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Particle-resolved numerical simulations of the gas-solid heat transfer in arrays of random motionless particles

Introduction

This study deals with the analysis and the modeling of the heat transfer in dense particle-laden flows. Such a regime covers a wide spectrum of industrial applications dealing with energy conversion, manufacturing processes, waste recycling, etc. Many of these applications need to recast their processes in order to comply with new energy and climate targets, thus increasing efficiency while reducing gas emissions. Most of them involve reactive flows in which the heat exchanged between the solid and gaseous phases, and between each phase and the wall, plays a crucial role in the entire process. An understanding of the heat transfers in such complex flows, a long-standing issue, is therefore essential to be able to enhance the performances of existing processes and the development of new technologies. Accordingly, gas-solid heat exchanges have been extensively studied over the years. The particle to fluid heat transfer coefficient in dense regimes (typically fixed or fluidized beds) has been evaluated under theoretical and experimental studies. In the experiments, various methods, designs and operating conditions have been used to determine the heat transfer coefficient over a large range of operating points [1]. However, experimental results exhibited a somewhat large disparity to each other which may be attributed to different experimental techniques employed or, as suggested by Gunn [2], to the different interpretations of raw data. The heat transfer coefficient is indeed the result of a model applied to the experimental quantities, and it strongly depends on the assumptions made. For example, it has been shown and extensively discussed that accounting or not for the axial dispersion in the modeling substantially affects the estimation of the Nusselt number at low Reynolds numbers [1,2]. Moreover, experimental investigations cannot provide a local view of the flow behavior and a deep understanding of the related microscopic features. To overcome these limits, numerical simulation may be used. The latter represents indeed a powerful alternative to experimental investigations, as it is a non-intrusive method able to fully access the local quantities of the particulate flows. To allow the numerical simulation to provide trustworthy heat transfer coefficients, a high accuracy of the results has to be ensured. A high level of accuracy is subject to high resolution, which implies very fine meshes and consequently high computational costs. With the development of high-performance computing (HPC), the direct numerical simulation at microscopic scale (that is at a scale comparable to the particle dimensions) is becoming affordable and thus usable for the investigation of heat exchanges in dense suspensions. By the numerical simulation, Reynolds and Prandtl numbers may be easily changed over a range of intermediate values, thus making it possible to provide Nusselt number correlations as a function of the solid volume fraction and the two aforementioned dimensionless groups. High Reynolds and Prandtl numbers are instead difficult to reproduce because of the small boundary layer thickness and therefore the requirement of even more refined grids. In these last years, several studies using the direct numerical simulation (also referred to as fully resolved or particle-resolved DNS) have been carried out in order to investigate the heat transfer in dense regimes, over intermediate Reynolds and Prandtl numbers and solid concentration up to 50%. These studies employed different numerical strategies for solving the flow interacting with the solid bodies. For example, an immersed boundary method (IBM) for non-isothermal particulate flows was used by Feng and Michaelides [3], Deen et al. [4] and Feng and Musong [5]. Tavassoli et al. [6] extended the approach originally proposed by Uhlmann [7] to account for the heat transport in order to study the heat transfer in particulate flows. These authors reported numerically assessed Nusselt numbers in a random array of fixed spheres in which the fluid flows from an inlet boundary toward an outlet boundary exchanging heat with the solid phase. They provided comparisons with the well-known Gunn correlation [2] and pointed out deviations increasing with the solid volume fractions, considered consistent with the accuracy of such a correlation. Deen et al. [8] reviewed the DNS methods and on the basis of available data refit the Gunn correlation and thus provided a new correlation. The particle-resolved uncontaminated-fluid reconcilable immersed boundary method (PUReIBM) was extended and used in non-isothermal conditions by Tenneti et al. [9] to perform direct numerical simulations of gas-solid heat exchanges within an assembly of random spheres, by using a fully periodic configuration based on a thermal similarity boundary condition for the temperature. Sun et al. [10] suggested a new correlation for the Nusselt number as well as a correction factor to be used in the frame of an Eulerian-Eulerian formulation. Kruggel-Eemden et al. [11] used a lattice Boltzmann method (LBM) to investigate gas-particle heat transfers. Periodic boundary conditions for the flow together with constant and adiabatic conditions at the streamwise boundaries for the temperature were used to simulate heat exchanged in the assembly of random particles. Including the axial dispersion, by using the axial dispersion coefficient proposed by Wakao [1], they obtained Nusselt numbers in good agreement with the correlation proposed by Tavassoli et al. [START_REF] Tavassoli | Direct numerical simulation of fluid-particle heat transfer in fixed random arrays of non-spherical particles[END_REF]. A new method combining immersed boundary and fictitious domain (referred to as HFD-IB) was recently developed and used to investigate the heat transfer in bi-dispersed regimes by Municchi and Radl [START_REF] Municchi | Consistent closures for Euler-Lagrange models of bi-disperse gas-particle suspensions derived from particle-resolved direct numerical simulations[END_REF]. Focusing on the Euler-Lagrange approaches for particulate flows, these authors proposed a closure for the particle Nusselt number as a function of the particle drag force. Alternative methods are also emerging-see, for example, the PHYSALIS method extended to non-isothermal particulate flows by Wang et al. [START_REF] Wang | Fully-resolved simulation of particulate flows with particles-fluid heat transfer[END_REF]. In the present work, a Lagrangian VOF approach using fictitious domains and penalty methods [START_REF] Vincent | A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows[END_REF] is used to perform particle-resolved numerical simulations of gas-solid heat transfers. In Sect. 2, such an approach is briefly recalled. A preliminary study devoted to validate the entire methodology (including post-processing strategies) is described in Sect. 3. Direct numerical simulations of gas-solid heat exchanges in arrays of random motionless particles are finally presented in Sect. 4. In the latter, numerical results on two Nusselt numbers based, respectively, on the fluid temperature and on the bulk (cup-mixing) temperature are presented and discussed. Finally, a connection between the ratio of such Nusselt numbers and the fluctuating fluid velocity-temperature term appearing in the energy conservation equation is pointed out. On the basis of this Nusselt number ratio, a model is proposed for it.

Numerical modeling

Governing equations and solution methods

A Lagrangian VOF approach using fictitious domains and penalty methods is used in the present work. It is based on an Eulerian formulation of the Navier-Stokes equations discretized on a fixed structured grid. This approach was initiated by Ritz and Caltagirone [START_REF] Ritz | A numerical continuous model for the hydrodynamics of fluid particle systems[END_REF] for handling particulate flows. To model the behavior of fluid and solid phases, the one-fluid model of Kataoka [START_REF] Kataoka | Local instant formulation of two-phase flow[END_REF], initially devoted to deformable interfaces and fluid/fluid two-phase flows, was extended to flows interacting with moving finite-size particles by Ritz and Caltagirone [START_REF] Ritz | A numerical continuous model for the hydrodynamics of fluid particle systems[END_REF]. These authors considered the solid particle phase as a continuous phase with high viscosity, requiring a treatment of discontinuities especially for density and viscosity at the interface. With an arithmetic average for the density and a harmonic average for the viscosity at the fluid-solid interfaces, the Stokes flow around a circular cylinder and two-dimensional sedimentation of particles were simulated [START_REF] Ritz | A numerical continuous model for the hydrodynamics of fluid particle systems[END_REF]. This methodology has undergone several improvements, and now, its originality comes from the reformulation of the stress tensor μ ∇u + (∇ T u) as proposed by Caltagirone and Vincent [START_REF] Caltagirone | Sur une méthode de pénalisation tensorielle pour la résolution des équations de Navier-Stokes[END_REF]. It consists of a decomposition of the stress tensor for Newtonian fluids in order to distinguish the contributions of tearing, shearing and rotation. With the help of a phase function C (= 0 in fluid medium and = 1 in solid medium), which describes the solid phase shape evolution through an advection equation (Eq. ( 2)), classical Navier-Stokes equations are solved for both phases, taking into account the phase behavior:

∇ • u = 0, ρ ∂u ∂t + (u • ∇)u = -∇ p + ∇ • μ ∇u + (∇ T u) + ρg + F si . (1) 
In the above system, u = (

→ u , → v , →
w) and g are, respectively, the velocity and the gravity vectors, p is the pressure field, ρ and μ are the density and the dynamic viscosity and F si is the force ensuring coupling between the phases. The spatial and temporal evolution of the phase function then writes:

∂C ∂t + u • ∇C = 0. (2)
Equation ( 2) is solved in a Lagrangian manner. The shape of the particles is tracked by a Lagrangian mesh made of triangles in 3D. For spherical particles as in the present work, the advection of the solid phase is satisfied with the Lagrangian tracking of the barycenter of the sphere, using a Runge-Kutta method of second order. The Eulerian phase function is finally obtained at each time step by projecting the Lagrangian meshes of all particles on the Eulerian grid with a kind of Monte Carlo approach. All these procedures are detailed [START_REF] Vincent | A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows[END_REF]. According to the penalty method acting on the viscosity, no tearing, no shearing and constant rotation could be imposed, for example, to the solid phase. By this approach, the divergence of the viscous stress tensor is indeed written using the decomposition

∇ • μ ∇u + (∇ T u) = ∇ • [κ (u)] + ∇ • [ζ (u)] -∇ • [η (u)] , (3) 
which makes easier the implementation of a penalty method by imposing separate viscosity coefficients such as the tearing viscosity, κ, the shearing viscosity, ζ , and the rotation viscosity, η, appearing in Eq. (3). The implicit tensorial penalty method (ITPM) for solid behavior and incompressibility constraint is a new evolution, of second-order convergence in space, of the viscous penalty method. Details about this method may be found in Vincent et al. [START_REF] Vincent | A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows[END_REF]. It is implemented together with an augmented Lagrangian method first proposed by Fortin and Glowinski [START_REF] Fortin | Méthodes de lagrangien augmenté: applications à la résolution numérique de problèmes aux limites[END_REF]. Before explaining the specificity of ITPM, we recall the time discretization employed for solving the Eulerian system (1). The temporal derivatives are approximated with implicit finite volume schemes which does not require a stability condition; either Euler or Gear schemes are used depending on the complexity of the problem. A second-order centered scheme is employed to approximate the spatial derivatives. Time derivatives may be written as

∂u ∂t f (u n+1 , u n , u n-1 ) Δt , with Δt the time step, (4) 
according to the following schemes:

• Euler: f (u n+1 , u n , u n-1 ) = u n+1 -u n , • Gear: f (u n+1 , u n , u n-1 ) = 3 2 u n+1 -2u n + 1 2 u n-1 .
If the Gear scheme is used, the inertial term is linearized by an Adams-Bashforth scheme as follows:

u n+1 • ∇u n+1 ≈ (2u n -u n-1 ) • ∇u n+1 .
The augmented Lagrangian method is used to satisfy the incompressibility constraint through a velocity-pressure (u, p) coupling, by solving a minimization problem. The approximation of the solution by an Uzawa-like scheme reads:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ while ∇ • u n+1,k > 1 ρ f (u n+1 ,u n ,u n-1 ) Δt + ((u n+1,k-1 • ∇)u n+1,k -∇(r ∇ • u n+1,k ) = -∇ p n,k-1 + ρg + ∇ • μ ∇u n+1,k + (∇ T u n+1,k ) + F n+1,k si , p n+1,k = p n,k-1 -r ∇ • u n+1,k .
(5) In the above system, k is the iterative index for the Uzawa optimization algorithm and n the physical time iterative index. The significant parameter in Eq. ( 5) is the augmented Lagrangian parameter r . In the standard form of the algorithm, r is constant; improvements proposed in [START_REF] Vincent | An adaptative augmented Lagrangian method for threedimensional multimaterial flows[END_REF] used instead a spatial and time parameter r (x, y, z, t) linked to a fixed initial a priori constant value to get a satisfactory solution. Further improvements by Vincent et al. [START_REF] Vincent | Augmented Lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns[END_REF] proved that an algebraic parameter r is suitable to fully carry out incompressibility and solid constraints in an optimal way. This algebraic parameter is defined according to the discretization matrix containing the viscous penalty contributions. To implement the penalty method for the viscosity, thanks to the viscous stress tensor decomposition (3), and in order to impose no shearing, no tearing and constant rotation for solid particles, a dual grid (points located at the center of the grid cells) is introduced [START_REF] Vincent | A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows[END_REF]; the latter allows the specification of shearing and rotation viscosities, while the elongation viscosity is defined on the pressure nodes. Linked to the previous algebraic parameter, solid constraints are ensured at the same time as incompressibility with second-order convergence in space. Then, physical properties at fluid-solid interfaces are defined by using a harmonic average for the viscosities and an arithmetic average for the density. The particle interaction force F si accounting for particle-particle and particle-wall collisions was implemented and validated by Brändle de Motta et al. [START_REF] Brändle De Motta | Numerical modelling of finite-size particle collisions in a viscous fluid[END_REF]. Details about particle tracking and four-way coupling may be found elsewhere [START_REF] Vincent | A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows[END_REF].

When the particle velocities are not a priori known, ITPM makes it possible to ensure both incompressibility and solid constraints, while, for fixed particles, a simpler penalty method may be employed. The latter, referred to as Darcy penalty method (DPM) [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF], is an approach typically used in porous media in order to solve the Navier-Stokes equations accounting for the interactions with a solid object. It consists in considering an additional term in the momentum equation based on a local permeability parameter:

ρ ∂u ∂t + u • ∇u + μ K u = ∇ • μ ∇u + ∇ T u -∇ p + ρg. ( 6 
)
The permeability K tends to +∞ in the fluid medium and to zero in the solid medium. This method is employed to impose a zero velocity inside the solid. Similarly, a constant temperature can be imposed to the solid. In the energy conservation equation,

ρC p ∂ T ∂t + u • ∇T + β(T -T s ) = ∇ • [k f ∇T ], (7) 
where T is the phase temperature (with T s the solid one). C p is the mass heat capacity and k f is the thermal conductivity; their respective values are set equal for both the phases in this work. The supplementary term β(T -T s ) is only active in those zones in which the phase function is equal to unity (C = 1) and β → +∞.

In the fluid domain, C = 0 and β = 0. The finite volume discretization scheme for the energy conservation equation is based on an explicit total variation diminishing (TVD) scheme for the convection terms, while an implicit centered scheme is used for the conductive terms. An implicit Euler time discretization is used for time derivatives. Linear systems resulting from all discretizations (augmented Lagrangian terms, Navier-Stokes equations, energy equation) are treated with a BiCGSTAB II solver and a modified and incomplete LU preconditioner [START_REF] Vincent | A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows[END_REF].

Heat transfer rate computation over a sphere

According to the well-known Newton's law of cooling, the heat transfer rate from a body (at constant temperature T s ) immersed in a infinite fluid (at temperature T f ) relies on a heat transfer coefficient h f which is defined as a proportionality constant:

Q b→f = h f A (T s -T f ) . ( 8 
)
Such a coefficient, h f , may be obtained by the numerical simulations by computing the rate of heat exchanged throughout the body surface A. For a spherical particle (b = p) of surface area A = S p , the heat transfer rate is written according to Fourier's law modeling the heat flux as

Q p→f = S p -k f ∇T • n dS, ( 9 
)
where k f is the conductivity of the fluid and n is the unit vector normal to the solid surface and pointing outward. Numerically, the computation of Q p→f needs a discretization of the sphere surface. The fictitious domain framework, using staggered grid, considers a phase function to locate all control volumes occupied by a particle. In practice, a spherical object is defined, i.e., the particle, and then projected on the structured grid which is used to solve the conservation equations. The surface of this object is discretized by Lagrangian triangle elements. All the coordinates of the vertices of the triangles are recalculated in the real space. Based on the knowledge of the Lagrangian surface particle mesh, the phase function is automatically generated by using ray casting procedures [START_REF] Sarthou | A second-order curvilinear to Cartesian transformation of immersed interfaces and boundaries. Application to fictitious domains and multiphase flows[END_REF]. The heat transfer rate computation can then be achieved by a numerical integration as follows:

Q num p→f = N b b=1 -k f ∇T (x b , y b , z b ) • n S , ( 10 
)
where N b is the number of triangle elements over the sphere surface. The calculation algorithm consists of four steps. Noting the coordinates as

• (x p , y p , z p ): the cell centers of the structured Eulerian mesh (pressure nodes),

• (x v , y v , z v ): the staggered coordinates of the cell faces of the structured Eulerian mesh (velocity nodes),

• (x b , y b , z b ): the coordinates of the barycenter of each triangle element on the particle surface, and defining n and S as, respectively, the normal vector and the surface of each triangle, the algorithm consists in:

1. computing the temperature gradient on the staggered Eulerian grid nodes belonging to the fluid, and interpolating the gradient components from the staggered Eulerian fluid nodes to the pressure fluid nodes and finally

• ∇T x v = T i+1, j,k -T i-1, j,k 2Δx p , ∇T x p = ∇T xv i+1, j,k +∇T xv i-1, j,k 2 , • ∇T y v = T i, j+1,k -T i, j-1,k 2Δy p , ∇T y p = ∇T yv i, j+1,k +∇T yv i, j-1,k 2 , • ∇T z v = T i, j,k+1 -T i, j,k-1 2Δz p , ∇T z p = ∇T zv i, j,k+1 +∇T zv i, j,k-1 2 ; 2. computing n and S • → n = → U t 1 ∧ → U t 2 → U t 1 ∧ → U t 2 , S = 1 2 → U t 1 ∧ → U t 2 with → U t 1,
f (x) = f (x 0 ) + ( f (x))(x -x 0 ) + O(h).
Nu(t) = 2 + 2R √ παt . ( 14 
)
This validation aims at verifying the ability of the entire approach to accurately predict the temperature field near the sphere. The relative error between the temperature obtained by the numerical simulation, T sim , and the analytic solution ( 11) is computed at all nodes of the computational domain as

Er T (r, t) = |T sim (r, t) -T a (r, t)| T a (r, t) . ( 15 
)
For different grid sizes, N d spanning from 10 to 80, the maximum of the mean relative error Er T (r, t) t is computed and the results are reported in Table 1. (Results are time-averaged in the interval t * ∈ [1.84, 4.51] where t * = d p / √ παt is a dimensionless time.) Located at the interface between the fluid and the sphere (r = R), the maximum error decreases when the mesh is refined, as expected. For grids coarser than N d = 30, the error is larger than 10%. It is instead sensibly small for the finest grid N d = 80. A relative error between predicted and analytic Nusselt numbers is also defined:

Er Nu (t) = |Nu sim (t) -N u(t)| Nu(t) . ( 16 
)
First, the effect of the number of elements on the sphere surface is analyzed. Table 2 shows the mean (timeaveraged in the interval t * ∈ [2.26, 4.51]) relative error for three meshes N d = 10, 20, 30 and three different triangularizations of the sphere surface. Results show that 4500 elements are enough to obtain a converged Nusselt number on a selected grid, allowing to perform a grid convergence analysis. Such a value is therefore retained in the present study. In Table 2, the ratio between the surface elements (N b ) and the number of grid cells over the particle surface (estimated as π N 2 d ) is also reported. 1 Results seem to indicate that numerical simulations become independent of N b when at least one surface element is present for each cell over the particle surface (i.e., N b /π N 2 d > 1). Accordingly to the choice N b = 4500, the effect of the mesh size on the Nusselt predictions is analyzed. Figure 2 shows the temporal evolution of the analytic and computed Nusselt numbers for N d = 80. (Vertical lines correspond to the time interval used for assessing the mean error.) The mean relative error as a function of the grid size is also plotted. The error decreases with the mesh refinement, and from N d = 20, it becomes smaller than 10%. The order of convergence is about 1 up to N d = 40. Further, as the time advances, the instantaneous error decreases even more (Table 3).

where Σ I is the whole fluid-solid interface within the selected volume V. If the N p particles are entirely contained into the volume of control V, the heat exchanged between the solid and the fluid may be estimated by integrating over all the particles within V, namely

Q p→f = N p k=1 Q (k) p . ( 30 
)
From Eq. ( 28), using the divergence theorem, Q p→f may also be obtained as follows:

Q p→f = Σ χρ f C p T u • n dS - Σ χk f ∇T • n dS, ( 31 
)
where Σ is the boundary surface of the volume of control V. Equations ( 30) and ( 31) are strictly equivalent and should provide equivalent results, unless inaccuracy of numerical approximations. They will be both employed for computing Q p→f . Results will be shown in Sect. 4.3.

Modeling heat transport and transfer

Fully resolved particle numerical simulations make it possible to estimate the heat exchanged between the solid and the fluid phases. However, this quantity needs to be modeled, at mesoscopic or macroscopic level, when direct numerical simulations are not feasible and fluid and particle equations require closure laws. In this study, we will focus on the macroscopic modeling and investigate the Nusselt number to being used in an Eulerian-Eulerian approach. In order to proceed with the analysis, we introduce a mean (volume-averaged) energy transport equation, on the basis of the previous notations. Defining the mean volume fraction of the fluid within the control volume V as

φ f = 1 V V χ dV, ( 32 
)
the volume average of the generic quantity, ψ, then writes

φ f ψ f = 1 V V χψ dV. ( 33 
)
From Eq. ( 28), assuming that integral and derivative operators commute and assuming constant fluid density, heat capacity and conductivity, the first term on the l.h.s. may be reformulated as follows:

1 V V ∇ • χρ f C p T u dV = ∇ • φ f ρ f C p T u f = ∇ • φ f ρ f C p T b • U f , ( 34 
)
where U f = u f is the mean (volume-averaged) fluid velocity and T b is a bulk temperature tensor defined as T b,i j = ( T u i f U f, j )/||U f ||2 . In the mean flow direction, when the mean flow is aligned to the mean heat flux, only one component of this tensor prevails. This component corresponds to the well-known bulk (or cup-mixing) temperature, T b , as classically defined in the literature. The first term on the r.h.s. in Eq. ( 28) is also rewritten using mean quantities as

1 V V ∇ • (χ k f ∇T ) dV = ∇ • φ f k f ∇T f ∇ • (φ f k f ∇T f ) 2 (35) 
with T f = T f the mean (volume-averaged) fluid temperature. At the steady state, the local equation modeling the fluid at macroscopic scale takes the form

∇ • φ f ρ f C p T b • U f = ∇ • (φ f k f ∇T f ) + Q * p→f , ( 36 
)
where Q * p→f is the heat transfer rate per unit volume. This formulation makes appear different temperatures which cannot be used in a macroscopic model without any additional assumption. Equation ( 36) may be rearranged as follows:

∇ • φ f ρ f C p U f T f = ∇ • (φ f k f ∇T f ) + Q * p→f + ∇ • φ f ρ f C p (T f I -T b ) • U f . ( 37 
)
The last term may be written by expressing T b,i j on the basis of mean and fluctuating quantities as

T b,i j = T u i f U f, j ||U f || 2 = T f U f,i U f, j ||U f || 2 + T u i f U f, j ||U f || 2 ; ( 38 
)
the generic fluctuation is defined as ψ = ψ-< ψ > f and its average is null over the domain V, by definition. From Eqs. ( 37), (38) may be formulated as follows:

∇ • φ f ρ f C p U f T f = ∇ • (φ f k f ∇T f ) + Q * p→f -∇ • φ f ρ f C p T u f . ( 39 
)
Equation ( 39) has the form of the energy balance equation commonly used in an Eulerian-Eulerian approach, although it is here obtained by a volume average instead of an ensemble average. Each term in Eq. ( 39) should be statistically evaluated over a large number of two-phase flow realizations in order to account for the random effect originating from the different particle arrangements. The last term in Eq. ( 39) represents the energy transport by the velocity-temperature covariance. It intrinsically accounts for all the correlations between fluctuating velocity and temperature in the fluid, irrespective of their nature. In the frame of RANS Eulerian-Eulerian approach, when the fluid is mainly dominated by turbulent effects at large scale with respect to the particle size, this term may be closed using a turbulent thermal diffusivity, derived from a Boussinesq eddy-viscosity assumption, in which the effect of the particles on the fluid is accounted for by using a modified turbulent viscosity [START_REF] Vermorel | Numerical study and modelling of turbulence modulation in a particle laden slab flow[END_REF]. For low Reynolds number and high solid volume fraction, it rather accounts for the correlations induced by the microstructure of the particulate flow and by the particle wake interactions. Such a contribution is modeled in porous media, for example, throughout effective properties (see, for example, the references [START_REF] Levec | Longitudinal and lateral thermal dispersion in packed beds. Part I: theory[END_REF][START_REF] Quintard | Two-medium treatment of heat transfer in porous media: numerical results for effective properties[END_REF]). Instead, it is generally neglected in the Eulerian-Eulerian approaches for fluid-particle flows. Recently, Sun et al. [START_REF] Sun | Pseudo-turbulent heat flux and average gas-phase conduction during gas-solid heat transfer: flow past random fixed particle assemblies[END_REF] used the fully resolved particle numerical simulation for characterizing this contribution (referred to as pseudo-turbulent heat flux) and proposed a closure for it. Such a closure is a gradient model based on a pseudo-turbulent thermal diffusivity, derived by fitting their fully resolved particle numerical results. In the present work, this contribution is investigated and related to the Nusselt number correlations available from the literature. In an Eulerian-Eulerian approach, Q * p→f is modeled on the basis of a relative (solid-to-fluid) temperature and a heat transfer coefficient as follows:

Q * p→f = h f S p (T s -T f ); (40) 
T s represents the temperature of the particulate phase, while T f is the temperature of the fluid at the same location (both being Eulerian quantities). This modeling cannot account for the undisturbed fluid temperature seen by the particle since only the mean temperature T f is available at the corresponding Eulerian computational node. In Eq. (40), S p is the total surface of the solid phase per unit volume, which may be written as 6φ s /d p , where φ s = 1 -φ f is the solid volume fraction; h f is the heat transfer coefficient estimated on the basis of the aforementioned non-dimensional Nusselt number as

h f = Nu f k f /d p .
Using the above definitions, Eq. ( 40) takes the form

Q * p→f = 6φ s k f Nu f d 2 p (T s -T f ); ( 41 
)
the latter is closed provided that the Nusselt number is known. Conversely, using the fully resolved particle numerical simulations, a heat transfer coefficient is estimated as

h f = Q * p→f S p (T s -T f ) , ( 42 
)
and a Nusselt number obtained as

Nu f = h f d p k f . ( 43 
)
However, most of the studies in the literature are modeling the solid-to-fluid heat exchange using the bulk temperature: is then based on a heat transfer coefficient defined as

Q * p→f = 6φ s k f Nu b d 2 p (T s -T b ). ( 44 
h b = Q * p→f S p (T s -T b ) , ( 46 
)
which is different from that introduced in equation ( 42). The two definitions (41) and (44) lead to the following relation Nu

f (T s -T f ) = Nu b (T s -T b ). ( 47 
)
In the present work, T b = T b,x x since the x-axis represents the direction of the mean flow (streamwise direction). Equation (47) will be verified by the direct numerical simulation. The difference between the bulk and the mean fluid temperature will be investigated, as well as the two dimensionless Nusselt numbers and their connection with the pseudo-turbulent heat flux.

Numerical simulations, results and discussions

The computational domain is composed of three zones: an entrance zone, a packed zone and an exit region, as proposed by Tavassoli et al. [6]. Such a configuration allows the simulation to reproduce a fluid flowing through a packed bed of fixed spheres, with uniform inlet velocity and temperature. The particles are randomly distributed in the packed zone distant 2d p from the entrance and 2d p from the exit. In the present work, numerical simulations with five different random particle seedings are performed, each one for three Reynolds numbers (10, 50, 100) and four solid volume fractions (0.1, 0.2, 0.3, 0.4). Numerical simulations use a grid size corresponding to the normalized grid resolution parameter N d = 20. The latter was indeed found to be a good compromise between accuracy and computational costs in fixed beds. For the solid volume fraction φ s = 0.1, 0.2, 0.3, the number of particles was set to N p = 98, 196, 294, respectively, within the same geometrical domain. For the solid fraction φ s = 0.4, the packed section was instead reduced in order to obtain fast convergence of the random draw algorithm, and a number of particle N p = 166 was accordingly used. The Reynolds number, Re = ρ f U In d p /μ, was varied by changing the inlet velocity. The Prandtl number was fixed equal to unity for all the simulations. A summary of the physical and numerical parameters is given in Table 5. In the configuration chosen in this study, the temperature of the fluid increases in the streamwise direction because of the heat transferred from the solid phase. In order to study the mean temperature evolutions in space, we define a mean cross-sectional fluid temperature

T f (x) = S χ(x, y, z)T (x, y, z)dydz S χ(x, y, z)dydz , (48) 
and a mean cross-sectional bulk temperature (with u the streamwise velocity component)

T b (x) = S χ(x, y, z)u(x, y, z)T (x, y, z)dydz S χ(x, y, z)u(x, y, z)dydz , ( 49 
)
by surface (instead of volume) integrals over the cross-sectional area S, which represents the section of the computational domain orthogonal to the streamwise direction. The volume integral quantities approach the surface integrals when dx → 0. The mean cross-sectional solid volume fraction and fluid velocity are then

φ s (x) = S (1 -χ)(x, y, z)dydz and U f (x) = S χ(x, y, z)u(x, y, z)dydz S χ(x, y, z)dydz . ( 50 
)
Figure 7 shows the streamwise profiles of the mean cross-sectional solid volume fraction for all the numerical simulations. Entrance, packed and exit zones are clearly highlighted. In addition to the inlet and outlet x coordinates, we define x min = x In + 1.5 d p and x max = x Out -1 d p as the coordinates of a domain containing all the particles and for which the temperature gradient is null at the boundaries, and x a = x In + 4 d p and x b = x Out -3 d p as the coordinates of a reduced domain inside which the solid volume fraction may be considered as homogeneous. Figure 8 shows the temperature and the streamwise velocity fields of the fluid flowing through the fixed array of particles, at Reynolds number Re = 50 and solid volume fraction φ s = 0.2, on a slice taken in the middle of the box. The interactions of particle wakes, which modify the velocity and the temperature fields, clearly appear on the visualizations. The temperature is higher inside the boundary layer around each particle, and it is higher downstream of each particle because of the wake effects. Temperature and velocity are anticipated to be correlated. High velocity between particles is expected because of mass flux conservation. This participates to enhancement of heat transfer from the particle surface. In order to investigate this point, the spatial occurrence density function (SDF), f (u * , T ), and the average of the temperature conditioned on the normalized streamwise velocity u * = u/U In , < T |u * > f , are computed for the same case shown in Fig. 8. Both statistical quantities are evaluated over a slice in the middle of the box, bounded between x a and x b in order to avoid single phase zones, withdrawing the points at 320 K which correspond to the solid border and its interior. where S box is the total box surface. In order to compare the two methods (Eqs. ( 30), ( 31)) a domain bounded by x min , x max is chosen and Q f computed as

Q f = ⎛ ⎜ ⎝ S min χρ f C p T u • n dS + S max χρ f C p T u • n dS ⎞ ⎟ ⎠ , (52) 
where S min = S and S max = S are, respectively, the inlet and the outlet cross-sectional areas at the positions x min and x max , since periodic boundary conditions in spanwise directions of the computational domain are imposed. At such locations, the temperature gradient is almost zero and the heat transfer rate may be computed without accounting for the conduction contribution. For all the numerical simulations of the present study, Q p and Q f are computed and averaged over five realizations differing each other by the random particle arrangements. Averaged results and standard deviations are presented in Fig. 13. The latter shows that for each Reynolds number and solid volume fraction, the two methods give very close results and may be both employed for estimating the total heat transfer rate. The method computing the heat exchanged from individual particle with the surrounding fluid is indeed useful for analyzing the heat transfer rate statistical dispersion. The relative occurrence of

Q (k)
p is computed over the five realizations of each test case and results displayed in Fig. 14. Simulations show a large dispersion corresponding to higher solid volume fractions, for all the Reynolds numbers, thus proving the limits of Eulerian or Lagrangian methods to accurately reproduce such interactions at larger scales assuming homogeneous quantities in a same volume of control. This is a clear signature of the interplay between local heat transfer and the microstructure of the particle spatial distribution.

Alternatively to Eq. ( 30), Eq. ( 31) may be used for computing the heat transferred from the solid to the fluid phase in a reduced domain where bounding surfaces cut the particle interface. In computing the total rate of heat transfer in such a reduced domain, both the convection and the conduction contributions should be taken into account. The two contributions

Q f cd = S a -χ k f ∇T • n dS + S b -χk f ∇T • n dS, ( 53 
)
Q f cv = S a χρ f C p T u • n dS + S b χρ f C p T u • n dS (54)
are evaluated over the five realizations carried out for each numerical test case, within the domain bounding by the streamwise coordinates x a and x b (with S a = S b = S). Their ratio is depicted in Fig. 15. It increases by decreasing the Reynolds number and by increasing the solid volume fraction as well. For the lowest Reynolds number simulated in this study, its mean value is found to be lower than 0.03, and even smaller for the two higher Reynolds numbers (< 0.007, < 0.004). The conductive contribution is therefore small enough to be

  2 the tangent vectors to triangle surface; 3. approximating ∇T (x b , y b , z b ) by• tracking of a fluid grid cell containing the barycenter of a given particle surface element;• Taylor extrapolating ∇T (x b , y b , z b ) from neighboring pressure fluid nodes. A fourth-order scheme is used for the approximation of the first derivative in Taylor's extrapolation equation:

)

  Such a temperature corresponds to the trace of the tensor T b which reduces to the tensor component T b = T b,αα when the flow mean velocity is aligned to the α direction. The related Nusselt number Nu b = h b d p k f (45)

Fig. 7

 7 Fig. 7 Solid volume fraction distribution along the axial flow direction, with box showing homogeneous regions of the bed where heat transfer coefficients are computed

Fig. 13

 13 Fig.[START_REF] Municchi | Consistent closures for Euler-Lagrange models of bi-disperse gas-particle suspensions derived from particle-resolved direct numerical simulations[END_REF] Heat transfer rate for different particle concentration, at Re = 10 , Re = 50 , and Re = 100

Table 1

 1 Relative error on the temperature near the sphere

	Grid size	N d	max( Er T (r, t) t )
	80 × 80 × 80	10	∼ 22%
	160 × 160 × 160	20	∼ 13%
	240 × 240 × 240	30	∼ 9%
	320 × 320 × 320	40	∼ 6.5%
	400 × 400 × 400	50	∼ 2.23%
	480 × 480 × 480	60	∼ 0.57%
	640 × 640 × 640	80	∼ 0.4%

Table 2

 2 Mean relative error Er Nu (t) t depending on grid size and number of elements

	N d	N b			
		320	4500	18,000	
	10	19.41	20.64	20.57	Error (%)
	20	1.02 9.17	14.32 7.89	57.29 7.93	N b /(π N 2 d ) Error (%)
	30	0.25 7.60	3.58 5.19	14.32 5.08	N b /(π N 2 d ) Error (%)
		0.11	1.59	6.37	N b /(π N 2 d )

Table 5

 5 Parameters used for simulation of flows through a fixed array of particles

	Parameter	Value	Unit
	Fluid density ρ f Fluid viscosity μ f Fluid mass heat capacity C p Fluid thermal conductivity k f Particle diameter d p	1 1 × 10 -4 1 × 10 3 1 × 10 -1 1 × 10 -3	kg/m 3 Pa.s J/(Kg K) W/(m K) m
	Domain size (φ s = 0.1, 0.2, 0.3)	12d p × 8d p × 8d p	

The authors thank the anonymous reviewer for the suggestion.

Generally, ∇ψ f = ∇ ψ f . The corresponding difference is referred to as tortousity in the literature and usually modeled in porous media[START_REF] Whitaker | Diffusion and dispersion in porous media[END_REF][START_REF] Quintard | Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiment[END_REF].