one compression direction until the diffusion becomes dominant. The
mean values of the Lyapunov spectrum form a ratio of 〈λ1〉 : 〈λ2〉 : 〈λ3〉 = 4.4 : 1 : −5.4. This ratio
is consistent with the results in Refs. [40,41]. The relative error of the sum of the mean values is
smaller than 2 × 10−4 and thus of the order of the chosen numerical integration time step �t . The
results of the FTLEs will be used, in particular, to predict global mixing statistics of our particular
flow. The PDFs of the Lyapunov exponents converge at large times to Gaussian distributions of the
form [42]

p(λ3, t ) =
√

t

4πκ
exp

[
− (λ3 − 〈λ3〉)2

4 κ
t

]
, (21)

where 〈λ3〉 is the most probable exponent of the distribution, and κ the variance of the multiplicative
process giving rise to it, these two quantities being, in random flows, related to each other by 〈λ3〉 =
d × κ where d is the dimension of space (see, e.g., [43]). The corresponding Gaussian is shown in
Fig. 3(f). The convergence of the FTLE distributions to Gaussians sharpening in time shows that the
uncorrelated stretching histories among the fluid elements become all similar, as suggested by the
noisy plot of Fig. 3(c). For completeness, we note that this FTLE spectrum is the same for all runs
since the scalars at different Sc are advected in the same fluid turbulence.

C. Mean mixing time and local mixing time distribution

Based on the mean compression rate 〈λ3〉, we now define a mean mixing time in the Lagrangian
frame of reference, 〈ts〉, which will be used as the characteristic time unit throughout the rest of this
work. The derivation of the time scale follows from a mean compression rate of a scalar filament.
We assume that the sheetlike filament obeys a typical initial thickness s0. It is compressed at a rate
γ = −〈λ3〉 until it is balanced by molecular diffusion broadening. Equilibrium is achieved at the
Batchelor scale sdiff, given by [3]

sdiff =
√

D

γ
, where γ = −〈λ3〉. (22)

If one assumes that the compression rate is constant or quasistatic in correspondence with the
Batchelor picture [3], then the initial thickness of a scalar sheet decays as s(t ) = s0 exp (−γ t ). The
initial filament thickness s0 is set here to the extension of our scalar blob which will be discussed
in Sec. IV, i.e., s0 = d . The mean mixing time 〈ts〉 is the time beyond which concentration levels in
the mixture start to decay [24] and is reached when s(〈ts〉) = sdiff. The Péclet number, Pe = Ud/D,
is specified in the present Lagrangian case by

PeL = γ d2

D
. (23)

The mean mixing time thus follows with Eq. (22) to

〈ts〉 = 1

γ
ln

sdiff

d
= 1

2γ
ln PeL (24)

and is directly connected to the mean of the third FTLE, which we denote γ [26]. This time is an
increasing function of Sc grows as is seen in Table I.

Lyapunov exponents are, however, distributed and a distribution of mixing times P(ts) is
associated to their distribution p(λ3). From the distribution of λ3 and by knowing that ts(λ3) ≈
−(2λ3)−1 ln PeL (we discard the weak logarithmic dependence of ts on λ3 by confusing −λ3d2/D
with PeL), this distribution is obtained by conservation of probabilities under the following
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TABLE I. List of all simulation runs (Euler = E, Lagrange = L). We provide the Schmidt number Sc, the
computational grid size and the total number of tracers Np for Lagrangian cases. The mean mixing time 〈ts〉 is
given in the last column in seconds. The mean mixing time 〈ts〉 is taken as the reference time scale, for both,
the Eulerian and Lagrangian runs.

Type Grid size Sc Np 〈ts〉
E1 2048 × 2562 1 – –
E2 2048 × 2562 32 – –
E3 4096 × 5122 64 – –
L1 2048 × 2562 1 1.2 × 109 1.00
L2 2048 × 2562 32 1.2 × 109 1.69
L3 4096 × 5122 64 4.8 × 109 1.82

substitution rule

P(ts) = p

(
λ3 = − 1

2ts
ln PeL, ts

)
×

∣∣∣∣dλ3

dts

∣∣∣∣. (25)

Using Eq. (21) as a fair approximate form of the Lyapunov exponent distribution (which will suit
the large PeL limit for which the mixing time is large itself), we see that

P(x = ts/〈ts〉) ∼ ln PeL

x3/2
exp

[
− ln PeL

8
x

(
1

x
− 1

)2
]
, (26)

where use has been made of the fact that 〈λ3〉/κ is a constant. This distribution presents an
exponential tail at large excursion P(x 
 1) ∼ exp[− ln PeL

8 x] (see Refs. [20,27]), and a rapid fall-off
for small mixing times P(x � 1) ∼ exp[− ln PeL

8 x ], reminiscent of the rare but strong events leading
to fast mixing. Obviously, since the mixing time sets the time above which concentrations decay,
the distribution of ts is associated with a distribution of concentration at a given instant of time [43],
which we will analyze below.

IV. SIMULATION RESULTS

A. Setup of Eulerian and Lagrangian runs

We have conducted a series of six DNS which are grouped in three Lagrangian (L) and three
Eulerian (E) runs of freely decaying passive scalar turbulence. The advecting turbulent velocity
field is the same in all simulations and kept in a statistically stationary state by a combination of
both forcing schemes that have been introduced in Sec. II A. Schmidt numbers take values of 1, 32,
and 64. All important simulation parameters are listed in Tables I and II.

In the Eulerian case, the scalar concentration inside the blob of side length d is one and zero
elsewhere. A sufficiently smooth crossover is established by

�s(xi ) = 1

exp[σ (xi,s − xi )] + 1
and �e(xi ) = 1

exp[σ (xi − xi,e)] + 1
, (27)

where xi,s and xi,e = xi,s + d are the coordinates of the blob volume similar to the seeding intervals
for Lagrangian tracers. The initial scalar concentration follows by

�(x, t0) =
3∏

i=1

�s(xi )�e(xi ). (28)

The coordinates are x1,s = 0.875L and x2,s = x3,s = 0.375L. Parameter σ = 10 is used in Eq. (27)
to reduce errors due to the Gibbs phenomenon [44]. Figure 4 shows the initial setup and snapshots
of the subsequent mixing process under the influence of statistically stationary fluid turbulence with
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TABLE II. List of important constants, reference values and initial simulation parameters. The
Reynolds number is defined as Re = urmsL/ν. The Taylor microscale Reynolds number is given by Rλ =√

5/(3〈ε〉ν ) u2
rms. The specific domain length is in our setup L = 12.8 cm. The kinematic viscosity is that

of air. The root mean square velocity urms = 6.64 cm s−1.

Quantity Symbol Reference Unit Value

Domain length in x1 L1 L 8
Domain length in x2, x3 L2, L3 L 1
Kolmogorov scale ηK L 1.04 × 10−2

Batchelor scale for Sc = 32 ηB L 1.84 × 10−3

Batchelor scale for Sc = 64 ηB L 1.25 × 10−3

Taylor microscale λ L 0.13
Integral length scale l L 0.75
Reynolds number Re 581
Taylor microscale Reynolds number Rλ 42
Grid size a L 3.91 × 10−3

Energy injection rate εin u3
rms/L 0.22

Mean energy dissipation rate 〈ε〉 u3
rms/L 0.473

Side length of the blob d L 0.25

additional shear forcing. The blob is initially localized and then dispersed by turbulence mostly into
sheetlike structures that propagate downstream. Therefore, it is stretched locally in two directions
and compressed in a third one. This initial configuration is the same for all runs.

B. Comparison of variance for freely decaying scalar

In this subsection, we compare the Eulerian and the Lagrangian description of the freely decaying
passive scalar. The first statistical measure that is applied here for comparison is the variance of the

FIG. 4. Mixing of a passive scalar in a periodic slab domain. The passive scalar is simulated in the
Lagrangian frame of reference as an ensemble of 4.8 billion individual tracers with additional noise (Langevin
equation). Initially all tracers start in a small subdomain. We display the configuration for times t = 0〈ts〉,
0.55〈ts〉, 1.10〈ts〉, and 2.20〈ts〉. The Schmidt number is Sc = 64. The additional shear forcing causes a mean
advection in x1 direction.
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FIG. 5. Variance of scalar concentration fluctuations, θ , versus time. Time is given in units of the mean
mixing time 〈ts〉. The plot shows the direct comparison of Eulerian and Lagrangian runs for freely decaying
scalar turbulence at Sc = 1 (left), Sc = 32 (middle), and Sc = 64 (right). For t/〈ts〉 � 5 an overlap of the
scalar filaments occurs where they re-enter the simulation domain in the downstream direction x1, due
to the applied periodic boundary conditions. This overlapping or aggregation causes the change in the decay
rate. The four highlighted data points in the middle panel indicate time instants for an analysis which will be
discussed in Sec. IV D.

scalar concentration fluctuations, θ = � − �, which is given by

〈θ2(t )〉 = 〈�2(t )〉 − �
2
, (29)

and where 〈·〉 stands for a volume average over the whole simulation domain. For the present setups,
� is constant in time. We recall that the time evolution of the mean square of θ is given by the
following balance equation:

1

2

∂〈θ (t )2〉
∂t

= −D

〈(
∂θ

∂x j

)2
〉

V

= −εD(t ), (30)

In the limit t → ∞ this variance value will approach zero. On the right-hand side of the equation,
the mean dissipation rate εD(t ) > 0 of the scalar fluctuation field θ is given. All boundary flux terms
sum up to zero for periodic boundary conditions. The scalar dissipation rate relies heavily on how
well the scalar field is stirred, i.e., where the scalar isosurfaces are stretched and folded strongly
by the turbulent flow until the aggregated sheets with large concentration gradients start to become
subject to molecular diffusion.

Figure 5 shows the comparison of the time behavior of the variance of the scalar fluctuations,
〈θ2(t )〉, for Schmidt numbers of Sc = 1, 32, and 64 normalized by the initial value. The three
double-logarithmic plots contain the Eulerian and Lagrangian representation of the passive scalar.
The time is normalized by the corresponding mean mixing time scale 〈ts〉 in each panel (see Eq. (24)
and Table I). Overall, a good agreement is found when comparing the curves of the Eulerian and
Lagrangian models up to about 10 〈ts〉 for all three pairs. For a dispersing mixture in its initial
phase, the scalar variance is proportional to the square of the mean and thus also to the maximum
concentration. This has been shown by Duplat et al. [21]. The experimental data in Refs. [21] and
[24] agree with the time behavior displayed in Fig. 5.

A change in the slope of all curves after a few mixing times can be observed in the figure.
This change is caused by the periodic boundary conditions and a resulting additional enhanced
aggregation of scalar sheets across the faces in downstream direction x1. It is observable for t ≈ 6〈ts〉
at Sc = 1, for t ≈ 5〈ts〉 at Sc = 32, and for t ≈ 5〈ts〉 at Sc = 64. Our finding is due to the following
points: first, the advecting flow is the same in all cases, secondly, the mixing time 〈ts〉 increases with
Sc, and thirdly, the convolution of scalar sheets is strongest for the highest Sc. Thus, the change of
the slope is weakest for Sc = 64 and sets in at the largest convective time. With progressing time,
the curves of the Lagrangian and Eulerian runs start to deviate of each other.

For the Lagrangian case an offset was subtracted which is related to the discrete character of
the tracer field for the reconstruction of the scalar concentration. This circumstance becomes ever
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more important since the scalar is increasingly diluted as the time progresses. Such limitations due
to the discreteness were already found and investigated in Okabe et al. [29]. To conduct a statistical
analysis, one has to subtract this offset. It occurs, on the one hand, due to a finite number of particles
and, on the other hand, due to the finite grid size at which the concentration field θ is evaluated.
Okabe et al. gave their tracer particles a finite lifetime which is related to times when mixing starts
to be dominated by diffusion. The “aged” particles are then excluded from the analysis.

The error due to discreteness can be estimated and is dependent on the average concentration, as
already defined in Eq. (18). For example, for cases L1 and L2 with 1.2 billion tracer particles and
the chosen computational mesh of 2048 × 256 × 256 ≈ 1.34 × 108 points one gets a constant value
of � ≈ 8.9, for case L3 with a mesh of 4096 × 512 × 512 ≈ 109 and 4.8 billion tracers a value of
� ≈ 4.5. For the Eulerian case, one gets

lim
t→∞〈θ2(t )〉 = 0 or lim

t→∞〈�2(t )〉 = �
2
. (31)

For the Lagrangian case with a discrete particle field, the well-mixed final state still shows
fluctuations around � = �, since the turbulent flow still advects particles across the computational
mesh cell with Vmesh = a3. This is a manifestation of the noise due to the discrete number of
particles.

C. Comparison of scalar distributions for Eulerian and Lagrangian freely decaying cases

Which scalar PDF P(�) can be expected for times very large with respect to the mean mixing
time? The final tracer distribution will be a binomial distribution which is given by

p(k) =
(Np

k

)
pk (1 − p)Np−k, (32)

where p(k) is the probability to find k tracer particles in the considered grid cell a3, and p =
1/(N1N2N3) is the probability to find the selected particle in a particular grid cell. The binomial
distribution can be approximated by a Poisson distribution for small p and a large number of tracer
particles Np 
 1. Since this condition is valid here, the probability is defined as

p(k) = �
k

k!
e−�. (33)

For the limit of a large mean number of particles � 
 1, this distribution will eventually converge
to a δ distribution δ(k − �). The background fluctuation due to noise is then the standard deviation
of the Poisson distribution and follows from the numbers of the last subsection for cases L1 and
L2 (L3) to σ =

√
� ≈ 2.99 (2.11). In the case of total homogenization each grid box would thus

contain on average � ± σ ≈ 9 ± 3 (4 ± 2) tracer particles.
Which scalar PDF P(�) follows for the initial phase of the mixing process? Both cases (E and

L) are shown in Fig. 6, where concentration distributions are plotted for different time instants
given in units of the corresponding mean mixing time 〈ts〉. Initially, there is a pronounced peak
at the seeding concentration level for both cases. This nearly bimodal distribution is expected and
has been also seen in laboratory experiments [20]. The concentration is normalized by the initial
concentration of the blob �0 = Np/N3

blob. For the cases L1–L2 (L3), this amounts to �0 = 4577
(2289) if Np = 1.2 × 109 (4.8 × 109) and if the tracer particles are seeded initially in a volume of
N 3

blob = 643 (1283) mesh cells. A slight difference can be detected at the highest concentration level
�/�0 ≈ 1. The local maximum is less spike-shaped for the Lagrangian cases in comparison to the
Eulerian ones. The absence of the initial spike at the highest concentration level for L1 to L3 is a
combined effect of limited number of particles and the discreteness error.

After times t > 〈ts〉 the peak of the PDF vanishes and a distribution with an exponential tail
develops. It is seen that the PDFs agree well for these instants and for all Schmidt numbers.
Furthermore, values slightly larger than the blob concentration �0 are found for the Lagrangian
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FIG. 6. Probability density functions (PDFs) of the passive scalar concentration taken at different times of
the evolution for different Schmidt numbers. The left column shows the Lagrangian cases L1, L2, L3, the right
column the Eulerian cases E1, E2, E3. Top row: Sc = 1. Middle row: Sc = 32. Bottom row: Sc = 64. At the
beginning, the scalar PDF is a bimodal distribution with entries at �/�0 = 0 and 1 only.

case in the early stage which can be related again to the noise due to discreteness and thus there is
a probability to find more particles in a chosen bin.

A visual comparison of cases E3 and L3 is done in Fig. 7 where the scalar concentration is plotted
for a vertical cut through the slab sufficiently far away from the seeding region at x = 4d . The early
stage (top row) of the evolution gives a nearly perfect agreement between L3 (left) and E3 (right).
At the later stage (see bottom row), the noise due to discreteness starts to affect the contours of L3.
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FIG. 7. Isocontour plots of the concentration field for the cases L3 and E3 of a decaying passive scalar
with Schmidt number Sc = 64 at x = 4d with d/L = 0.25. The field is represented by 4.8 billion individual
tracer particles (left column) or by an Eulerian scalar field advected by the fluid flow (right column) for times
t = 2.75〈ts〉 (top row) and t = 5.5〈ts〉 (bottom row).

However, the majority of features of the contour plot, such as larger low-concentration voids, are
still well comparable. It would require an adaptive and continued seeding of new tracer particles to
compensate for the ongoing dilution by the advection process as done in Martínez-Ruiz et al. [23]
for a simple laminar flow.

D. Derivation of scalar distribution from Lyapunov exponent distribution

Finally, we want to reconstruct the scalar concentration distribution P(�, t ) from the distribution
of the Lagrangian compression rates, p(λ3, t ) and the evolution of the maximal concentration, �max.
We rely here on an approach by Ranz [45] that introduces new coordinates—two along the scalar
sheet (or solitary strip), ξ1 and ξ2, and one perpendicular to the sheet, ζ . This coordinate system
is aligned with the local eigenframe of the rate of strain tensor. The sheet will be stretched and
compressed locally as determined by the local Lyapunov exponents λ1, λ2, and λ3. Since diffusion
is important in the most compressive direction only and can be neglected in the other two directions,
the passive scalar advection-diffusion Eq. (6) simplifies to a one-dimensional equation, which is
given by

∂�

∂t
+ γ ζ

∂�

∂ζ
= D

∂2�

∂ζ 2
, (34)
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FIG. 8. Maximum scalar concentration versus time. Comparison of the approximation (gray curves) and
the error function (black curves) for the cases Sc = 1 (dashed lines) and Sc = 32 (solid lines).

when written along the most probable stretching trajectory for which 〈λ3〉 = −γ . This equation
now contains only derivatives perpendicular to the sheet surface and has been in detail discussed in
Refs. [19,20,22]. The compressive strain γ is such that

γ = −d ln s(t )

dt
. (35)

Equation (34) can be solved analytically [19,20,22,45] once the following transformations of time
and space coordinates are introduced. One defines a so-called warped time τ and a normalized
perpendicular coordinate ζ̃ , both given by

τ = D
∫ t

0

1

s(t ′)2
dt ′ = D

2γ d2︸ ︷︷ ︸
(2PeL )−1

[exp(2γ t ) − 1], with ζ̃ = ζ

s(t )
. (36)

These substitutions simplify Eq. (34) to a standard heat equation in the new coordinates

∂�

∂τ
= ∂2�

∂ζ̃ 2
. (37)

Starting from a strip of width d and uniform concentration �0, Eq. (37) has a solution which is
given by

�(ζ̃ , t ) = �0

2

[
erf

(
ζ̃ + 1/2√

4τ

)
− erf

(
ζ̃ − 1/2√

4τ

)]
. (38)

The maximum concentration at the center of the strip (i.e., in ζ = 0) is given by

�max = �0 erf

(
1√
4τ

)
, (39)

and thus �max ≈ �0 for times t < ts while for t > ts, it follows approximately that

�max ≈ �0 exp[−γ (t − 〈ts〉)]. (40)

Both functions are shown in Fig. 8 and almost coincide for t > 〈ts〉. The solid and dashed lines
represent cases where Sc = 32 and 1, respectively. The temporal decay agrees also with scalar
mixing experiments as seen, e.g., in Fig. 5 of Ref. [24]. Similar to the scalar variance, the decay of
�max starts for t � 〈ts〉.

Under the two assumptions that (i) concentrations are assimilated to the maximal strip concen-
tration �max in Eq. (40) written for any compression rate λ3 as

� ≡ �max ≈ �0 exp[λ3(t − 〈ts〉)], (41)
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FIG. 9. Scalar distribution (red lines) shown together with the distribution based on the prediction from
the smallest Lyapunov exponent (solid gray lines) as defined in Eq. (43). The additional gray lines represent
(multiple) self-convolution operations of the passive scalar PDFs. Times are t = 1.79 〈ts〉 in (a), 2.38 〈ts〉 in (b),
2.98 〈ts〉 in (c), and 3.57 〈ts〉 in (d). The insets in the figure replot the corresponding data on logarithmic axes.

and (ii) that the mixing times are all assimilated to 〈ts〉 although λ3 is distributed, the scalar
concentration PDF p(�, t ) can now inferred using again probability conservation as

p(�, t )d� = p(λ3, t )dλ3, (42)

providing

p(�, t ) = 1

(t − 〈ts〉)�
p

[
λ3 = 1

t − 〈ts〉 ln(�/�0), t

]
. (43)

These resulting PDFs are now compared to the scalar distributions of the L2 case in Fig. 9.
Comparison times are chosen such that the sheets are still not affected by strong overlapping via the
periodic faces in the downstream direction x1. These times are also marked as symbols in the decay
curve in the middle panel of Fig. 5. It can be seen that the model prediction underestimates the
tails in all cases, which are an indicator of unmixed higher-concentration fragments with maximal
concentration �max. One reason for the deviations is the fact that scalar concentration filaments
can overlap. Such an overlap of filaments (also denoted as self-convolution) becomes increasingly
relevant as the time progresses. Self-convolution was discussed in Ref. [43] for the mixing of a
solitary strip in two dimensions in case of very large Péclet number. Here, we want to apply this
concept to a three-dimensional scalar blob. The self-convolution occurs randomly [19,30] and is
given by

p⊗2(�, t ) =
∫ �′=�′

0

�′=0
p(�′)p(� − �′)d�′. (44)
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FIG. 10. Time dependence of the fit coefficient α for the scalar distribution exponential tails which have
the shape exp(−α�) as shown in Fig. 6.

Equation (44) defines the convolution of the scalar PDF with itself. The resulting PDFs are added
as gray lines in Fig. 9, where the number of self convolutions is indicated in the legend. A second
self-convolution, p⊗4(�, t ), is understood as a subsequent self-convolution of p⊗2(�, t ) with itself,
following the same rule Eq. (44) and so on. For the first time instant in Fig. 9(a), the predicted PDF
as well as its first self-convolution overestimate the small concentrations as the comparison with
the DNS data shows. This suggests that the filament formation out of the initial blob is still not
mature enough to apply the model. For the second time instant in Fig. 9(b), the self-convolution
overestimates again the low scalar concentration �, but is in agreement with p⊗2(�, t ) with respect
to high concentrations. In case of the third and fourth time instants in Figs. 9(c) and 9(d) of the same
figure, the tails coincide partly with p⊗4(�, t ) and p⊗6(�, t ), respectively. Although this agreement
is not perfect, we can state that the additional self-convolutions lead to an improved agreement of
the tails of the predicted PDFs with those of the data. This is remarkable given the sequence of
simplifications that have been made in the present model to obtain the PDF, such as the reduction to
the maximum amplitude and the one-dimensionality of the model. To our knowledge these attempts
of reconstructing the pdfs from stretching exponents and self-convolutions are the first of its kind
for a three-dimensional turbulent field.

Finally, the time dependence of the exponential tails of numerical PDFs P(�, t ) is analyzed. The
tails are found to get sparser with increasing time. Also, the smaller Sc the faster the slope of the
tails decreases with time. Similar to Ref. [20], we fit an exponential to the tail of the PDFs,

P(�, t ) ∝ exp(−α(t )�). (45)

For each data set, a least-square fit was done to obtain the parameter α(t/〈ts〉) as a function of
normalized time t/〈ts〉. Figure 10 shows the dependence for all three cases in a logarithmic-linear
plot. After a few mixing times t/〈ts〉 the fitting coefficients start to saturate at a constant value due
to the overlap with sheets via the periodic boundaries which were described in the curves for scalar
variance in Fig. 5.

V. CONCLUSION AND OUTLOOK

Direct numerical simulations were performed with a passive scalar concentration field mixed
in a turbulent flow. The scalar field was represented in the Eulerian and the Lagrangian frames of
reference, respectively. The Lagrangian case implies the advection of up to 4.8 billion individual
tracer particles. One main goal of our study was a one-to-one comparison of the passive scalar
mixing at Schmidt numbers Sc � 1 in these two frames of reference. Similar to a typical laboratory
experiment, the passive scalar is initially injected in a small subvolume of the simulation domain.
The central quantity of interest is the scalar concentration field �(x, t ), which is either directly
simulated as a field (Eulerian representation) or reconstructed from the tracer particle number in a
each grid mesh cell (Lagrangian representation).

The comparison of both frames for the simplest case—a freely decaying passive scalar blob in
a statistically stationary turbulent flow—confirms the applicability of the Lagrangian tracer particle
model. A one-to-one comparison of the time evolution of the scalar variance and the scalar PDFs
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obtained in the whole simulation domain gives good agreement for t � 10〈ts〉 thus demonstrating
the applicability of the Lagrangian model. The latter approach has advantages and disadvantages:

(i) For the Lagrangian runs at very large Schmidt number, it is in principle not necessary to
increase the number of mesh points in the simulation run, since the Kolmogorov scale ηK is
well resolved. We used a higher resolution here to have a consistent one-to-one comparison with
the corresponding Eulerian case. It is, however, necessary to evaluate the scalar concentration in
the post-processing on a grid that matches the corresponding Batchelor scale ηB. This eases the
computational effort in the Lagrangian case somewhat compared to the Eulerian one.

(ii) Effects of the noise due to discreteness and the variation of the number of tracer particles are
absent in the Eulerian flow. Their impact grows in the Lagrangian runs as the tracer population is
diluted with progressing time. This process prevents eventually a confirmation of the aggregation
model at high Schmidt numbers (in particular dominant multi-layer aggregations as shown in Fig. 7)
for times t � 10〈ts〉 as done in laboratory experiments [19]. Such a study would require an ongoing
adaptive local reseeding of tracer particles together with a removal of aged particles in a fully
turbulent flow, i.e., a combination of the concepts that have been discussed in Refs. [23] and [29]
for much simpler mixing cases in laminar flows.

Direct numerical simulations at high Schmidt numbers restrict the flow Reynolds number Re
always to small or moderate values since a viscous-convective range has to be resolved. This is
for example documented in the comprehensive data record in Ref. [46] for high-Schmidt-number
mixing in homogeneous turbulence. It is shown there that the scalar variance increases with Sc
at fixed Reynolds number. The dependence on Re is more complicated. The Reynolds number
will affect the mixing time scale, higher Reynolds numbers will lead to shorter mixing times
and higher strain rates. A further point is the mixing transition [8,47]. It states that the Reynolds
number dependence of mixing processes is weaker once the turbulent flow has reached the regime
of dissipative anomaly for which 〈ε〉L/u3

rms = const. The transition proceeds for Re � 104. Mixing
experiments [48] support the existence of this transition. We expect, however, that the fundamental
stretching and convolution dynamics of the sheets far below the Kolmogorov scale remains
independent of this transition when rescaled in appropriate times and length units. A systematic
study of this mixing transition by means of DNS at sufficiently high Sc is thus an important point
for future work in this field.

The Lagrangian approach to passive scalar turbulent mixing made two further points possible: (1)
Local stretching and compression rates (or positive and negative finite-time Lyapunov exponents) of
the flow with their specific time history along fluid particle tracks can be calculated. A corresponding
mean compression rate opens the definition of a mean mixing time 〈ts〉—a typical time scale for
the turbulent mixing process that was used to study their dependence on the Schmidt number. (2)
A simplified one-dimensional local compression-diffusion process of a solitary strip allowed us
to predict the scalar concentration PDF for shorter times and to obtain a behavior that agrees at
least qualitatively with the data. The agreement was found to improve by including (multiple) self-
convolutions of the predicted PDF with itself which are based on the theory of random aggregation
of scalar sheets [19]. In the future, such Lagrangian approach opens doors to more flexible boundary
conditions. Other regimes, such as reseeding scenarios, periodic or steady point sources or several
combined and localized sources, will thus be possible in future investigations.
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FIG. 11. Left: Test case for a stochastic Wiener process with different amplitudes
√

2D which correspond
to different Schmidt number. Right: Verification of the Einstein relation for the mean square displacement with
increasing number of realizations (or particles) for Sc = 100.

APPENDIX: TEST AND IMPLEMENTATION OF THE STOCHASTIC INTEGRATION SCHEME

Here, we report the test of the numerical implementation of the stochastic vectorial Wiener
process Wj (t ) with j = 1, 2, 3 that describes the diffusion in the Lagrangian framework [see
Eq. (13)]. The Wiener process has two basic properties that have been already discussed in the
main text. First, it has zero ensemble average. Second, it is white-in-time. The Langevin equation is
given by [36]

dXj (t ) = Bjdt +
√

2D dWj (t ), (A1)

with Bj being the deterministic drift term. The numerical calculation with a time step width �t
follows a second-order predictor-corrector scheme [49] and is given by

X ∗
j = X n

j + �tBn
j +

√
2D �W n

j , (A2)

X n+1
j = X n

j + �t

2

[
Bn

j + B∗
j

] +
√

D

2

[
�W n

j + �W ∗
j

]
, (A3)

where X n
j is the tracer particle position after time tn = n�t . For each time step, each random number

�Wj is calculated by

�Wj =
√

�t Yj
(
c1Y

2
j + c2

)
, (A4)

where Yj is a random variable generated between −0.5 and 0.5 for each space coordinate; c1 =
14.14855378 and c2 = 1.21569221. The amplitude of the random walk is thus controlled by the
prefactor

√
2D as shown in the left panel of Fig. 11. The constants c1 and c2 are evaluated by solving

a pair of quartic equations. More details on its solution can be found, for example, in Ref. [35] (see
p. 137). For the test cases, we use different Schmidt numbers (or D = ν/Sc with a value of ν from
main text) to analyze the change of the amplitude of the random walk (with constant drift) of tracer
particles. Furthermore, we test the number of tracer particles (or realizations of the Wiener process)
that is necessary to accurately describe the Einstein relation for the mean square displacement for
the case with a Schmidt number Sc = 100 〈

X 2
j (t )

〉 = 2Dt (A5)

The results in the right panel of Fig. 11 show that a minimum of 105 particles is required for a linear
relation with respect to time.
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