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Abstract. The present work demonstrates how a light structure can be easily designed through Topology
Optimization even including complex analysis and sizing criteria such as hyperelastic Neo-Hookean materials
for nonlinear analysis and aggregated stress constraints. The SIMP approach was adopted and two different
strategies were analysed using an in house versatile MATLAB code. MMA was used as reference optimizer (in
structural optimization) whereas a unified aggregation and relaxation method was adopted to deal with stress
constraints. Feasibility was analyzed from the viewpoint of allowable stress verification. Two test cases are then
studied: a morphing airfoil (for aeronautical applications) and a geometric inverter (for mechanics and bio-
medical applications). For both, a hyperelastic Neo-Hookean material was chosen. Finally a complementary
study on the effects of constraints and the input force intensity is also presented.

Keywords: Topology optimization / Nonlinear mechanics / Stress-based optimization / Morphing /
Compliant mechanism

1 Introduction

The past twenty years have seen increasingly rapid
advances in the field of structural optimization: in par-
ticular, Topology Optimization (TO) is becoming a key
figure in the research panorama. This method leads to
an optimal structural efficiency, through the removal of
unnecessarily placed material, in order to accomplish the
minimization of a given objective (such as the compli-
ance of the system). Since the pioneering work of Bendsoe
and Kikuchi (1988) [1] a number of approaches have been
proposed, among which are: density-based methods (the
well-known SIMP algorithm) [2,3], evolutionary strategies
[4] and level-set based methods [5,6].
Moreover, several researchers have tried to implement

and diffuse simple and efficient codes. One of the most
well-known and important results is due to Andreassen
et al. [7], who created a very simple and efficient 88-line
code written in MATLAB, capable of optimizing an MBB
beam through a SIMP algorithm. Compared to other
available codes and the same 99-line code (published by
Sigmund et al. [8]), the former needs much less computa-
tional power, thanks to judicious use of vectorization and
pre-allocation of most of the variables. The present work

* e-mail: gabriele.capasso@student.isae-supaero.fr

focuses on the SIMP approach and the code developed in
our study is largely inspired by the top88.
In the literature, several promising applications of TO

to classical aerospace structures can be found [9–13].
Recently, researchers have shown an increased inter-
est in alternative architectures presenting wings with a
variable geometry, better known as “morphing wings”
[14–17]. Different types of morphing have been tested
both numerically [18] and experimentally [19], reveal-
ing the advantages in terms of aerodynamic drag, noise
and vibration control with respect to conventional air-
craft configuration, based on flight control surfaces. Two
main categories can be distinguished [20]: planform mor-
phing, based on the modification of the plant itself of the
wing, and performance morphing, which leads to variat-
ing the airfoil in shape (shape morphing) or in incidence
(twist morphing). In this paper, a shape morphing design
is analyzed.
Earlier work on TO was restricted to linear struc-

tural designs. Recent research explored the influence of
nonlinear mechanics on the TO in several simple applica-
tions, including geometrical nonlinearity [21–24], material
nonlinearity [25–30] and both geometrical and material
nonlinearities simultaneously [31–33]. Work from [24] evi-
dences the differences encountered in a TO problem,
according to the choice of a linear or a nonlinear analysis,
leading to totally different results.
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The introduction of Nonlinear Mechanics into the
TO of a morphing wing has already been treated by
Bhattacharyya et al. [9]: in particular, geometric and
material nonlinearities have been investigated. In [9], the
optimization problem presents the objective of minimizing
the actuating force, under constraints of desired volume
fraction, compliance and trailing edge displacement. The
obtained structure is, in fact, a compliant mechanism
capable of getting a geometric advantage. The first of
the two parts of the present work focuses on the same
structure, whilst the objective is to design the lightest
structure under stress constraints, in order to conceive a
feasible structure.
In recent years other compliant mechanisms have fre-

quently been proposed for aerospace systems due to their
advantages over traditional rigid-link mechanisms. As
compliant mechanisms can be manufactured using fewer
parts (usually one single part), they are lighter than their
traditional counterparts. They are also easy to manufac-
ture with modern 3D printing techniques, and do not
require assembly. The ability to 3D print mechanisms and
tools on board the International Space Station (or future
bases on the Moon and Mars) will save substantially on
the cost and time involved in transporting these devices
from Earth. To be prepared for deep-space exploration
and habitation in the future, research and technology
development concerning the utilization of additively con-
struct structures from insitu materials is incorporated into
the in-space manufacturing technology roadmap [34].
A compliant mechanism has been investigated by

Conlan-Smith and James [35]. Their study focuses on
the optimal design via Topology Optimization of a bio-
inspired structure. The second part of the present work
is inspired from [35], and aims at solving the same opti-
mization problem by considering feasibility constraints, in
terms of admissible stresses.
Stress-based Topology Optimization is an active

research field. Several examples available in literature
show the challenge posed by stress constraint in TO
problems. Essentially, two problems arise [36]: first, a
large number of constraints must be considered, since
unlike stiffness, stress is a local quantity; second, stress is
highly nonlinear with respect to design variables. Recent
advances show possibilities to overcome these difficulties
[37–42]. There are few recent examples in the literature
where the stress distribution is considered as a con-
straint in TO problems with geometrical nonlinearities
(as for instance [39]). The introduction of both stress con-
straint and nonlinear mechanics into a TO using nonlinear
mechanics is the main challenge of the present work.
The present work aims at designing two compliant

mechanisms: a morphing wing and a geometric inverter.
The former is treated as an academic example conceived
to validate the method, while the latter is a more realis-
tic test-case. In both mentioned parts of this article, the
optimal design is achieved using a nonlinear analysis of a
hyperelastic material through TO, considering the stress
as a constraint of the problem. Section 2 illustrates the
theoretical background behind the optimization problem.
Section 3 details the mathematical formulation and the
newly introduced elements of the paper. Section 4 presents

the different test-cases, outlining the relative mathemati-
cal formalization. Optimized designs and numerical results
are finally reported and discussed in Section 5.

2 Theoretical background

In this section the basic principles of nonlinear mechanics
and Topology Optimization are explored.

2.1 Nonlinear mechanics

The present work focuses on the design of large-
displacement mechanisms, in which material doesn’t fol-
low traditional linear mechanics. This topic will be just
introduced in this section, although it is largely explained
in [43].
Mechanical nonlinearities are distinguishable into four

main categories [43]: (1) geometric nonlinearity (nonlinear
strain-displacement relation), (2) material nonlinearity
(nonlinear constitutive relation), (3) kinematic nonlin-
earity (non-constant displacement BCs, contact) and (4)
force nonlinearity (follow-up loads).
The resolution of a Nonlinear Finite Element Anal-

ysis (NFEA) is not straight-forward, since the global
system is nonlinear: in [43] several methods are illus-
trated. The most common algorithm is the one which
goes under the name of Newton-Raphson, which is usually
modified through the introduction of a step-force control.
This method guarantees better stability than the simple
Newton-Raphson, preserving the quadratic convergence
[43].

2.2 Topology Optimization (TO)

Topology Optimization methodology is a classical way to
obtain an optimal structure by removing material where
necessary. Currently, the four most common methods used
to solve the optimization problem are:

– density-based methods [2,3];
– evolutionary strategies [4];
– level-set based methods [5,6];
– geometric feature based [44–46].

The former is the main subject of the present article and
will be explained in the following section.

2.2.1 SIMP algorithm
The density-based approach, also known as Solid Isotropic
Material with Penalization (SIMP), is the most popular
TO method. SIMP has a solid mathematical foundation
[1,47–50]. This method is capable of handling various
objectives and constraints, and is relatively easy to
implement within a finite element environment.
The basic idea behind NFEA based SIMP is that each

finite element is associated with a fictitious pseudo-density
variable 0 ≤ ρ ≤ 1, that essentially parameterizes the
topology. The pseudo-densities are optimized to reach
the desired objective. The general algorithm is detailed
in Algorithm 1.
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Algorithm 1 SIMP Algorithm
Initialization:
Densities, mesh-independency filter

Main loop:
while convergence not reached do
FE Analysis
Objective and Constraints evaluation
Derivatives evaluation
Mesh-independency filter applied to sensitivity
Update of density
Mesh-independency filter applied to density

end while
Density results analysis

In [51] the reader can find an exhaustive review on
numerical instabilities typical of TO. They include essen-
tially checkerboard patterns, mesh-dependencies and local
minima. To deal with the first two issues, a mesh-
independency filter can be applied [51]. A fundamental
aspect of such filters is the distinction between the physi-
cal densities ρ and the merely numerical ones x: the latter
category constitutes the design variable array updated in
the optimization process at each iteration; once having
updated numerical densities, these are filtered to obtain
the physical distribution of the material. NFEA is based
on physical densities ρ.

2.2.2 Optimizer: method of moving asympthotes
When the number of design variables is very large, gra-
dient based optimization methods are the most efficient
algorithms. They are preferred to gradient-free optimiza-
tion methods since the latter typically require many
evaluations.
As shown in [9], the MMA is one of the most suitable

optimizers which could substitute the Optimality Criteria
adopted in the 88-line code by Sigmund [52], in order to
accelerate convergence.
This method is based on a local convex approxima-

tion of objective and constraint function: this needs as
input the local evaluation of the objective function, the
constraints and all their derivatives with respect to the
numerical densities x.
The solution is said to have reached convergence when

the first order Karush Kuhn Tucker (KKT) conditions are
satisfied to an absolute tolerance of 2× 10−3.

3 New formulation

3.1 Material description

A nonlinear hyperelastic material was investigated: the
same methods described in [9] were adopted, but modify-
ing the proposed algorithm in order to achieve the same
results as well as a fast convergence. Moreover, far too
little attention has been paid to the feasibility of the
structure itself: this can be observed by the absence of
a constraint related to the maximum stress supportable
by the material.

The chosen material is described by the potential
density defined in [9,53] and reported in the formula
below:

Φ =
1

2
λ[log(J)]2 − µ log(J) +

1

2
µ[tr(C)− 3]. (1)

Here J is the determinant of the deformation gradient
F ; the term tr(C) denotes the trace of the right Cauchy-
Green deformation tensor C = FTF ; finally,

µ =
E

2(1 + ν)
and λ =

νE

(1− 2ν)(1 + ν)

constitute the Lamé constants of the material which are
seen as functions of Poisson ratio ν and Young Modulus
E. This latter is supposed to be related to the density
ρ of each element (e), through one of the two following
relations:

Ee = ρpeE0 (2)

Ee = Emin + ρpe(E0 − Emin) (3)

which will be used in order to make comparisons in our
forthcoming NFEA. Following [7], equation (2) is referred
to as calssical SIMP and equation (3) as modified SIMP.

3.2 Nonlinear finite elements analysis

We treat the NFEA as another minimization sub-problem
in the global optimization: the function to minimize is
the total energy of the system, given by both internal
and external forces, while the constraints are the displace-
ments imposed in the boundary conditions. The domain
is decomposed using triangular elements.
The definition of the objective function derives from

the Principle of Virtual Works, where the external work
is computed as the product between the force and the
displacement of the point of application:

Υtot[U ] =

∫
Φ[U ]dΩ− FextUapp. (4)

Here, U represents the vector of the nodal displacements
which has to be determined by Variational Principle. In
order to make the Optimization Toolbox in MATLAB
more efficient, we have to provide it with the gradient and
the Hessian of the total energy. The gradient will be the
residual R, computed as the difference between internal
and external forces:

R[U ]
Def
=

δΥtot[U ]

δU
= Fint[U ]− Fext (5)

where

Fint[U ] =

∫
∂Φ[U ]

∂U
dΩ. (6)
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The Hessian will be simply the tangent stiffness matrix
KT , computed as the second derivative of the compliance
to the nodal displacements:

KT [U ]
Def
=

∂R[U ]

∂UT
=

∫
∂2Φ

∂U∂UT
dΩ. (7)

The equilibrium condition is satisfied when:

R[UF ] = 0. (8)

The MATLAB tool fmincon is a suitable instrument to
perform NFEA, since it treats this sub-problem as a con-
strained minimization problem. Moreover, it contains a
stable implementation of the Newton-Raphson Method
in the Interior-Point Region [54]. This feature turns the
fmincon process into a fast and reliable solver for nonlinear
mechanical problems.

3.3 Stress constraint treatment

The Second Piola-Kirchoff stress S relates forces in the
reference configuration with areas also measured in the
reference configuration (see [53]). It can be calculated as
twice the derivative of the potential energy function with
respect to the right Cauchy-Green deformation tensor:

S = 2
∂Φ

∂C
= λ log(J)C−1 + µ(I − C−1). (9)

The Cauchy stress, σ, which relates the forces in the
deformed configuration with areas in the deformed con-
figuration, can then be defined as:

σ =
1

J
FSFT . (10)

As a consequence, the microscopic (local) stress tensor
will be evaluated as:

σ =
1

J
[λ log(J)I + µ(B − I)] (11)

where B is the left Cauchy-Green tensor, which is defined
as B = FFT , and I is the second-order identity tensor.
Here, microscopic stress was considered by calculating the
Von-Mises stress, under the hypothesis of plain strain. It is
important to underline the fact that this does not depend
directly on density distribution. In this work the unified
approach proposed by Verbart et al. [40] was adopted to
incorporate stress constraints in topology optimization.
Assuming that the densities in SIMP represent a porous
micro-structure, one can distinguish the stress at macro-
scopic (effective) versus microscopic levels [55]. The former
is the stress computed using the Young modulus of the
SIMP model (c.f. Eqs. (2)–(3). The latter is computed
considering a stress model that mimics the behavior of
the “local stress” in a rank-2 layered composite [55]. For
this reason we identify the microscopic stress as:

σ̃ =
1

J
FS0F

T (12)

where S0 is the second Piola-Kirchoff stress considering
a material with full Young Modulus E = E0 (i.e. ρ = 1).
To access singular optima classic of mathematical program
with vanishing constraints, a relaxation method is adopted
[40]. In particular, the relaxed constraint is defined as:

gi = ρ̃i

(
σ̃i
σlim

− 1

)
≤ 0 (13)

where ρ̃i = ρ−ρmin

ρmax−ρmin
. In classical SIMP formulation (see

Eq. (2)), we have ρmin = 0.1 and ρmax = 1 while in
modified SIMP (see Eq. (3)) ρmin = 0 and ρmax = 1.

3.4 Adjoint sensitivity analysis

The method which is going to be illustrated has been
proposed by Bhattacharyya [9]. Since the objective and
constraint function depend both on density distribution
and nodal displacements, an adjoint sensitivity analysis
is to be performed. In particular, we use an augmented
Lagrangian L[ρ, UF (ρ)], which may be defined as follows:

L = f + λTR. (14)

Here f indicates a general function, indifferently the
objective or the constraint; λ is a Lagrange multiplier
ensuring that the residual of forces R vanishes as required
in equation (8). Deriving this expression and using the
chain rule, we obtain:

dL

dρ
=
∂f

∂ρ
+

∂f

∂UF

dUF
dρ

+ λT
(
∂R

∂ρ
+

∂R

∂UF

dUF
dρ

)
. (15)

Collecting all the implicit terms indicated by d
dρ , we

obtain:

dL

dρ
=
∂f

∂ρ
+ λT

∂R

∂ρ
+

(
∂f

∂UF
+ λT

∂R

∂UF

)
dUF
dρ

. (16)

In order to eliminate the implicit dependence of free nodal
displacements on density distribution, the lagrangian mul-
tiplier can be computed, remembering the definition
of the derivative of the residual related to the nodal
displacements, as follows:

λT = − ∂f

∂UF

∂R

∂UF

−1

= − ∂f

∂UF
K−1
T . (17)

Finally, we can obtain:

dL

dρ
=
∂f

∂ρ
+ λT

∂R

∂ρ
. (18)

One can observe that the evaluation of gradients only
requires a linear system of equation resolution, extremely
convenient if compared with direct or finite difference
approaches.
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3.5 Density filtering

As pointed out in Section 2.2, a mesh-independency filter
was applied to deal with certain numerical instabili-
ties, namely checkerboard patterns and mesh-dependent
solutions [51].
Here the method suggested by Bruns and Tortorelli [56]

was implemented, where:

ρj =

∑
i wijxi∑
i wij

. (19)

Here wij is the weight associated with the ith ele-
ment within the prescribed neighborhood of the jth one,
determined as:

wij = max(0, Rmin − rij). (20)

The parameter Rmin, called filter radius, is the radius of
the specified neighborhood and rij the distance between
the centroids of the two elements. This formulation pro-
posed in [56] is valid under the assumption of uniform
mesh. This filter makes the results independent from
the adopted mesh, improving the resolution as Rmin
decreases. However, the maximal resolution is linked to
the mesh itself, since the minimum applicable value Rmin
cannot be smaller than the size of the largest element.
When computing derivatives with respect to the numer-

ical densities x (necessary to gradient-based optimization
methods), two steps are followed: firstly, derivatives with
respect to physical densities ρ have to be computed; then,
chain rule is applied to obtain the desired gradient.

3.6 Constraint aggregation

Treating the relaxed stress distribution, there would be an
excess of constraints. So the maximum may be taken into
account to represent the whole domain. Given the fact
that the max function is non-derivable, the lower bound
Kreisselmeier-Steinhauser function [36,57] was employed:

max
i
gi ≈ GlKS =

1

P
log

(
1

N

N∑
i=1

ePgi

)
. (21)

The larger the factor P , the better the approximation
of the max, but also the more expensive the computa-
tional cost of the overall optimization process. In fact the
non-linearity of the optimization problem is enhanced by
the use of higher values of P . Therefore, P has to be cho-
sen as an appropriate compromise between computational
burden and accuracy in stress control.

4 Applications

4.1 First optimization problem: NACA airfoil

As an academic example, this part focuses on the
minimization of the weight of a shape morphing wing.

Fig. 1. Initial domain: airfoil optimization problem.

Using the classical SIMP approach (see Eq. (2)), the
whole problem can be formalized as follows:

min0.1≤ρ≤1 V

s.t. Ue ≤ U0

σi ≤ σlim ∀i = 1, . . . , N.

(22)

Here V represents the volume fraction, Ue the displace-
ment at the trailing edge and σlim is the highest tolerable
stress in the structure (to avoid failure). The constraint
relative to the σ in each element is due to the desire to
design a feasible structure while not reaching the weakest
one: in particular, we will consider the Von-Mises stress,
under the hypothesis of plain strain. Finally, the con-
straint on Ue derives from the necessity of designing an
efficient shape morphing wing.
We shall also perform further analyses based on the

modified SIMP approach (see Eq. (3)), for comparisons.
The new optimization problem is then:

min0≤ρ≤1 V

s.t. Ue ≤ U0

σi ≤ σlim ∀i = 1, . . . , N

C ≥ Cmin.

(23)

Here another constraint has to be added, since the vol-
ume fraction minimization under stress constraint, would
generate gray regions, preventing the creation of a con-
tinuous chain between force application point and trailing
edge. Such constraint will be an inferior limit on the com-
pliance C of the trailing edge region [35]: this value is
arbitrarily defined as the initial compliance.

4.2 Second optimization problem: geometric inverter

The second optimization problem is a more realistic test
case, inspired by the work in [35]. Figure 2 illustrates the
initial domain.
The idea is to design a compliant mechanism which

would invert the input displacement, creating as output
another displacement on the opposite side of the structure.
The actual input is a force. The optimized mechanism
is defined as the one capable of reaching the highest
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Fig. 2. Geometric inverter scheme.

ratio between output and input; as the two displacements
have opposite signs, this is translated into a minimization
problem: 

min0≤ρ≤1 Uout/Uin
s.t. V ≤ V0

σi ≤ σlim ∀i = 1, . . . , N

C ≥ Cmin.

(24)

The second pseudo-density parameterization of the SIMP
Algorithm is adopted. Before the main loop, the topol-
ogy is initialized by imposing ρ = V0 in every element of
the domain. The constraints are quite similar to the ones
adopted in the previous section. We have thus:

– volume fraction: the structure has to be as light as
possible, to reduce costs and weight;

– stress: the whole mechanism has to support the
applied load without breaking, or reaching the yield
point;

– compliance: a continuous chain between input and
output is ensured, by imposing that the output
region has to keep the same compliance at the first
iteration loop (where ρ = V0 in every finite element)
[35].

Another aspect which appeared fundamental is the sym-
metric nature of the domain: to accelerate computation,
only half of the whole domain has been simulated.

5 Results and discussion

In this section, numerical results are presented and dis-
cussed. Simulations have been performed using a unique
MATLAB code, adopting the original MMA code pro-
vided by Svanberg [52] and without altering its default
parameters. Given the fact that the constraint is approxi-
mated (as explained in Sects. 3.3 and 3.6) stress distribu-
tion post-processing on the optimal structure is necessary.

Table 1. Default parameters used in the Airfoil optimiza-
tion problem.

Number of design variables 2065
Number of nodes 1136
Number of degrees of freedom 2152
Young Modulus E0 [MPa] 15
Minimum Young Modulus Emin [MPa] 0.015
Poisson ratio ν 0.3
Lamé first parameter λ0 [MPa] 8.65
Lamé second parameter µ0 [MPa] 5.77
Minimum Lamé first parameter λmin [MPa] 0.00865
Minimum Lamé second parameter µmin [MPa] 0.00577
Displacement constraint U0 [mm] −21
Stress constraint σlim [MPa] 1
Chord length c [mm] 150
Abscissa force’s application point xapp/c 0.3
Ordinate force’s application point yapp [mm] 5
Intensity applied force Fext [N/mm] 7
Limits of Boundary Conditions x/c [%] 35− 65
Penalization factor p 3.0
Radius filter Rmin [mm] 6.0
Aggregation constant P 4

The advantage of our methodology is that stress dis-
tribution is already computed in our optimization loop
(“Constraints evaluation” in Algorithm 1).

5.1 NACA airfoil

A first analysis is performed on the two problems 22 and
23, considering the same domain (represented in Fig. 1).
The parameters adopted in this section are reported in
Table 1.

5.1.1 First formulation results
In this subsection, the results to the problem (22) are pre-
sented. The base structure can be observed in Figure 3a.
This can be decomposed into four main sectors:

– Front sector: This is responsible for stress redistribu-
tion, as illustrated in Figure 3d. The stresses use this
path in order to create an equilibrating moment. The
middle part, situated between the front chain and
the application point of the external force, is empty:
in fact, the volume fraction constrained minimiza-
tion produces this result, where the stresses have to
be collocated in an intermediate location. Moreover,
this sector connects the two series of points where
the homogeneous Boundary Conditions are applied.

– Central chain: This sector is the transmitter of forces
between the application point of the external force
and the rear chain (discussed later), as shown in
the macroscopic stress distribution (Fig. 3d). It is
directly linked to all the other parts of the optimized
structure.

– Inferior chain: It is the main link between the central
chain and the inferior BCs. In the base structure, It
is also directly linked to the front part: this is due to
the fact that it starts exactly at the left limit of the
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Fig. 3. Results relative to the Airfoil problem (first formulation).

inferior boundary points affected by the application
of homogeneous BCs.

– Rear chain: This is the only part not interested in
any redistribution of stresses, as shown in Figure 3c
and d. Its main role is transmitting the commanded
displacement at the trailing edge, thanks to an input
force provided by the central chain. This sector
affects the volume fraction negatively, given that it
doesn’t have to carry any stress.

The optimized structure in deformed configuration is
illustrated in Figure 3b. The reader can observe the logic
at the base of the mechanism. By introducing a single
input force at the node in green, the effort is transmitted
to the rear chain through the central sector. Simultane-
ously, the inferior chain and the front sector connect the
central chain to the nodes in blue (where homogeneous
Dirichlet Boundary Conditions are applied). Finally, the
rear chain converts the input force into a displacement at
the trailing edge.
The distribution of the relaxed constraint proves the

approximated nature of the GKS function: this is not
always guaranteed, but it is the product of a compro-
mise between precision, stability and computational cost.
However, the only elements where the relaxed constraints
are not satisfied are, effectively, “empty”.

5.1.2 Second formulation results
When using the second formulation to parameterize the
topology, a totally different structure is obtained. Results
from problem (23) are presented in this subsection.

The differences are evident by comparing Figure 3 and
Figure 4.
As was visible in the previous numerical experiment, the

aggregation method does not always guarantee the respect
of the stress limits: this is a consequence of the GKS
approximation. This time, an overshoot can be found on
the filled structure. A lower limit on the stress should have
been introduced in order to adapt to the real constraint.
The logic behind the optimal structure presented in

Figure 4 (solution of the problem (22)) is unaltered com-
pared with to the first one in Figure 3 (solution of the
problem (23)).
However, this formulation leads to a more efficient

application of the stress constraint, since all empty
elements do not contribute to the macroscopic stress dis-
tribution. An immediate consideration is the removal of
most of the Front sector and the Rear chain from the pre-
vious results: globally the obtained volume fraction would
be inferior.
As a consequence, the modified SIMP approach (see

Eq. (3)) is more suitable for topology optimization prob-
lems presenting a stress constraint. This consideration is
applied in the second part of the present work.

5.2 Geometric inverter

Out of the previous academic examples, the second formu-
lation has been identified as a better compromise between
severity of the penalization on stress constraint and real-
ity of the final structure, leading to a much lighter final
structure. However, a lower limit on the stress has to be
introduced.
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Fig. 4. Results relative to the Airfoil problem (second formulation).

Table 2. Default parameters used in the Inverter opti-
mization problem (symmetrical problem).

Number of design variables 2464
Number of nodes 1293
Number of degrees of freedom 2543
Young Modulus E0 [MPa] 11
Minimum Young Modulus Emin [MPa] 0.011
Poisson ratio ν 0.4
Lamé’s first parameter λ0 [MPa] 15.71
Lamé’s second parameter µ0 [MPa] 3.93
Minimum Lamé’s first parameter λmin [MPa] 0.01571
Minimum Lamé’s second parameter µmin [MPa] 0.00393
Stress constraint σlim [MPa] 0.3
Domain width c [mm] 60
Domain height c [mm] 60
Intensity applied force Fext [N/mm] 0.2
Penalization factor p 3.0
Radius filter Rmin [mm] 1.25
Aggregation constant P 4

In the second test case of the present article, modified
SIMP was adopted. Moreover, only half of the domain
has been considered in the simulation to accelerate com-
putation (symmetric properties have been exploited). All
the parameters characterizing the Inverter problem are
reported in Table 2.
In Figure 5 the final structure is presented. In the

deformed configuration (Fig. 5b), the gain in terms of
displacement inversion is easily visible.
Each half of the compliant mechanism can be decom-

posed into four main sectors:

– Central Bulb: It absorbs the applied force and
transmits it to the rest of the structure.

– Support Net: It guarantees an efficient redistribution
of stresses all over the structure: the ramifications
create the necessary moments to equilibrate the
whole mechanism. In fact, as the available vol-
ume fraction constrained, the resulting positioning
produces the best compromise.

– Angular chain: This connects the Support Net with
the clamped point, guaranteeing the force equilib-
rium of the structure.

– Terminal chain: It make the morphing nature of the
whole mechanism possible, generating the displace-
ment in output.

The relaxed stress constraint and macroscopic stress
distributions present some differences: in fact, the former
reports a stress constraint violation in the elements of
the terminal chain of the actuator, where the displace-
ments are higher, due to the aggregation; this violation
disappears in the macroscopic stress distribution. On the
contrary, the maximum effective stress is in the areas of
higher curvature.

5.2.1 Influence of stress constraint
Further numerical analyses were performed, in order to
investigate the effects of the stress constraint. In particu-
lar, both increases and decreases on the stress limits were
considered.
If the stress limit decreases to 0.2 MPa, the obtained

structure is totally altered (results reported in Fig. 6).
However, the global decomposition follows the same logic
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Fig. 5. Results relative to the Inverter problem.

adopted in the previous section. Four main differences
may be noticed:

– the Central Bulb is more compact and does not
present any hole;

– the Support Net presents only two ramifications;
– the Angular Chain and the Support Net cannot be
distinguished;

– the Terminal Chain is much longer than before.

The reader can easily understand the necessity of intro-
ducing an additional buckling constraint if the stress limit
is exaggeratedly low.
An analogue analysis was performed for an augmented

allowed limit stress of the material (results reported in
Fig. 7). The differences are less evident than an analogue
reduction on stress limits. However, the Support Net is
more ramified, allowing for a different allocation of the
efforts.
Another fundamental aspect is the imperfect exploita-

tion of the material: in fact, the stress constraint isn’t
active, leading to a structure where the maximum macro-
scopic stress isn’t reached (refer to Fig. 7d).

Table 3. Numerical results of the Inverter optimization
problem (24) with variations in σlim.

σlim [MPa] Objective N. iterations
0.2 2.9807 411
0.3 3.1823 187
0.4 3.1455 118

In Table 3 the numerical results are shown for each
value of σlim. In particular, it has been demonstrated that
higher limit in terms of allowed stress doesn’t necessarily
imply an augmentation in final performances. Moreover,
the number of iterations to convergence augments as σlim
decreases.

5.2.2 Influence of the amplitude of the applied load
The applied load shows little differences with respect to
the base structure. In particular, the Support Net is less
ramified for higher loads : this reflects again the same
effect of a very small reduction in acceptable limit stress.
Moreover, as the amplitude of the force increases,

an evident overshoot on the macroscopic stress can be
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Fig. 6. Results relative to the inverter problem (σ = 0.2 MPa).

Table 4. Numerical results of the Inverter optimization
problem (24) with variations in Fapp.

Fapp [N/mm] Objective N. iterations
0.15 2.9684 687
0.20 3.1823 187
0.25 3.4236 259

observed: this leads to the idea that another approxima-
tion for the max is needed.
In the Appendix, different designs of the optimized

structure are presented.
In Table 4 the numerical results are presented for each

value of Fapp. By increasing the amplitude of the applied
load, the geometric advantage improves: however, the gain
isn’t proportional to the relative augmentation in terms of
applied force. On the other hand, a general rule governing
the number of iterations cannot be exploited.

6 Conclusion

Topology Optimization was used to design two differ-
ent compliant mechanisms: a morphing wing and a

geometric inverter. A continuous material distribution
problem following the SIMP approach was formulated
to find the optimal layout throughout a design domain.
For our purpose, a hyperelastic Neo-hookean material was
chosen.
We considered two TO problems. The first one con-

sists in the minimization of the volume fraction of a
NACA 0033 airfoil, which must be conceived as capa-
ble of reaching a fixed displacement at its trailing edge.
The second TO problem aims at maximizing the geomet-
ric gain in a structure with given volume fraction, in order
to design a geometric inverter starting from a rectangular
initial domain. The stress distribution was considered as
the main constraint in all the problems presented in this
paper. In particular, a relaxation and aggregation method
was adopted to treat this constraint optimally.
The problem of morphing wing design was solved using

two different models of the relation between Young Mod-
ulus E and density ρ of each element, namely classical
SIMP and modified SIMP (see Eqs. (2)–(3)). The objec-
tive is always to minimize the volume fraction V , under
constraints of performance (in terms of trailing edge dis-
placement) and of feasibility (in terms of stress). Results
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Fig. 7. Results relative to the inverter problem (σ = 0.4MPa).

showed a substantial gain in terms of V when we adopted
the modified SIMP rather than classical SIMP: we pass
from a volume fraction of 51.64% to 19.62%. The second
structure is also easier to manufacture using a 3-D print-
ing technique or additive manufacturing, which are the
natural outputs of Topology Optimization.
Modified SIMP approach was applied to parameterize

the domain in the geometric inverter problem. The first
results show a ratio of 318% between output and input
displacement (respectively Uout and Uin in Fig. 2). Several
analyses were performed, by modifying the stress limits
or the applied load. One can observe that increasing the
stress constraint does not imply a significant gain in terms
of structure performances. By analyzing the effects of the
applied load, the geometric gain increases as the force
increases, but the relation is not linear.
Looking at the number of iterations, by reducing the

allowed stress, convergence results to be slower; on the
other hand, a general dependence between number of
iterations and applied load cannot be proved.
Globally, the present work demonstrated how a light

structure can be easily designed through TO even with
hyperelastic material responses and stress constraints.
Nonlinear stress constraints were treated trough aggrega-
tion based on the lower bound Kreisselmeier-Steinhauser
function: effects of different aggregation functions could
be further investigated.

The position of the input force was considered as an
input of each optimization problem presented in this
paper, but could be treated as a new design variable as
well.
Moreover, the two optimization problems could be

extended to 3D analysis, allowing also the introduction
of more realistic Boundary Conditions.
Future works will focus on the application of stress-

based TO on the design of a morphing winglet subject to
very high deformations.
Looking forward, further attempts with different opti-

mization problems could prove beneficial to literature on
the subject.
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Appendix A

Fig. A.1. Results relative to the inverter problem: applied force Fapp = 0.15N/mm.
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Fig. A.2. Results relative to the inverter problem: Variation of the applied force Fapp = 0.25 N/mm.

Fig. A.3. Convergence curves for problem (24): variations in σlim.
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Fig. A.4. Evolution of optimization constraints (expressed in negative null form) for problem (24): variations in σlim.

Fig. A.5. Convergence curves for problem (24): variations in Fapp.



G. Capasso et al.: Mechanics & Industry 21, 304 (2020) 17

Fig. A.6. Evolution of optimization constraints (expressed in negative null form) for problem (24): variations in Fapp.
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