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In this paper, we determine new and sharp inequalities involving trigonometric functions. More specifically, a new general result on the lower bound for log(1-uv), u, v ∈ (0, 1) is proved, allowing to determine sharp lower and upper bounds for the so-called sinc function, i.e., sin(x)/x, lower bounds for cos(x) and upper bounds for (cos(x/3)) 3 . The obtained bounds improve some well-established results. The findings are supported by graphical analyses.

Introduction

Over the last two decades, efforts were made to bound special trigonometric and hyperbolic functions as sharp as possible, with a focus on the sinc function sin(x)/x. The resulting inequalities find applications in many applied fields, allowing quick evaluations of complex functions involving these trigonometric functions. The literature on the subject is vast and growing fast. We may refer the reader to [START_REF] Bagul | Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions[END_REF], [START_REF] Bagul | A Note on some new bounds for trigonometric functions using infinite products[END_REF], [START_REF] Barbu | Jordan type inequalities using monotony of functions[END_REF], [START_REF] Bhayo | New trigonometric and hyperbolic inequalities[END_REF], [START_REF] Bercu | Refinements of certain hyperbolic inequalities via the Pade approximation method[END_REF], [START_REF] Chesneau | New refinements of two well-known inequalities[END_REF], [START_REF] Chouikha | Sharp inequalities on circular and hyperbolic functions using a Bernoulli inequality type[END_REF], [START_REF] Chouikha | Sharp inequalities for ratio of trigonometric and hyperbolic functions[END_REF], [START_REF] Neuman | Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions[END_REF], [START_REF] Qi | Refinements, Generalizations, and Applications of Jordans Inequality and Related Problems[END_REF], [START_REF] Sandor | On Huygens trigonometric inequality[END_REF], [START_REF] Sandor | On an Inequality of Redheffer[END_REF], [START_REF] Wang | Inequalities for generalized trigonometric and hyperbolic functions with one parameter[END_REF], [START_REF] Yang | Three families of two-parameter means constructed by trigonometric functions[END_REF], [START_REF] Zhang | A double inequality for tanh x[END_REF], [START_REF] Zhang | New Polynomial Bounds for Jordans and Kobers Inequalities Based on the Interpolation and Approximation Method[END_REF] and [18], and the references therein.

This paper contributes to the subject in the following way. First of all, we prove a general and sharp lower bound result for log(1 -uv), u, v ∈ (0, 1). Then, we apply this result to determine polynomial-exponential lower bounds for sin(x)/x and cos(x), also with the use of infinite product series. We prove that they are sharp, improving some recent results of the literature. Also, as intermediate results, some new polynomial-exponential inequalities are set. As an alternative approach, we use these results to conjecture upper bounds for sin(x)/x and (cos(x/3)) 3 . Proofs are given in details by the means of Taylor developments. Again, some recent results in the fields are refined, including the famous Cusa-Huygens inequality [START_REF] Huygen | Oeuvres Completes[END_REF]. All the findings are supported by the visual checks of appropriate functions.

The rest of the paper is planned as follows. Section 2 investigate the lower bounds. Section 3 is devoted to the upper bounds for sin(x)/x and (cos(x/3)) 3 , with discussions.

Lower bounds

This section is devoted to the proof of new lower bounds, involving sharp lower bounds for sin(x)/x and cos(x) as applications. Some graphics support the findings.

2.1. Some new general results. The result below proposes a new lower bound for log(1 -uv) with u, v ∈ (0, 1), which will be at the center of the proofs of new sharp lower bounds for sin(x)/x and cos(x).

Proposition 2.1. For any u, v ∈ (0, 1), the following inequality holds:

log(1 -uv) > uv(u -1) u + 1 + uv 2 + u 3 log(1 -v).
Proof. By virtue of the logarithmic series expansion and, for k ≥ 3, u k < u 3 , after some algebraic manipulations, we get

log(1 -uv) = - +∞ k=1 u k v k k = -uv - u 2 v 2 2 - +∞ k=3 u k v k k > -uv - u 2 v 2 2 -u 3 +∞ k=3 v k k = -uv - u 2 v 2 2 + u 3 - +∞ k=1 v k k + v + v 2 2 = -uv - u 2 v 2 2 + u 3 log(1 -v) + v + v 2 2 = uv(u -1) u + 1 + uv 2 + u 3 log(1 -v).
This ends the proof of Proposition 2.1.

Proposition 2.2. For u, v ∈ (0, 1) the following inequalities hold:

1 -uv > (1 -v) u 3 e uv(u-1)[u+1+ uv 2 ] > (1 -v) u 2 e uv(u-1) > (1 -v) u .
Proof. The first inequality is Proposition 2.1, by taking the exponential transformation. The second one takes the first steps of the proof of Proposition 2.1 in the following sense: Since u 3 < u 2 , we have

uv(u -1) u + 1 + uv 2 + u 3 log(1 -v) = -uv - u 2 v 2 2 -u 3 +∞ k=3 v k k > -uv - u 2 v 2 2 -u 2 +∞ k=3 v k k = -uv - u 2 v 2 2 + u 2 - +∞ k=1 v k k + v + v 2 2 = uv(u -1) + u 2 log(1 -v).
The desired inequality follows by taking the exponential transformation. The last inequality is follows from [7, Theorem 1-1], showing that uv(u -

1) + u 2 log(1 -v) > u log(1 -v).
This ends the proof of Proposition 2.2.

2.2.

Lower bounds for sin(x)/x. The result below presents a new sharp bound for sin(x)/x involving the exponential function.

Proposition 2.3. For x ∈ (0, π), we have the following inequalities:

sin(x) x > 1 - x 2 π 2 π 6 945 e x 2 π 4 945 -1 6 + x 2 2 π 2 945 -1 90 > 1 - x 2 π 2 π 4 90 e x 2 π 2 90 -1 6 > 1 - x 2 π 2 π 2 6
.

Proof. By using the infinite product expression of sin(x)/x, taking u = 1/k 2 and v = x 2 /π 2 in Proposition 2.2, and using the following well-known results on the zeta function, i.e.,

ζ(k) = +∞ n=1 1/n k : ζ(2) = π 2 /6, ζ(4) = π 4 /90 and ζ(6) = π 6 /945, we get sin(x) x = +∞ k=1 1 - x 2 π 2 k 2 > +∞ k=1 1 - x 2 π 2 1 k 6 e x 2 π 2 k 2 ( 1 k 2 -1) 1 k 2 +1+ x 2 2k 2 π 2 = 1 - x 2 π 2 +∞ k=1 1 k 6 e x 2 π 2 +∞ k=1 1 k 6 -1 k 2 + x 2 2π 2 ( 1 k 6 -1 k 4 ) = 1 - x 2 π 2 π 6 945 e x 2 π 4 945 -1 6 + x 2 2 π 2 945 -1 90
.

The second inequality is due to Proposition 2.2, with similar lines of proof. The last inequality follows from [START_REF] Chouikha | Sharp inequalities on circular and hyperbolic functions using a Bernoulli inequality type[END_REF]. This ends the proof of Proposition 2.3. Figure 1 illustrates the two first inequalities of Proposition 2.3 by plotting the two following functions for x ∈ (0, π): As expected, we see that A(x) and B(x) are positive, with very small variations, attesting the sharpness of the obtained bounds.

A(x) = sin(x) x -1 - x 2 π 2 π 6 945 e x 2 π 4 945 -1 6 + x 2 2 π 2 945 -1 90 and B(x) = 1 - x 2 π 2 π 6 945 e x 2 π 4 945 -1 6 + x 2 2 π 2 945 -1 90 -1 - x 2 π 2

Lower bounds for cos(x). The result below presents a new sharp bound for cos(x) involving the exponential function.

Proposition 2.4. For x ∈ (0, π/2), we have the following inequalities:

cos(x) > 1 - 4x 2 π 2 π 6 960 e x 2 π 4 240 -1 2 +x 2 π 2 120 -1 12 > 1 - 4x 2 π 2 π 4 96 e x 2 π 2 24 -1 2 > 1 - 4x 2 π 2 π 2 8
.

Proof. By using the infinite product expression of cos(x), taking u = 1/(2k -1) 2 and v = 4x 2 /π 2 in Proposition 2.2, and using the following well-known results:

+∞ k=1 1/(2k -1) 2 = π 2 /8, +∞ k=1 1/(2k -1) 4 = π 4 /96 and +∞ k=1 1/(2k -1) 6 = π 6 /960 we get cos(x) = +∞ k=1 1 - 4x 2 π 2 (2k -1) 2 > +∞ k=1 1 - 4x 2 π 2 1 (2k-1) 6 e 4x 2 π 2 (2k-1) 2 1 (2k-1) 2 -1 1 (2k-1) 2 +1+ 2x 2 π 2 (2k-1) 2 = 1 - 4x 2 π 2 +∞ k=1 1 (2k-1) 6 e 4x 2 π 2 +∞ k=1 1 (2k-1) 6 - 1 (2k-1) 2 + 2x 2 π 2 1 (2k-1) 6 - 1 (2k-1) 4 = 1 - 4x 2 π 2 π 6 960 e x 2 π 4 240 -1 2 +x 2 π 2 120 -1 12
.

The second inequality is also derived to Proposition 2.2, with similar mathematical arguments. The last one is a consequence of [START_REF] Chouikha | Sharp inequalities on circular and hyperbolic functions using a Bernoulli inequality type[END_REF]. This ends the proof of Proposition 2.4. As a matter of fact, Proposition 2.4 improves [2, Proposition 4], i.e., for any x ∈ (0, π/2),

cos(x) > 1 - 4x 2 π 2 π 2 8 . (2.1)
Figure 2 illustrates the two first inequalities of Proposition 2.4 by plotting the two following functions for x ∈ (0, π/2):

C(x) = cos(x) -1 - 4x 2 π 2 π 6 960 e x 2 π 4 240 -1 2 +x 2 π 2 120 -1 12
and We observe that C(x) and D(x) are positive, with very small variations, attesting the sharpness of the obtained bounds.

D(x) = 1 - 4x 2 π 2 π 6 960 e 4x 2 π 4 960 -1 8 +2x 2 π 2 960 -1 96 -1 - 4x 2 π 2

Upper bounds

Here, we derive some new sharps upper bounds for sin(x)/x and (cos(x/3)) 3 , which naturally appear in many inequality involving trigonometric functions.

3.1.

Upper bounds for sin(x)/x. In [START_REF] Sandor | On Huygens trigonometric inequality[END_REF], the authors proved the inequality of Cusa-Huygens: for x ∈ (0, π/2),

sin(x) x < 2 + cos(x) 3 . (3.1)
That is, is natural to address the following question: Based on (3.1), can we use lower bounds for cos(x) to derive upper bounds for sin(x)/x ?

As a first remark, by using the simple but improvable lower bounds in (2.1), we provide a first answer to the question: Is the following inequality true ? For any x ∈ (0, π/2),

2 + cos(x) 3 > 2 3 + 1 3 1 - 4x 2 π 2 π 2 8 > sin(x)
x .

The answer is negative because the function h(x) = 3 sin(x)/x-2-1 -4x 2 /π 2 π 2 /8 has not a constant sign. Indeed, as countered example, we have h(0.3) ≈ 0.0001 > 0 and h(0.8) ≈ -0.00034 < 0. However, based on Proposition 2.4, the following chain of inequalities is true, providing a new upper bound for sin(x)/x. Proposition 3.1. For x ∈ (0, π/2), we have

2 + cos(x) 3 > 2 3 + 1 3 1 - 4x 2 π 2 π 6 960 e x 2 π 4 240 -1 2 +x 2 π 2 120 -1 12 > 2 3 + 1 3 1 - 4x 2 π 2 π 4 96 e x 2 π 2 24 -1 2 > sin(x) x .
Proof. We only need to prove the last right inequalities, the others follow from Proposition 2.4. The proof is based on the analytical study of the following function:

k(x) = 3 sin(x) x -2 -1 - 4x 2 π 2 π 4 96 e x 2 π 2 24 -1 2 . (3.2)
The desired inequality comes by proving that k(x) is non positive. The Taylor development of sin(x) gives sin(x) = x -

x 3 3! + x 5 5! - x 7 7! + . . . + (-1) k-1 x 2k-1 (2k -1)! + (-1) k cos(θx) (2k + 1)! x 2k+1 ,
where θ ∈ (0, 1). As a direct application, the following inequalities hold for x ∈ (0, π/2):

1 - 1 6 x 2 + 1 120 x 4 - 1 5040 x 6 < sin(x) x < (x), (3.3) where (x) = 1 - 1 6 x 2 + 1 120 x 4 - 1 5040
x 6 + 1 362880

x 8

≈ 1 -0.166667x 2 + 0.0083333x 4 -0.00019841x 6 + 0.0000027x 8 .

Similarly, we have

e x 2 π 2 24 -1 2 > m(x), (3.4) where m(x) = 1 + π 2 24 - 1 2 x 2 + 1 2 π 2 24 - 1 2 2 x 4 + 1 6 π 2 24 - 1 2 3 x 6 ≈ 1 -0.088766x 2 + 0.0039392x 4 -0.00011655x 6 .
Applying again the Taylor decomposition technique, since 4x 2 /π 2 < 1 and π 4 /96 > 1, we have

1 - 4x 2 π 2 π 4 96 > n(x), (3.5) 
where

n(x) = 1 - 1 24 π 2 x 2 + 1 1152 π 4 - 1 12 x 4 - 4 3π 2 π 4 1152 - 1 12 
π 4 96 -2 x 6 + 4 3π 4 π 4 1152 - 1 12 
π 4 96 -2 π 4 96 -3 x 8 ≈ 1 -0.411246x 2 + 0.001225x 4 + 0.00016305x 6 + 0.000032799x 8 .
By putting (3.2), (3.3), (3.4) and (3.5) together, we obtain

k(x) < 3 1 -0.166667x 2 + 0.0083333x 4 -0.00019841x 6 + 0.0000027x 8 -2 -1 -0.41124x 2 + 0.001225x 4 + 0.000163x 6 + 0.0000328x 8 × 1 -0.08876x 2 + 0.0039392x 4 -0.00011655x 6 .
After development and a acceptable approximation (with 5 digits), we arrive at k(x) < -0.0000001x 12 + 0.000003x 10 -0.0000654x 8 + 0.0010868x 6 -0.01667x 4 .

This last polynomial is non positive because it has no root in the interval (0, π/2). This ends the proof of Proposition 3.1.

Thanks to Proposition 3.1, we then obtain a better bound for the Cusa-Huygens inequality.

Also, we may derive from Propositions 2.1 and 3.1 the following new frame for sin(x)/x :

1 - 4x 2 π 2 π 6 960 e x 2 π 4 240 -1 2 +x 2 π 2 120 -1 12 < sin(x) x < 2 3 + 1 3 1 -4 x 2 π 2 π 6 960 e x 2 π 4 240 -1 2 +x 2 π 2 120 - 1 12 
.

Figure 3 provides a graphical illustration of the main finding of Proposition 3.1 by displaying the following function for x ∈ (0, π/2): We see that E(x) is positive, as proved analytically.

E(x) = sin(x) x -    2 3 + 1 3 1 - 4x 2 π 2
3.2. Upper bounds for (cos(x/3)) 3 . In [START_REF] Yang | Three families of two-parameter means constructed by trigonometric functions[END_REF], the following chain of inequalities is proved. For x ∈ (0, π/2),

sin(x) x < 1 3 2 cos x 2 + 1 2 < cos x 3 3 < 2 + cos(x) 3 .
The following result proposes a refinement of this results, by the use of Proposition 2.4. Proposition 3.2. For x ∈ (0, π/2) we have

cos x 3 3 < 2 3 + 1 3 1 - 4x 2 π 2 π 6 960 e x 2 π 4 240 -1 2 +x 2 π 2 120 -1 12 < 2 3 + 1 3 1 - 4x 2 π 2 π 4 96 e x 2 π 2 24 -1 2 < 2 + cos(x) 3 .
Proof. We follow the lines of the proof of Proposition 3.1, by proving the first left inequality; the others follows from Proposition 2.4. Firstly, the classic Taylor development of cos(x) gives

cos x = 1 - x 2 2! + x 4 4! - x 6 6! + . . . + (-1) k x 2k 2k! + (-1) k+1 cos(θx) (2k + 2)! x 2k+2 ,
where θ ∈ (0, 1). Among others, this implies that cos(x) < 1 -

x 2 2! + x 4 4! - x 6 6! + x 8 8! .
That is, we have cos x 3 3 < q(x), (3.6) where, doing a standard development and a acceptable approximation, 

q(x) = 1 - (x/3) 2 2! + (x/3) 4 4! - (x/3) 6 6! + (x/3) 8 8! 3 ≈ 1 - 1 
(x) = 1 + π 2 24 - 1 2 x 2 + 1 2 π 2 24 - 1 2 2 x 4 + 1 6 π 2 24 - 1 2 3 x 6 
≈ 1 -0.088766x 2 + 0.0039392x 4 -0.00011655x 6 .

We have also × 1 -0.411246x 2 + 0.001225x 4 + 0.0001631x 6 + 0.0000328x 8 .

That is, after development and a suitable approximation (with 5 digits), we arrive at t(x) < -0.00925926x 4 + 0.000636532x 6 -0.00005245x 8 + 0.00000241x 10 .

We verify that this polynomial is non positive because it has no root in the interval (0, π/2). This proved the first left inequality, ending the proof of Proposition 3.2.

As illustration of the main result in Proposition 3.2, Figure 4 shows the curve of the following function for x ∈ (0, π/2): As expected, we see that F (x) is positive.

F (x) = 2 3 + 1 3 1 - 4x 2 π 2

Figure 1 .

 1 Figure 1. Plots for A(x) and B(x) for x ∈ (0, π), respectively.

Figure 2 .

 2 Figure 2. Plots for C(x) and D(x) for x ∈ (0, π/2), respectively.

Figure 3 .

 3 Figure 3. Plots for E(x) for x ∈ (0, π/2).

Figure 4 .

 4 Figure 4. Plots for F (x) for x ∈ (0, π/2).

  -0.166667x 2 + 0.010802x 4 -0.0003486x 6 + 0.000006x 8 -2 -1 -0.088766x 2 + 0.0039392x 4 -0.0001166x6 

	where																
	s(x) = 1 -	1 24	π 2 x 2 +	1 1152	π 4 -	1 12	x 4 -	4 3π 2	π 4 1152	-	1 12	π 4 96	-2 x 6
	+	4 3π 4	π 4 1152	-	1 12	π 4 96		-2	π 4 96	-3 x 8
	≈ 1 -0.411246x 2 + 0.001225x 4 + 0.0001631x 6 + 0.0000328x 8 .
	The relations (3.6), (3.7) and (3.8) allow us to derive an estimate of the difference
				t(x) = 3 cos	x 3				3	-2 -1 -	4x 2 π 2	π 4 96	e x 2 ( π 4 24 -1 2 ) .
	Indeed, we have													
	t(x) < 3 1 -1/6x 2 +	7 648	x 4 -	61 174960	x 6 +	547 88179840	x 8 -2
	-1 +		π 2 24	-	1 2		x 2 +	1 2			π 2 24	-	1 2	2	x 4 +	1 6	π 2 24	-	1 2	3	x 6
	× 1 -	1 24	π 2 x 2 +	1 1152	π 4 -	1 12	x 4 -	4 3π 2	π 4 1152	-	1 12	π 4 96	-2 x 6
	+	4 3π 4	π 4 1152	-	1 12	π 4 96	-2	π 4 96	-3 x 8 ,
	implying that														
	t(x) < 3 1.0													
	(3.8)												1 -	4x 2 π 2	π 4 96	> s(x),

[18] Zhu, L. (2019). Sharp inequalities for hyperbolic functions and circular functions, J. Inequal.
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