
HAL Id: hal-02538055
https://hal.science/hal-02538055

Submitted on 9 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decision Problems for Parametric Timed Automata
Étienne André, Didier Lime, Olivier Henri Roux

To cite this version:
Étienne André, Didier Lime, Olivier Henri Roux. Decision Problems for Parametric Timed Automata.
18th International Conference on Formal Engineering Methods (ICFEM 2016), Nov 2016, Tokyo,
Japan. �10.1007/978-3-319-47846-3_25�. �hal-02538055�

https://hal.science/hal-02538055
https://hal.archives-ouvertes.fr

Decision Problems
for Parametric Timed Automata?

Étienne André1,2, Didier Lime1, and Olivier H. Roux1

1 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, France
2 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, F-93430,

Villetaneuse, France

Abstract. Parametric timed automata (PTAs) allow to reason on sys-
tems featuring concurrency and timing constraints making use of param-
eters. Most problems are undecidable for PTAs, including the paramet-
ric reachability emptiness problem, i. e., whether at least one parameter
valuation allows to reach some discrete state. In this paper, we first ex-
hibit a subclass of PTAs (namely integer-points PTAs) with bounded
rational-valued parameters for which the parametric reachability empti-
ness problem is decidable. Second, we present further results improving
the boundary between decidability and undecidability for PTAs and their
subclasses.

1 Introduction

Timed automata (TAs) [AD94] are a powerful formalism that extend finite-state
automata with clocks (real-valued variables evolving linearly) that can be com-
pared with integer constants in locations (“invariants”) and along transitions
(“guards”); additionally, some clocks can be reset to 0 along transitions. Many
interesting problems for TAs (including the reachability of a location) are de-
cidable. However, the classical definition of TAs is not tailored to verify systems
only partially specified, especially when the value of some timing constants is
not yet known.

Parametric timed automata (PTAs) [AHV93] leverage this problem by al-
lowing the specification and the verification of systems where some of the timing
constants are parametric. PTAs extend TAs by allowing the use of integer- or
rational-valued parameters in place of timing constants in guards and invariants.
PTAs were used to model and verify a variety of case studies, from hardware
circuits to communication protocols (see [And15] for a survey). This expressive
power comes at the price of the undecidability of most interesting problems. The
EF-emptiness problem (“does there exist a parameter valuation such that a given
location is reachable?”) is undecidable in general [AHV93], even when parame-
ters are bounded [Mil00], even when only strict inequalities are used [Doy07], and

? This work is partially supported by the ANR national research program “PACS”
(ANR-14-CE28-0002).

2

with a single integer-valued parameter [BBLS15]. However, bounding the num-
ber of parametric clocks and of parameters may yield decidability. The smallest
known numbers of parametric clocks (i. e., clocks compared with parameters),
non-parametric clocks and parameters leading to undecidability are: three para-
metric clocks and one integer-valued parameter [BBLS15] or three parametric
clocks and only one rational-valued parameter [Mil00], or only one parametric
clock, three non-parametric clocks and one rational-valued parameter [Mil00].

In [HRSV02], L/U-PTAs are introduced as a subclass of PTAs where each
parameter is either always compared to a clock as a lower bound in guards and
invariants, or always as an upper bound. The EF-emptiness problem is decid-
able for L/U-PTAs. In [BL09], further results are proved for L/U-PTAs with
integer-valued parameters: emptiness, finiteness and universality of the set of
parameter valuations for which there exists an infinite accepting run are decid-
able. The AF-emptiness problem (“does there exist a parameter valuation for
which a given location is eventually reached for any run?”) is undecidable for
L/U-PTAs [JLR15]. It is also shown in [JLR15] that the synthesis of the param-
eters reaching a given location in an L/U-PTA is intractable in practice. Two
further subclasses have been defined in [BL09]: L-PTAs and U-PTAs, where all
parameters are always lower bounds and upper bounds respectively.

In [JLR15], PTAs with bounded integer-valued parameters are considered.
The problem of finding parameter valuations such that a given location is reach-
able or unavoidable becomes decidable, and two algorithms are provided that
compute the exact such sets of integer valuations in a symbolic manner, i. e.,
without performing an exhaustive enumeration. In [ALR15], it is shown that
computing a parametric extrapolation of the integer hull of symbolic states al-
lows one to synthesize (rational-valued) parameter valuations for bounded PTAs,
guaranteeing the synthesis of at least all integer-valued valuations, but also some-
times most or even all rational-valued valuations.

Contribution L/U-PTAs is the only non-trivial3 subclass of PTAs for which the
EF-emptiness problem is decidable for an arbitrary number of clocks and param-
eters. However, other results are disappointing: undecidability of AF-emptiness,
intractability of the synthesis [JLR15]. It is hence important to look for fur-
ther subclasses of PTAs for which problems may be decidable. It is shown
in [JLR15,ALR15] that integer points play a key role in decidability. Hence,
our first contribution here is to investigate integer-points PTAs (IP-PTAs), that
are PTAs where each symbolic state contains at least one integer point (i. e.,
an integer valuation of the clocks and the parameters). Our intuition is success-
ful: we prove that the EF-emptiness problem is decidable for bounded IP-PTAs
(i. e., with a bounded parameter domain), even when parameters are rational-
valued. Although we show that it cannot be decided whether a bounded PTA is
a (bounded) IP-PTA, we give two sufficient syntactic conditions: we show that
bounded L/U-PTAs with non-strict inequalities are IP-PTAs and, more inter-

3 The bounded integer PTAs of [JLR15] are arguably a trivial such subclass (even
though the associated analysis techniques are not).

3

estingly, we introduce a new subclass of “reset-PTAs”, that are also IP-PTAs,
and for which, when bounded, the EF-emptiness problem is hence decidable too.
This class is only the second syntactic subclass of PTAs (after L/U-PTAs) for
which this problem is decidable.

Our second main contribution is to study several open problems for PTAs
and several known subclasses (as well as the new class of IP-PTAs): we study
here the emptiness and universality of reachability (EF), as well as unavoidabil-
ity emptiness (AF). Emptiness is of utmost importance as, without decidability
of the emptiness, exact synthesis is practically ruled out. Universality checks
whether all parameter valuations satisfy a property, which is important for ap-
plications where the designer has no power on some valuations; this is the case
of networks, where some latencies (e. g., the transmission time of some packets)
may be totally arbitrary. Among our results, we prove in particular that AF-
emptiness is undecidable for both bounded IP-PTAs and bounded L/U-PTAs.
Overall, we significantly enhance the knowledge we have of decidability problems
for PTAs and subclasses.

Outline We first recall the necessary definitions in Section 2. Then, we introduce
in Section 3 a new proof for the undecidability of the EF-emptiness problem
for PTAs with a single rational-valued parameter; whereas this result is not
essentially new (it has been known since [Mil00]), our original proof will be used
in several other results of this paper. In addition, we extend this result (using a
variant of our proof) to bounded PTAs with only non-strict inequalities which,
to the best of our knowledge, is an original result. Then, we introduce the new
class of IP-PTAs in Section 4, and study its properties. Finally, in part by using
this new class, we prove in Section 5 several open results for L/U-PTAs and
PTAs. We conclude in Section 6.

2 Preliminaries

2.1 Clocks, Parameters and Constraints

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-
negative rational numbers and non-negative real numbers respectively.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e.,
real-valued variables that evolve at the same rate. A clock valuation is a function
w : X → R+. We identify a clock valuation w with the point (w(x1), . . . , w(xH)).
An integer clock valuation is a valuation w : X → N. We write 0 for the valuation
that assigns 0 to each clock. Given d ∈ R+, w + d denotes the valuation such
that (w + d)(x) = w(x) + d, for all x ∈ X.

We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown constants.
A parameter valuation v is a function v : P → Q+. We identify a valuation v
with the point (v(p1), . . . , v(pM)). An integer parameter (resp. clock) valuation
is a valuation that assigns an integer value to each parameter (resp. clock).

In the following, we assume ≺ ∈ {<,≤} and ./ ∈ {<,≤,≥, >}. lt denotes
a linear term over X ∪ P of the form

∑
1≤i≤H αixi +

∑
1≤j≤M βjpj + d, with

4

xi ∈ X, pj ∈ P , and αi, βj , d ∈ Z. plt denotes a parametric linear term over
P , that is a linear term without clocks (αi = 0 for all i). A constraint C over
X ∪ P is a conjunction of inequalities of the form lt ./ 0 (i. e., a convex poly-
hedron). Given a parameter valuation v, v(C) denotes the constraint over X
obtained by replacing each parameter p in C with v(p). Likewise, given a clock
valuation w, w(v(C)) denotes the expression obtained by replacing each clock x
in v(C) with w(x). We say that v satisfies C, denoted by v |= C, if the set of
clock valuations satisfying v(C) is nonempty. Given a parameter valuation v and
a clock valuation w, we denote by w|v the valuation over X ∪ P such that for
all clocks x, w|v(x) = w(x) and for all parameters p, w|v(p) = v(p). We use the
notation w|v |= C to indicate that w(v(C)) evaluates to true. We say that C is
satisfiable if ∃w, v s.t. w|v |= C. An integer point is w|v, where w is an integer
clock valuation, and v is an integer parameter valuation. We define the time
elapsing of C, denoted by C↗, as the constraint over X and P obtained from C
by delaying all clocks by an arbitrary amount of time. Given R ⊆ X, we define
the reset of C, denoted by [C]R, as the constraint obtained from C by replac-
ing with 0 the value of the clocks in R, and keeping the value of other clocks
unchanged. We denote by C↓P the projection of C onto P , i. e., obtained by
eliminating the clock variables (e. g., using the Fourier-Motzkin algorithm [?]).

A guard g is a constraint over X ∪ P defined by inequalities of the form
x ./ z, where z is either a parameter or a constant in Z.

A zone is a polyhedron over a set of variables V (usually clocks) in which
all constraints on variables are of the form x ./ k (rectangular constraints) or
xi − xj ./ k (diagonal constraints), where xi ∈ V , xj ∈ V and k is an integer.
Operations on zones are well-documented (see e. g., [BY04]).

A parametric zone is a convex polyhedron over X∪P in which all constraints
on variables are of the form x ./ plt (parametric rectangular constraints) or
xi − xj ./ plt (parametric diagonal constraints), where xi ∈ X, xj ∈ X and plt
is a parametric linear term over P .

2.2 Parametric Timed Automata

Syntax

Definition 1. A PTA A is a tuple A = (Σ,L, l0, X, P, I, E), where: i) Σ is a
finite set of actions, ii) L is a finite set of locations, iii) l0 ∈ L is the initial
location, iv) X is a finite set of clocks, v) P is a finite set of parameters, vi) I
is the invariant, assigning to every l ∈ L a guard I(l), vii) E is a finite set of
edges e = (l, g, a,R, l′) where l, l′ ∈ L are the source and target locations, a ∈ Σ,
R ⊆ X is a set of clocks to be reset, and g is a guard.

We say that a PTA is closed if all its guards and invariants use only non-strict
constraints. Note that the grammar of constraints does not include negation so
this restriction is meaningful, and that = defines closed constraints.

Given a parameter valuation v, we denote by v(A) the non-parametric timed
automaton where all occurrences of a parameter pi have been replaced by v(pi).

5

Concrete Semantics

Definition 2 (Concrete semantics of a TA). Given a PTA A = (Σ,L, l0, X, P, I, E),
and a parameter valuation v, the concrete semantics of v(A) is given by the timed
transition system (S, s0,→), with

– S = {(l, w) ∈ L× RH
+ | w|v |= I(l)}, s0 = (l0,0)

– → consists of the discrete and (continuous) delay transition relations:
• discrete transitions: (l, w)

e→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists
e = (l, g, a,R, l′) ∈ E, ∀x ∈ X : w′(x) = 0 if x ∈ R and w′(x) = w(x)
otherwise, and w|v |= g.

• delay transitions: (l, w)
d→ (l, w + d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, w +

d′) ∈ S.

Moreover we write (l, w)
e7→ (l′, w′) for a sequence of delay and discrete

transitions where ((l, w), e, (l′, w′)) ∈ 7→ if ∃d,w′′ : (l, w)
d→ (l, w′′)

e→ (l′, w′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states

of S as the concrete states of v(A). A concrete run of v(A) is an alternating
sequence of concrete states of v(A) and edges starting from the initial concrete

state s0 of the form s0
e07→ s1

e17→ · · · em−17→ sm, such that for all i = 0, . . . ,m − 1,
ei ∈ E, and (si, ei, si+1) ∈ 7→. Given a concrete state s = (l, w), we say that s
is reachable (or that v(A) reaches s) if s belongs to a concrete run of v(A). By
extension, we say that l is reachable in v(A).

Symbolic semantics Let us now recall the symbolic semantics of PTAs (see
e. g., [ACEF09]). A symbolic state is a pair (l, C) where l ∈ L is a location,
and C its associated parametric zone. The initial symbolic state of A is s0 =
(l0, (

∧
1≤i≤H xi = 0)↗ ∧ I(l0)).

The symbolic semantics relies on the Succ operation. Given a symbolic state
s = (l, C) and an edge e = (l, g, a,R, l′), Succ(s, e) = (l′, C ′), with C ′ =

(
[(C ∧

g)]R ∧ I(l′)
)↗ ∧ I(l′)..

A symbolic run of a PTA is an alternating sequence of symbolic states and

edges starting from the initial symbolic state, of the form s0
e0⇒ s1

e1⇒ · · · em−1⇒ sm,
such that for all i = 0, . . . ,m− 1, ei ∈ E, and si+1 belongs to Succ(si, e). Given
a symbolic state s, we say that s is reachable if s belongs to a symbolic run of
A. In the following, we simply refer to symbolic states belonging to a run of A
as symbolic states of A.

2.3 Subclasses of PTAs

In this paper, we will sometimes consider bounded PTAs, i. e., PTAs with a
bounded parameter domain that assigns to each parameter a minimum integer
bound and a maximum integer bound. That is, each parameter pi ranges in
an interval [ai, bi], with ai, bi ∈ N. Hence, a bounded parameter domain is a
hyperrectangle of dimension M .

Let us now recall L/U-PTAs [HRSV02,BL09].

6

Definition 3 (L/U-PTA [HRSV02]). An L/U-PTA is a PTA where the set
of parameters is partitioned into lower-bound parameters and upper-bound pa-
rameters. A lower- (resp. upper-)bound parameter is a parameter p that is used
only in guards and invariants of the form p ≺ x (resp. x ≺ p), where x is a
clock.

2.4 Decision Problems

Let P be a given a class of decision problems (reachability, unavoidability, etc.).

P-emptiness problem:
Input: A PTA A and an instance φ of P
Problem: Is the set of parameter valuations v such that v(A) satisfies φ
empty?

P-universality problem:
Input: A PTA A and an instance φ of P
Problem: Are all parameter valuations v such that v(A) satisfies φ?

Emptiness is the most basic parametric question: is there at least one pa-
rameter valuation such that the property holds? Universality gives a robustness
quality to the property and permits to effectively abstract an infinite number of
verifications with concrete values.

In this paper, we mainly focus on reachability and unavoidability properties,
and call them EF and AF respectively. For example, given a PTA A and a
subset G of its locations, EF-universality asks: “are all parameter valuations v
such that G is reachable in v(A) from the initial state?” And AF-emptiness asks:
“is the set of valuations v of the parameters such that G is unavoidable in v(A)
empty?”

3 Undecidability of EF-Emptiness

Let us first recall the following classical result for PTAs.

Theorem 1 ([Mil00]). The EF-emptiness problem is undecidable for bounded
PTAs.

We provide an alternative and original proof of this result. This new construc-
tion is similar to that of Miller [Mil00], but it might be seen as a bit simpler
and we will provide a complete proof. And above all, it allows us to extend it to
obtain several of the main results of this paper.

Proof. We build a PTA that encodes a 2-counter machine (2CM) [Min67], such
that the machine halts iff there exists some valuation of the parameters of the
PTA such that it reaches a specific location.

Recall that such a machine has two non-negative counters C1 and C2, a finite
number of states and a finite number of transitions, which can be of the form:

7

– when in state si, increment Ck and go to sj ;
– when in state si, decrement Ck and go to sj ;
– when in state si, if Ck = 0 then go to sj , otherwise block.

The machine starts in state s0 and halts when it reaches a particular state
lhalt. The halting problem for 2-counter machines is undecidable [Min67].

Given such a machine M, we now provide an encoding as a PTA A(M):
each state si of the machine is encoded as a location of the automaton, which
we also call si.

The counters are encoded using clocks x, y and z and one parameter a,
with the following relations with the values c1 and c2 of counters C1 and C2:
in any location si, when x = 0, we have y = 1 − ac1 and z = 1 − ac2. Note
that all three clocks are parametric, i. e., are compared with a in some guard or
invariant. We will see that a is a rational-valued bounded parameter, typically
in [0, 1]. The main idea of our encoding is that, to correctly simulate the machine,
the parameter must be sufficiently small to encode the maximum value of the
counters, i. e., for 1−ac1 and 1−ac2 to stay non-negative all along the execution
of the machine.

We initialize the clocks with the gadget in Figure 1a. Clearly, when in s0
with x = 0, we have y = z = 1, which indeed corresponds to counter values 0.

l0 s0

x = 1
x := 0

(a) EF-emptiness: initial gadget

si li1

li2

l′i2

li3 sj
x = 0

z = 1,
z := 0

y = a + 1,
y := 0

y = a + 1,
y := 0

z = 1,
z := 0

x = 1,
x := 0

(b) EF-emptiness: increment gadget

Fig. 1: EF-emptiness: gadgets

We now present the gadget encoding the increment instruction of C1 in
Figure 1b.

The transition from si to li1 only serves to clearly indicate the entry in the
increment gadget and is done in 0 time unit.

Since we use only equalities, there are really only two paths that go through
the gadget: one going through li2 and one through l′i2. Let us begin with the
former.

We start from some encoding configuration: x = 0, y = 1−ac1 and z = 1−ac2
in si (and therefore the same in li1). We can enter li2 (after elapsing enough
time) if 1− ac2 ≤ 1, i. e., ac2 ≥ 0, which implies that a ≥ 0, and when entering
li2 we have x = ac2, y = 1 − ac1 + ac2 and z = 0. Then we can enter li3 if
1 − ac1 + ac2 ≤ 1 + a, i. e., a(c1 + 1) ≥ ac2. When entering li3, we then have

8

x = a(c1 + 1), y = 0 and z = a(c1 + 1) − ac2. Finally, we can go to sj if
a(c1 + 1) ≤ 1 and when entering sj we have x = 0, y = 1 − a(c1 + 1) and
z = 1− ac2, as expected.

We now examine the second path. We can enter l′i2 if 1 − ac1 ≤ a + 1,
i. e.,a(c1 + 1) ≥ 0, and when entering l′i2 we have x = a(c1 + 1), y = 0 and
z = 1− ac2 + a(c1 + 1). Then we can go to li3 if 1− ac2 + a(c1 + 1) ≤ 1 + a, i. e.,
a(c1 + 1) ≤ ac2. When entering li3, we then have x = ac2, y = ac2 − a(c1 + 1)
and z = 0. Finally, we can go to sj if ac2 ≤ 1 and when entering sj we have
x = 0, y = 1− a(c1 + 1) and z = 1− ac2, as expected.

Remark that exactly one path can be taken depending on the respective order
of c1 + 1 and c2, except when both are equal or a = 0, in which cases both paths
lead to the same configuration anyway.

Decrement is done similarly by replacing guards y = a + 1 with y = 1, and
guards x = 1 and z = 1 with x = a+ 1 and z = a+ 1, respectively.

From si, to encode zero-testing C1 and going to sj , we only need to add a
transition from si to sj with guard y = 1 ∧ x = 0.

All those gadgets also work for C2 by swapping y and z.

Finally, we add another location l′halt and a transition from lhalt to l′halt
with guard 0 < x < 1 and x = a. This implies the constraint 0 < a < 1 when
reaching l′halt. This is important, in order to remove the a = 0 value, which does
not encode the counters properly. (Note that we could also do this as early as the
initialization gadget; however, it is convenient to leave it here for the subsequent
proofs reusing this proof.) Removing the value a = 1, which would be possible if
both counters are always 0, is not necessary but it will be useful in subsequent
proofs.

Let us now prove that the machine halts iff there exists a parameter valua-
tion p such that p(A) can reach l′halt. Consider two cases:

1. Either the machine halts, then the automaton can go into the l′halt location,
with constraints 0 < a < 1 and, if c is the maximum value of both C1 and
C2 over the (necessarily finite) halting run of the machine, and if c > 0, then
a ≤ 1

c . The set of such valuations for a is certainly non-empty: a = 1
2 belongs

to it if c = 0 and a = 1
c does otherwise;

2. Or the machine does not halt. There are two subcases:

(a) either the counters stay bounded. Let c be their maximal value. As
before, if c = 0 and 0 < a ≤ 1 or c > 0 and ca < 1, then the machine is
correctly encoded and the PTA cannot reach l′halt. Otherwise, at some
point during an incrementation of, say, C1 we will have a(c1 + 1) > 1
when taking the transition from li2 to li3 and the PTA will be blocked;

(b) or one of the counters is not bounded, say C1. Then whatever the value of
a > 0, we have the same situation as in the previous item: the automaton
blocks during some incrementation.

In both subcases, the automaton cannot reach the l′halt location and the set
of parameters such that it does is obviously empty.

ut

9

Remark 1. We use guards with constraints y = a + 1 while our definition of
PTAs, following [AHV93], only allows comparisons of a clock with a single pa-
rameter. Note however, and that will be true for all subsequent constructions,
that transitions with y = a + 1 guards and y := 0 reset can be equivalently
replaced by one transition with an y = 1 guard and a reset of some additional
clock w, followed by a transition with a w = a guard and the y := 0 reset (and
similarly for x and z is the decrement gadget). This allows the proof to work
without complex parametric expressions in guards and uses only one parametric
clock and three normal clocks, with one parameter, matching the best known
results with that respect [Mil00].

Now, by reusing the previous proof, we can show that the EF-emptiness
problem is undecidable for closed bounded PTAs. To the best of our knowl-
edge, this is an original result, as all existing results with bounded PTAs (e. g.,
[Mil00,Doy07]) require strict inequalities.

Theorem 2. The EF-emptiness problem is undecidable for closed bounded PTAs.

Proof. See Appendix A. ut

4 Integer-Points Parametric Timed Automata

In this section, we introduce integer-points parametric timed automata (IP-PTAs
for short), i. e., a subclass of PTAs in which any symbolic state contains at least
one integer point (Section 4.1). Our first result is to prove the decidability of
the EF-emptiness problem for bounded IP-PTAs (Section 4.2). Then, we com-
pare IP-PTAs with L/U-PTAs and show that the class of bounded IP-PTAs is
strictly larger than bounded L/U-PTAs with non-strict inequalities (Section 4.3).
We then show that synthesis is intractable in practice, and that the same holds
for bounded L/U-PTAs (Section 4.4). Finally, although we prove that the mem-
bership problem is undecidable for IP-PTAs, we exhibit a syntactic sufficient
condition, that provides a new subclass of PTAs for which the EF-emptiness
problem is decidable (Section 4.5).

4.1 The Class of IP-PTAs

Definition 4. A PTA A is said to be an integer points PTA (in short IP-PTA)
if, in any reachable symbolic state (l, C) of A, C contains at least one integer
point.

4.2 A Decidability Result for Bounded IP-PTAs

Our main positive result is that the EF-emptiness problem is decidable for
bounded IP-PTAs.

Theorem 3. The EF-emptiness problem is decidable (and PSPACE-complete)
for bounded IP-PTAs.

10

Proof. We first need to recall two lemmas relating symbolic and concrete runs
(proved in [HRSV02,ACEF09]).

Given a concrete (respectively symbolic) run (l0,0)
e07→ (l1, w1)

e17→ · · · em−17→
(lm, wm) (respectively (l0, C0)

e0⇒ (l1, C1)
e1⇒ · · · em−1⇒ (lm, Cm)), we define the

corresponding discrete sequence as l0
e0⇒ l1

e1⇒ · · · em−1⇒ lm. Two runs (concrete
or symbolic) are said to be equivalent if their associated discrete sequences are
equal.

Lemma 1. Let A be a PTA, and v be a parameter valuation. Let ρ be a run
of A reaching a symbolic state (l, C). Then, there exists an equivalent run in the
TA v(A) reaching a concrete state (l, w) (for some w) iff v |= C↓P .

Lemma 2. Let A be a PTA, and v be a parameter valuation. Let ρ be a run
of the TA v(A) reaching a concrete state (l, w). Then there exists an equivalent
run in A reaching a symbolic state (l, C), for some C such that v |= C↓P .

Let A be a bounded IP-PTA. EF-emptiness is false for A iff there exists a
valuation v such that a run of v(A) reaches a location in some predefined set G.
Assume there exists a valuation v such that a run of v(A) reaches l, with l ∈ G.
From Lemma 2, there exists a symbolic run of A reaching a symbolic state (l, C),
for some C. Since A is an IP-PTA, C contains at least one integer point. Hence
there exists an integer parameter valuation v′ |= C↓P ; hence from Lemma 1,
there exists a concrete run of v′(A) reaching l. This gives that EF-emptiness is
false for A iff there exists an integer valuation v′ such that a run of v′(A) reaches
a location in G.

Hence, deciding whether some valuation permits to reach l reduces to decid-
ing whether some integer valuation permits to do so, which, for bounded PTAs,
is PSPACE-complete [JLR15]. ut

In practice, [JLR15] proposes efficient symbolic algorithms to synthesize all
the integer parameter valuations that permit to reach some given location, and
thus to solve EF-emptiness for IP-PTAs.

4.3 Comparison with L/U-PTAs

Let us now compare IP-PTAs and L/U-PTAs. We first need the following lemma,
stating that any reachable symbolic state of an L/U-PTA contains an integer
parameter valuation.

Lemma 3. Let (l, C) be a reachable symbolic state of an L/U-PTA. Then C↓P
contains at least one integer point.

Proof. Consider a (non-empty) reachable symbolic state (l, C) of an L/U-PTA.
Let v |= C↓P . From the well-known monotonicity property of L/U-PTAs (ex-
hibited in [HRSV02]), any parameter valuation such that the lower-bound pa-
rameters p−i are lower or equal to v(p−i) and upper-bound parameters p+j are

greater than or equal to v(p+j) also belong to C↓P . In particular, this is the case

11

of the integer parameter valuation assigning 0 to all lower-bound parameters,
and assigning to upper-bound parameters p+j the smallest integer greater than

or equal to v(p+j). ut

The previous lemma that ensures the presence of an integer parameter valu-
ation in any symbolic state does not guarantee that an L/U-PTA is an IP-PTA,
because clocks may have non-integer values.

Proposition 1. The class of IP-PTAs is incomparable with the class of L/U-
PTAs.

Proof. – Consider an L/U-PTA with a transition guarded by x > 0 and re-
setting no clock, followed by a second location with invariant x < 1; then,
necessarily, the symbolic state associated with this second location contains
no integer point (as x ∈ (0, 1) in that symbolic state).

– It is easy to exhibit an IP-PTA that is not an L/U-PTA. This is for exam-
ple the case of a simple PTA with only one location, one clock x and one
parameter p with a self-loop with guard x = p and resetting x.

ut

However, we can prove that any closed L/U-PTA, i. e., with only non-strict
inequalities, is an IP-PTA. In order to show that the class of closed L/U-PTAs
is included in IP-PTAs, we need the following lemma.

Lemma 4. Let A be a PTA with only non-strict inequalities. Let s = (l, C)
be a symbolic state of A. Then if C↓P contains at least one integer parameter
valuation, then C contains an integer point.

Proof. Since there is at least one integer parameter valuation v in C↓P , then
v(C) is not empty. Since v is an integer valuation, v(C) is a zone of a timed
automaton with integer constants, so the vertices of v(C) are integer points.
Finally, there is at least one vertex in v(C) because all clocks are nonnegative
(and hence are bounded from below by 0), and this vertex does belong to v(C)
because it is topologically closed due to the non-strict constraints. So C contains
at least one integer point. ut

Proposition 2. The class of IP-PTAs is strictly larger than the class of closed
L/U-PTAs.

Proof. From Lemmas 3 and 4, and Proposition 1 (⇐). ut

The previous result also holds for bounded PTAs:

Proposition 3. The class of bounded IP-PTAs is strictly larger than the class
of closed bounded L/U-PTAs.

Proof. Lemma 3 extends to bounded L/U-PTAs, since the bounds are integers
(this would not hold otherwise). Then, the proof of Proposition 1 (⇐) holds with
bounded IP-PTAs and closed bounded L/U-PTAs. Applying Lemma 4 concludes
the proof. ut

12

Proposition 4. The class of bounded IP-PTAs is incomparable with the class
of bounded L/U-PTAs. The class of bounded IP-PTAs is incomparable with the
class of L/U-PTAs.

Proof. The proof of Proposition 1 can be applied with bounded PTAs on either
side. ut

Since bounded IP-PTAs are incomparable with L/U-PTAs (for which the EF-
emptiness problem is known to be decidable), and since L/U-PTAs are the only
non-trivial subclass of PTAs for which this problem is known to be decidable,
then Theorem 3 strictly extends the subclass of PTAs for which this problem is
decidable.

4.4 Intractability of the Synthesis

Although the EF-emptiness problem is decidable for L/U-PTAs [HRSV02], the
synthesis seems to pose practical problems: it was shown in [JLR15] that the
solution to the EF-synthesis problem for L/U-automata, if it can be computed,
cannot be represented using any formalism for which emptiness of the inter-
section with equality constraints is decidable. In particular, this rules out the
possibility of computing the solution set as a finite union of polyhedra.

We reuse the intuition of this result and extend it to closed bounded L/U-
PTAs.

Theorem 4. If it can be computed, the solution to the EF-synthesis problem
for closed bounded L/U-automata cannot be represented using any formalism for
which emptiness of the intersection with equality constraints is decidable.

Proof. We reuse the idea of [BL09] used for proving that constrained emptiness
for infinite runs acceptance properties is undecidable, and reused in [JLR15,
Theorem 2]. Suppose that the solution to the EF-synthesis problem for closed
bounded L/U-PTAs can be represented using a formalism for which emptiness of
the intersection with equality constraints is decidable. Assume a closed bounded
PTA A; for each parameter pi of A that is used both as an upper bound and a
lower bound, replace its occurrences as upper bounds by a fresh parameter pui
and its occurrences as lower bounds by a fresh parameter pli. We therefore obtain
a closed bounded L/U-PTA. Assume we can derive a solution to the EF-synthesis
problem for this closed bounded L/U-PTA, and let K be that solution. Then,
by hypothesis, we can decide whether K ∧

∧
i p

l
i = pui is empty or not; hence,

we can solve the EF-emptiness for A, which contradicts the undecidability of
EF-emptiness for closed bounded PTAs (from Theorem 2). ut

Corollary 1. If it can be computed, the solution to the EF-synthesis problem
for IP-PTAs cannot be represented using any formalism for which emptiness of
the intersection with equality constraints is decidable.

Proof. From the fact that a closed bounded L/U-PTA is an IP-PTA. ut

13

4.5 Membership

We first show that it cannot be decided in general whether a PTA is a (bounded)
IP-PTA.

Theorem 5. It is undecidable whether a PTA is an IP-PTA, even when bounded.

Proof. Let us consider the PTA A(M) encoding the 2-counter machineM pro-
posed in our proof of Theorem 1. The PTA A(M) has only one parameter a and
all the symbolic states of A(M) contain the integer value a = 0 except the states
corresponding to the location l′halt. Since all constraints are non-strict, except
that of the transition leading to l′halt, all reachable symbolic states, except those
associated with l′halt, contain an integer point. Then the PTA A(M) reaches
the location l′halt if and only if A(M) is not an IP-PTA. As a consequence, this
PTA is an IP-PTA iff the 2-counter machine does not halt. Finally, note that
this PTA can be bounded by 0 ≤ a ≤ 1, without any change in the reasoning
above. ut

Nevertheless, Proposition 2 provides a sufficient syntactic membership con-
dition, since any closed L/U-PTA is an IP-PTA. In addition, we now define
another new non-trivial set of restrictions leading to IP-PTAs:

Definition 5 (Reset-PTA). A reset-PTA is a PTA where:

– all guards and invariants are conjunctions of constraints of the form x ≤
p+ k, x ≥ p+ k, x ≤ k, or x ≥ k, with x a clock, p a parameter, and k an
integer;

– and all clocks are reset to 0 on any transition with a guard or a source
location invariant in which a parameter appears.

This kind of restriction is somewhat reminiscent of those enforced by ini-
tialized hybrid automata [HKPV98] to obtain decidability. We now prove that
reset-PTAs are IP-PTAs, which in turn means that the EF-emptiness problem
is decidable for bounded reset-PTAs. It is worth noting that, to the best our
knowledge, bounded reset-PTAs and L/U-PTAs are the only non-trivial sets of
syntactic restrictions of PTAs making the reachability emptiness problem decid-
able.

Theorem 6. Any reset-PTA is an IP-PTA.

Proof. See Appendix B. ut

Recall that the synthesis is intractable for bounded IP-PTAs (from Corol-
lary 1) and for bounded L/U-PTAs. In contrast, and although studying reset-
PTAs in detail goes beyond the scope of this work, we highly suspect that exact
synthesis can be computed for reset-PTAs (see remarks in Section 6).

14

5 New (Un)decidability Results for PTAs

In this section, we take advantage of the newly introduced class of IP-PTAs to
solve several open problems on the more general class of PTAs; these results
allow us to draw a better cartography of these problems for several subclasses
of PTAs.

5.1 Undecidability of EF-Universality

We show below that, unlike L/U-PTAs, the EF-universality problem is un-
decidable for IP-PTAs even bounded. This result differentiates the classes of
(bounded) L/U-PTAs and bounded IP-PTAs, and helps to understand better
the boundary between decidability and undecidability for subclasses of PTAs.

Theorem 7. The EF-universality problem is undecidable for bounded IP-PTAs.

Proof. See Appendix C. ut

Corollary 2. The EF-universality problem is undecidable for IP-PTAs, for bounded
PTAs, and for PTAs.

Proof. From Theorem 7 and from the fact that a bounded IP-PTA is an IP-PTA,
is a bounded PTA, and is a PTA. ut

5.2 Undecidability of AF-Emptiness

It is known that AF-emptiness is undecidable for L/U-PTAs [JLR15]; reusing
the encoding of the 2-counter machine proposed in our proof of Theorem 1, we
now show that this result holds even for bounded L/U-PTAs.

Theorem 8. The AF-emptiness problem is undecidable for bounded L/U-PTAs.

Proof. See Appendix D. ut

Corollary 3. The AF-emptiness problem is undecidable for bounded IP-PTAs,
for IP-PTAs and for bounded PTAs.

Proof. The AF-emptiness problem is undecidable for bounded L/U-PTAs (The-
orem 8), which immediately gives the undecidability for bounded PTAs.

Furthermore, the PTA used in the proof of Theorem 8 only uses non-strict
inequalities; furthermore, a− = 0 and a+ = 1 is a parameter valuation solution
of any symbolic state. Hence, from Lemma 4, this PTA is a bounded IP-PTA,
which gives the result for bounded IP-PTAs. As a consequence, the result also
holds for general IP-PTAs. ut

15

Class bL/U-PTAs bIP-PTAs L/U-PTAs IP-PTAs bPTAs PTAs

EF-empt. Th. 10 Th. 3 [HRSV02] Th. 9 [Mil00] [AHV93]

EF-univ. Th. 10 Th. 7 [BL09] Cor. 2 Cor. 2 Cor. 2

AF-empt. Th. 8 Cor. 3 [JLR15] Cor. 3 Cor. 3 [JLR15]

Table 1: Decidability results for PTAs and some subclasses

5.3 Summary

Before being able to summarize our results in Table 1, we need to prove two
further missing results.

Theorem 9. The EF-emptiness problem is undecidable for IP-PTAs.

Proof. The proof of the undecidability of the EF-emptiness problem for general
PTAs in [AHV93] can be interpreted over integer parameter valuations. Any
symbolic state contains at least one integer parameter valuation (the one that
is large enough to correctly encode the value of the two counters), as well as all
larger parameter valuations. Furthermore, since the proof only uses non-strict
inequalities (in fact only equalities), from Lemma 4, all symbolic states contain
at least one integer point. Hence the PTA used in [AHV93] to encode the 2-
counter machine is an IP-PTA. ut

Finally, we show below (without surprise) that the EF-emptiness problem
(shown to be decidable for L/U-PTAs [HRSV02]) and the EF-universality prob-
lem (shown to be decidable for integer-valued L/U-PTAs [BL09]) are also decid-
able for bounded L/U-PTAs.

Theorem 10. The EF-emptiness and EF-universality problems are decidable
for bounded L/U-PTAs.

Proof. In [HRSV02,BL09], it is shown that decreasing a lower-bound parameter
p−i or increasing an upper-bound parameter p+j in an L/U-PTA A can only add
behaviors. Hence, deciding EF-emptiness can be done by testing the reachabil-
ity of the location in the TA obtained from A by instantiating all p−i s with 0
and all p+j s with ∞. (Recall that testing the reachability of a location in a TA
is decidable [AD94].) For a bounded L/U-PTA, this can be done in a similar
manner, by testing the reachability of the location in the TA obtained from A
by instantiating all p−i s with their minimal value and all p+j s with their maximal
value in the (closed) bounded parameter domain.

EF-universality can be solved similarly, except that p−i s are replaced with
their upper bound and p+j s are replaced with their lower bound. ut

We give a summary in Table 1. We give from left to right the (un)decidability
for bounded L/U-PTAs, bounded IP-PTAs, L/U-PTAs, IP-PTAs, bounded PTAs,
and PTAs. Decidability is given in bold green, whereas undecidability is given
in thin red. Our contributions are depicted using a plain background, whereas
existing results are depicted using a light background.

16

bounded L/U

L/U

IP-PTA

closed L/U

bounded PTAs

PTAs

(a) EF-emptiness

bounded L/U

L/U

IP-PTA

closed L/U

bounded PTAs

PTAs

(b) EF-universality

bounded L/U

L/U

IP-PTA

closed L/U

bounded PTAs

PTAs

(c) AF-emptiness

Fig. 2: Decidability results for PTAs and subclasses

We give another summary in Figure 2. Note that bounded L/U-PTAs and
L/U-PTAs are in fact incomparable of terms of expressiveness [ALR16]; they
are therefore not included into each other in the figures. Decidability (resp.
undecidability) is depicted in plain green (resp. dashed red); open problems are
depicted in dotted black. Our contributions are depicted in thick.

6 Conclusion

In this paper, we exhibited a new subclass of PTAs (namely bounded IP-PTAs)
for which the EF-emptiness problem is decidable. By showing that bounded IP-
PTAs are incomparable with L/U-PTAs, we strictly extend the set of PTAs for
which this problem is decidable. Although we showed that it cannot be decided
whether a PTA is an IP-PTA, we introduced a new syntactic subclass of IP-
PTAs, namely reset-PTAs, for which, when bounded, the EF-emptiness problem
is decidable. It is worth noting that, to the best our knowledge, there is no
other non-trivial set of syntactic restrictions making the reachability emptiness
problem decidable for PTAs (aside from L/U-PTAs, of course).

In a second part, we considered three decision problems, and contributed in
solving several open problems for PTAs and subclasses: this was achieved thanks
to the results proved for IP-PTAs, and to (variations of) an original proof for
the undecidability of the EF-emptiness problem for general PTAs with a single
bounded rational-valued parameter and only non-strict constraints.

Future works Our new class of reset-PTAs seems promising in terms of synthesis,
as the symbolic states have a very special form. Using a proper extrapolation,
exact synthesis might be achievable. In addition, we are interested in extending
this class to hybrid systems, and combining its restrictions with the condition
of initialized hybrid automata [HKPV98]. The AF-universality problem is not
treated in this paper, as it connects in an interesting manner with the problems
of the existence of deadlocks or livelocks, which warrants a study on its own:
in [AL16], we show in particular that the AF-universality problem is decidable for
bounded L/U-PTAs with a closed parameter domain, and becomes undecidable
if we lift either the assumption of boundedness or of closedness. Finally, all
problems undecidable for L/U-PTAs remain open for L-PTAs and U-PTAs.

17

References

ACEF09. Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fri-
bourg. An inverse method for parametric timed automata. International
Journal of Foundations of Computer Science, 20(5):819–836, 2009.

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-
time reasoning. In STOC, pages 592–601. ACM, 1993.

AL16. Étienne André and Didier Lime. Liveness in L/U-parametric timed au-
tomata. Submitted. https://hal.archives-ouvertes.fr/hal-01304232,
2016.

ALR15. Étienne André, Didier Lime, and Olivier H. Roux. Integer-complete synthe-
sis for bounded parametric timed automata. In RP, volume 9058 of Lecture
Notes in Computer Science. Springer, 2015.

ALR16. Étienne André, Didier Lime, and Olivier H. Roux. On the expressiveness
of parametric timed automata. In FORMATS, Lecture Notes in Computer
Science. Springer, 2016. To appear.

And15. Étienne André. What’s decidable about parametric timed automata? In
FTSCS, volume 596 of Communications in Computer and Information Sci-
ence, pages 1–17. Springer, 2015.

BBLS15. Nikola Beneš, Peter Bezděk, Kim G. Larsen, and Jǐŕı Srba. Language empti-
ness of continuous-time parametric timed automata. In ICALP, Part II,
volume 9135 of Lecture Notes in Computer Science, pages 69–81. Springer,
2015.

BL09. Laura Bozzelli and Salvatore La Torre. Decision problems for lower/upper
bound parametric timed automata. Formal Methods in System Design,
35(2):121–151, 2009.

BY04. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Lecture Notes on Concurrency and Petri Nets, volume 3098
of Lecture Notes in Computer Science. Springer–Verlag, 2004.

Doy07. Laurent Doyen. Robust parametric reachability for timed automata. Infor-
mation Processing Letters, 102(5):208–213, 2007.

HKPV98. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? Journal of Computer and System Sciences, 57:94–
124, 1998.

HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. Journal of Logic and
Algebraic Programming, 52-53:183–220, 2002.

JLR15. Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer param-
eter synthesis for timed automata. Transactions on Software Engineering,
41(5):445–461, 2015.

Mil00. Joseph S. Miller. Decidability and complexity results for timed automata
and semi-linear hybrid automata. In HSCC, volume 1790 of Lecture Notes
in Computer Science, pages 296–309. Springer, 2000.

Min67. Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall,
Inc., NJ, USA, 1967.

Sch86. Alexander Schrijver. Theory of linear and integer programming. John Wiley
& Sons, Inc., New York, NY, USA, 1986.

https://hal.archives-ouvertes.fr/hal-01304232

18

A Proof of Theorem 2

Theorem 2 (recalled). The EF-emptiness problem is undecidable for closed
bounded PTAs.

Proof. The entire encoding of the instructions of the 2-counter-machine used
in the proof of Theorem 1 is a closed PTA, as only non-strict inequalities are
used. In addition, the (unique) parameter a can be bounded by [0, 1]. However,
the transition from lhalt to l′halt uses strict inequalities in order to ensure that
0 < a < 1. First, in contrast to Theorem 1, let us not remove a = 1, i. e., the
value that encodes the situation when both counters are always zero. (Recall
that removing this value is not necessary, and that it was added to be used in
the subsequent proofs working as variations of the proof of Theorem 1.) Now,
removing a = 0 is necessary, as this valuation does not correctly encode the
machine. Let us rewrite the transition from lhalt to l′halt as in Figure 3.

lhalt l1halt l′halt
x, y := 0

x = a
x := 0

x ≤ a ∧ y = 1

Fig. 3: Rewriting the last transition of the 2CM encoding with non-strict in-
equalities

Clearly, if a = 0, taking the self-loop on l1halt will not allow time to elapse;
and then there will be no way to leave l1halt with x ≤ a and y = 1; hence l′halt is
not reachable for a = 0. In contrast, if 0 < a ≤ 1, then by taking an appropriate
number of times the self-loop on l1halt, we will eventually have x ≤ a and y = 1;
hence l′halt will eventually be reached. To summarize:

– if a = 0, the machine is not correctly encoded, but there is no way to reach
l′halt;

– if 0 < a ≤ 1, the machine is correctly encoded, and from Theorem 1 we
know that lhalt is reachable iff the machine halts. Since l′halt is reachable
from lhalt, then l′halt is reachable iff the machine halts.

Hence there exists a parameter valuation such that l′halt is reachable iff the
machine halts.

B Proof of Theorem 6

Theorem 6 (recalled). Any reset-PTA is an IP-PTA.

Proof. We prove by induction that the symbolic states generated by reset-PTAs
are zones with only non-strict constraints over the set of variables defined by the

19

union of clocks and parameters. To simplify the proof a bit we omit invariants
but including them would raise no theoretical difficulty. We then additionally
prove as part of the induction that there is no inequality involving two variables
x and y in which x and y would not be of the same type (clock or parameter).

The property clearly holds for the initial symbolic state: parameters are un-
constrained, all clocks are equal and their common value is greater than or equal
to 0.

Now suppose this holds for some symbolic state and consider the successor of
that symbolic state by some transition. Recall from the Succ definition that this
successor is computed by the following operations: intersection with the guard
of the transition, reset of the clocks designated in the reset set of the transition,
and finally time elapsing.

Due to the restriction on constraints, all guards are themselves zones, and it
is well-known that the intersection of two zones is again a zone. Similarly, the
reset operation on some of the variables of a zone again leads to a zone. The
time elapsing of a proper subset of the variables in a zone however is not a zone
in general (the same situation arises, e. g., in stopwatch automata). We therefore
need to examine more closely the zone on which the time elapsing operates. Two
cases arise:

1. the guard did not involve any parameter. Then, with the induction hypoth-
esis, we still do not have any constraint between clocks and parameters after
the intersection with the guard. A fortiori, we do not have any after the
resets either. The time elapsing operation can be carried out by introducing
a fresh non-negative variable t, performing variable substitutions x← x+ t
for each clock x, and finally eliminating t. This elimination can be done
with the Fourier-Motzkin procedure (see e. g., [Sch86]) which produces all
the constraints not involving t plus those obtained by writing all the combi-
nations of a minorant of t less or equal to a majorant of t. After the variable
substitutions, t does not appear in constraints between parameters, nor in
diagonal clock constraints (x− y ≤ k gives (x+ t)− (y + t) ≤ k, i. e., again
x − y ≤ k). Since there is no constraint between clocks and parameters, t
only appears in rectangular constraints that become of the form y + t ≤ k1
or x + t ≥ k2. Through the elimination procedure this gives constraints of
the form x− y ≤ k2 − k1, and the expected result holds.

2. the guard involves some parameters. Then before the reset we do have con-
straints between clocks and parameters. But then, from the definition of
reset-PTAs, all clocks are reset along this transition, so these constraints
are removed (as part of the elimination of clock variables) and replaced by
constraints restricting the reintroduced clock variables to zero. Then, after
the reset we do not have constraints between clocks and parameters anymore
and the previous reasoning is again valid.

We conclude the proof by noting that in any non-empty zone with integer
coefficients all vertices are integer (see the discussion in [JLR15]). And following
the proof of Lemma 4, since all variables are non-negative, there is at least one

20

such vertex, which does belong to the zone because all constraints are non-strict.
. This zone therefore contains at least an integer point. ut

C Proof of Theorem 7

Theorem 7 (recalled). The EF-universality problem is undecidable for
bounded IP-PTAs.

Proof. We start the encoding in our proof of Theorem 1. The main idea is, for
all valuations of the parameter a that are not small enough to properly encode
the counters (i. e., for some value c of a counter, 1− ac < 0), to allow the PTA
to directly go to an lerror location. In order for our encoding to be an IP-PTA
(in particular the lerror symbolic states), we add a new parameter b, the value
of which can be typically in [0, 1].

We then reduce the problem of knowing whether the counters of the ma-
chine grow unbounded along its execution, which is undecidable [Min67], to the
universality of the set of parameters that allow the encoding PTA to reach lerror.

First, we remove the l′halt location and the associated transition from lhalt,
because it is no longer needed in this case and prevents the PTA to be an IP-
PTA.

Instead, we create a fresh location lerror, and we add two transitions from l0
(the initial location of the PTA) to the lerror location:

– one with guard x = 0∧x = a, that can only be taken when a = 0 and serves
to “eliminate” this special case that does not correctly encode the counters.

– and one with guard 0 ≤ x < 1 ∧ x = b, that can only be taken when
b ∈ [0, 1).4

So, whenever a = 0 and b ∈ [0, 1), the system can eventually reach lerror. Hence,
in the following, we only need to focus on the case where a ∈ (0, 1] and b = 1.

Let us now change the increment gadget (when decrementing or zero-testing,
there is no upper bound constraint on a). More specifically, remark that, when
incrementing C1, the constraint that implies a ≤ 1

c1+1 comes from the last
transition in the path going through li2. In the other path, c2 is already greater
than or equal to c1+1 and therefore a is already small enough to properly encode
c1 + 1 since it is small enough to encode c2.

We modify the increment gadget as described in Figure 4.
In the transition from li2 to li3, if a is not small enough then x = a(c1+1) will

be greater than one and the final transition to sj will not be fireable. We therefore
add a direct transition from li2 to lerror when x ≥ b. Recall that we only care
about the case where b = 1, hence this transition can be understood as x ≥ 1;
now the case where x = 1 is problematic, as the value of a is just small enough to
encode the counters, and we still can reach lerror, and the 2-counter machine is

4 This case may not be necessary in the proof; however, it makes the explanation
simpler, as we can now discard from our reasoning valuations such that b ∈ [0, 1).

21

si li1

li2

l′i2

lerror

li3 sj
x = 0

z = 1,
z := 0

y = a + 1,
y := 0

y = a + 1 and x ≤ 1,
y := 0

y = a + 1 and x ≥ b,
y := 0

z = 1,
z := 0

x = 1,
x := 0

Fig. 4: EF-universality for bounded IP-PTAs: increment gadget

not properly encoded. However, since we are interested in universality, it suffices
to take a valuation of a slightly smaller to properly encode the machine, as we
explain more precisely below.

We now prove that the counters of the machine grow unbounded along its
execution iff for all values of a and b, the encoding PTA can reach lerror. First
recall that for a = 0 or b ∈ [0, 1), it is always possible to reach lerror (from the
initial state). When a > 0 and b = 1, we have two cases:

– either the counters grow unbounded (say C1 does), then whatever the value
of a > 0, at some point we have ac1 > 1. More specifically, there is an
incrementation of C1 such that ac1 ≤ 1 and a(c1 + 1) > 1, which also
implies a(c1 + 1) ≥ b (since b = 1). Then, when executing the corresponding
increment gadget, lerror can be reached from li2;

– or the counters stay bounded. Let c be the maximal value of the counters.
Recall that when entering li2 we have x = ac2, y = 1− ac1 + ac2 and z = 0.
Then, when y = a + 1, we have x = a(c1 + 1). If c1 + 1 = c, then x = ca is
the largest value that x can have in li2 when y = a+ 1. Observe that, due to
the non-strict inequality x ≥ b in the guard from li2 to lerror, one might still
reach lerror for a valuation of a such that ca = 1. Consequently, consider the
parameter valuation a = 1

c+1 and b = 1. Then ca < 1 = b and since x is in
li2 always at most equal to ca when y = a + 1, the guard to lerror is never
true and the of valuations for which the automaton can reach lerror is not
universal.

It remains to show that the constructed PTA is an IP-PTA. With the ex-
ception of lerror, the result is clear: a = 0 and b = 0 belongs to every reachable
symbolic state, hence each symbolic state contains an integer parameter valu-
ation, and hence from Lemma 4, all symbolic states (except lerror) contain at
least one integer point. In addition, the two symbolic states taken by taking the
two special transitions from the initial state to lerror to handle a = 0 or b ∈ [0, 1)
also contain the integer point x = y = a = b = 0. Now, let us consider the other
symbolic states with location lerror (and reachable from some location li2 due to

22

an increment). The projection onto the parameters of the associated constraint
is 0 ≤ b ≤ 1 ∧ b

i+1 ≤ a ≤
1
i , with i ∈ N denotes the current maximum valuation

of the counter. Clearly, a = b = 0 is a parametric integer point in this symbolic
state; hence from Lemma 4 this symbolic state contains an integer point (in
clocks and parameters dimensions). Hence this PTA is a (bounded) IP-PTA. ut

D Proof of Theorem 8

Theorem 8 (recalled). The AF-emptiness problem is undecidable for
bounded L/U-PTAs.

Proof. Let us consider the PTA A(M) encoding the 2-counter machineM pro-
posed in our proof of Theorem 2. The PTA A(M) has only one parameter a
which is used both as an upper bound and a lower bound. We add two fresh
parameters a− and a+ and we replace the guard y = 1+a by a guard 1+a− ≤ y
and an invariant y ≤ 1 + a+ as shown for the increment gadget in Figure 5.

si li1

li2

l′i2

li3 sj

z ≤ 1∧,
y ≤ a+ + 1

y ≤ a+ + 1

x ≤ 1

z ≤ 1

x = 0

z = 1,
z := 0

a− + 1 ≤ y,
y := 0

a− + 1 ≤ y,
y := 0

z = 1,
z := 0

x = 1,
x := 0

Fig. 5: AF-emptiness for bounded L/U-PTAs: increment gadget

We initialize the parameters a− and a+ with the gadget in Figure 6 (adapted
from [JLR15]) leading to the location s0. Clearly, starting from l0, we have AF(s0)
if and only if a− = a+ > 0, because 1) if a− = 0 then it is possible to reach
lsink and therefore we do not have AF(s0), and 2) any run that reaches l1 before
y is equal to a+ can be extended by delaying a non-null amount of time into
a run that will be blocked by the invariant of s0. So all runs should enter l1
with y = a+, which is the case if and only if a− = a+. We therefore obtain an
L/U-automaton with a− = a+ and a+ > 0.

Let us now go back to the increment gadget of Figure 5. As in the proof of
Theorem 2, when a− = a+ > 0, exactly one path can be taken depending on the
respective order of c1 + 1 and c2.The invariants allow to avoid infinite delays in
locations and since a− = a+, no run can be blocked inside the gadget. The same

23

l0

y ≤ a+ l1

y ≤ a+

s0

x ≤ 0

lsink

y ≥ a−

x := 0
y := 0

a− ≤ x ≤ 0

Fig. 6: AF-emptiness for bounded L/U-PTAs: initial gadget

reasoning can be made for the decrement and zero-testing gadgets. Moreover we
can bound the PTA by a−, a+ ∈ [0, 1] without loss of behavior.

Hence we reduce the halting problem of 2-counter machine to the AF-emptiness
problem for bounded L/U-PTAs: the machine halts iff there exists a value of
a− = a+ > 0, such that the location lhalt is unavoidable in our bounded L/U-
automaton. ut

	Decision Problemsfor Parametric Timed Automata

