N

N

Applying Parametric Model-Checking Techniques for
Reusing Real-time Critical Systems
Baptiste Parquier, Laurent Rioux, Rafik Henia, Romain Soulat, Olivier Henri

Roux, Didier Lime, Etienne André

» To cite this version:

Baptiste Parquier, Laurent Rioux, Rafik Henia, Romain Soulat, Olivier Henri Roux, et al.. Applying
Parametric Model-Checking Techniques for Reusing Real-time Critical Systems. 5th International
Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2016), Nov 2016, Tokyo, Japan.
10.1007/978-3-319-53946-1_8 . hal-02538041

HAL Id: hal-02538041
https://hal.science/hal-02538041
Submitted on 9 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02538041
https://hal.archives-ouvertes.fr

Applying Parametric Model-Checking
Techniques for Reusing Real-time Critical
Systems*

Baptiste Parquier’2, Laurent Rioux!, Rafik Henia!', Romain Soulat®, Olivier
H. Roux?, Didier Lime?, and Etienne André?3

I THALES Research & Technology, 1 avenue Augustin Fresnel, 91120 Palaiseau,
France
2 IRCCyN, 1 rue de la Noé, 44300 Nantes, France
3 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, F-93430,
Villetaneuse, France

Abstract. Due to the increase of complexity in real-time safety-critical
systems, verification and validation costs have significantly increased. A
straightforward way to reduce costs is to reuse existing systems, adapting
them to new requirements, so as to avoid new costly developments. Our
aim is to verify during the development strategy definition phase whether
the existing products can be reused and adapted for a new customer,
by identifying key parameters to be tuned in order to reuse existing
products. Performing efficient verification is therefore crucial.

In this paper, we focus on the performance requirement aspects. Nowa-
days, model-checking techniques have improved significantly to verify
the performances of real-time systems. However, model-checking cannot
address real-time systems where some timing constants are unknown or
uncertain. Parametric model-checking leverage this shortcoming by iden-
tifying parameter ranges for which the system is correct. We report here
on an experiment of the evaluation of the use of these formal techniques
applied to automatize the synthesis of good parameter ranges for system
reuse in the setting of the environment requirements for an aerial video
tracking system.

Keywords: Real-time Systems - Safety-Critical Systems - Formal Meth-
ods - Parametric Verification - Performance Verification - Case Study -
Avionics

1 Introduction

Performance verification is a common discipline in system and software engi-
neering. In practice, it is very common to spend a lot of effort in performance

* This paper is the author version of the paper of the same name published in the
proceedings of the 5th International Workshop on Formal Techniques for Safety-
Critical Systems (FTSCS 2016), Tokyo, Japan, November 2016. This work is par-
tially supported by the ANR national research program ANR-14-CE28-0002 PACS
(“Parametric Analyses of Concurrent Systems”).

engineering especially for certified products. Standards specify a complete and
precise safety process to follow in order to be certified (e.g., DO-178C in the
avionics domain). There is a need to reduce the time and efforts related to de-
sign such real-time systems considering performance requirements. We would
like to experiment and verify if the current state of the art on performance ver-
ification tools are able to cope with industrial needs. We will not address the
whole performance engineering process. We will focus on the performance verifi-
cation in a particular context: an industrial company plans to reuse an existing
real-time safety-critical system for the needs of a new client to cut costs and
delays. However, this client is coming with its own performance requirements
that differs from what the system was originally designed for. Our use case is an
aerial video tracking device. Its mission is safety-critical for the whole system
and, therefore, has to be certified according to the DO-178C standard.

To this end, we have to demonstrate the software architecture meets the
performance requirements, which implies that the system has to satisfy all the
deadline requirements in all (and in particular the worst) situations.

A conventional way at THALES—Dbut also in other industrial companies—
to tackle this problem is to evaluate the performance of the current system.
The system is taken as is and if it satisfies the client performance requirements,
the system can be reused as it stands. If not, experts check how to modify
environment parameters—typically sources of activation of the system—and try
to identify a new configuration where the system can meet its new requirements.
This is time consuming and costly. Therefore, generally only few configurations
are tested and evaluated, and quite often, none of them meets the requirements.
As a consequence when the activity is seen as too costly, the “reuse” strategy is
dropped.

We report here on an experimentation to apply formal techniques on an
aerial video tracking system by THALES, in a way to tool-up the identification
of the good environment parameters to reuse the system. Our methodology is as
follows:

1. We first identified the most appropriate formalisms and formal techniques
to validate the performance and identify the good environment parameters:
we chose to use parametric stopwatch automata (PSwAs) and parametric
stopwatch Petri nets (PSwPNs), two formalisms for modeling and verifying
preemptive real-time systems with parameters. These two formalisms benefit
from state-of-the-art model-checkers (IMITATOR for PSwAs and ROMEO for
PSwPNs).

2. We then devised a way to model the system needed for performance valida-
tion, using the identified formalisms.

3. We then studied how to measure the trust in the results produced by IMI-
TATOR and ROMEO: In this regard, we exploit diversity: the use of several
techniques giving the very same results is a great source of confidence. Nev-
ertheless, diversity can only be reached if the alternatives used are truly
different and cannot both fail due to some common weaknesses.

Organization of the Paper. Section 2 presents the aerial video tracking system
developed by THALES, and its new requirements. Section 3 presents the state
of the art of available verification techniques, in particular formal methods using
parameterization. Section 4 introduces the tools ROMEO and IMITATOR respec-
tively for parametric stopwatch Petri nets and parametric stopwatch automata.
Section 5 provides the modeling of the case-study into both formalisms. Finally
we present experimental results in Section 6 and we conclude with Section 7.

2 Industrial Case-Study

2.1 Specifications

This case-study is an aerial video tracking system designed by THALES, used
in intelligence, surveillance, reconnaissance, tactical and security applications.
Fig. 1 presents the two major functions of this system:

1. The video frame processing function, which receives frames from the camera
and sends them to the cockpit to be displayed for the pilot.

2. The tracking and camera control function, which gives the control commands
to the camera from the aircraft sensor data. The study focuses on this part
of the system.

The objective of the tracking and camera control function is to control the
camera position according to the plane trajectory. The camera has to always
focus on the same target, whatever the plane trajectory is.

The system is characterized by strict constraints on timing. One major tim-
ing problem consists in calculating the timing latencies for the functions in the
“Tracking and Camera control” part.

e

(R NS | ——— Video frame pr -
*‘;@ frame P 9 ‘ to display - -
y
2 (7 o
Tracking & camera control - “Se”
Control commands. Aircraft A
X sensors data . =P

X
AV
AV

Aerial video tracking system

Fig. 1. Organization of the aerial video tracking system

“Tracking and Camera control” is decomposed in 4 subfunctions: Processing
(T2), Target position prediction (T5), Tracking control (T6) and Camera control
(T7). All sub-functions share the same computing resource, i.e., work on the
same CPU. Fig. 2 illustrates how all those sub-functions communicate with each
other and how much time they require on the computing resource. (The red
arrow in Fig. 2 is not considered for now, and will be used later on.)

T6 T5 T7 T2
T i . pos.
v racking Targ‘ p.c\s Camera Processing
. N X control prediction control
:]]]
A
T ! ! !
1 [4ms,4ms] | | From |
/) : ! : Pre-processing _ 7
’ -
| |
Period =100ms : 1 1 /”
itter = 1 1 1 -
Jitter = 1 4 7 -
I [4ms,7ms] | Period = 40ms
: \ , Offset = w
| T \ [17ms,17ms]
: 1 1
| 1
: 1 |
: [9ms,10ms] : :
Deadline < 80ms | | |
1 1 1
1 1 | To
: ! ! : Filtering
1 1 1
1 | |
: [4ms,5ms] | |
H | 1
H | |
)y T | |
P i [11ms,1ams] 1
1 1 1 |
1 1 1 1
1 1 1 1
: 1 I i
1
v (\;« //

Fig. 2. Tracking and camera control: time description

The system has the following characteristics:

— All tasks are triggered by the arrival of data at their inputs;
— There is a preemptive scheduling for the computing resource;
— Tasks are prioritized in this order: T2 > T6 > T5 > T7.

Let us now introduce various definitions.

Definition 1. A period 7 is the duration after which a periodic phenomenon
repeats itself.

Definition 2. A jitter is the mazximal delay of activation compared to the peri-
odic arrival of the event causing this activation.

Definition 3. A time offset w is the time lag between an event and a time
reference—taken arbitrarily.

Definition 4. In a system, a stimulus is an external activation that periodically
sends a signal to one or multiple tasks. It is fully characterized by: 1. A period,
2. A jitter, 3. A time offset.

FEzample 1. In our case-study, there are two stimuli as shown in Fig. 2:

— The first one activating T6—tracking control: period 100 ms, jitter j, no
offset—this stimulus is chosen as reference,
— The second one activating T2—processing: period 40 ms, no jitter, offset w.

I IT - T 1tT ‘

-——————— [< > < > time (ms)

Fig. 3. A 30ms jitter on a 100 ms period stimulus

Ezxample 2. Fig. 3 illustrates a periodic stimulus with a period of 100 ms and a
jitter 7, that activates a task. The periodic stimulus sends data to the task in
order to activate it (blue arrows in Fig. 3). Because of the jitter, the activation
of the task happens between 0 and j time units after the stimulus (red arrows).

The jitter j represents a potential delay due to the communication network in
the aircraft. It is not something that can be determined at design time: the best
a designer can do is to take into account that there will be a possible delay in the
final system and ensure the system will behave according to the requirements
whatever the jitter is. Until now, system environment ensured that:

7 =30ms

The offset w might be used to change the reference between T6’s and T2’s
activations. An offset is something the designer can tune to ensure the system
good behavior.

2.2 Main Objective

Our main objective is to reuse an existing system for new customers, which means
the system has to meet all new performance requirements. More precisely, in this
experiment, we consider the situation where a new customer wants to modify
the following requirement to the aerial video tracking system: “The end-to-end
latency between the activation of task T6 and the termination of task T7 shall
be lower than 80ms.” The new end-to-end latency requirement is depicted in
red in Fig. 2.

Our aim is to compute new timing specifications of the system so that this
additional requirement can be met. However, the heart of the system must not
change. As the system is expected to be reused as is, we can only modify the
timing specifications of external activations: tune the offset between stimuli, or
change the jitter requirements.

2.3 Our Constraints: a Parametric Approach

In our case study, jitter and offset can be seen as parameters. Moreover, even
timing properties can be expressed parametrically, as timing constraints make
sense only in the context of a given concrete environment. For example, a maxi-
mal delay of the system response has to be at most two times the minimal delay,
or the transmission time in the communication protocol could be left as a pa-
rameter. Performing non-parametric model-checking of the systems for different

concrete values is difficult and leads to state-space explosion. The possibility to
specify parametric timing constraints is then a great opportunity that allows to
evaluate timing performances of real-time systems independently of their par-
ticular implementation.

We summarize the main needs for a parametric approach:

— Parameters allow to cope with the early uncertainties in developing an in-
dustrial system;

— Parameters allow to investigate robustness of some of the design choices;

— If the system is proven wrong, the whole verification process has to be carried
out again;

— Considering a wide range of values for constants allows for a more flexible
and robust design.

3 Related Works

3.1 Response Time and Latency Analysis

As mentioned in [SSL*13], many research papers have already addressed the
problem of parametric schedulability analysis, especially on single processor sys-
tems. Bini and Buttazzo [Bin04] proposed an analysis of fixed priority single
processor systems, which is used as a basis for this paper.

Parameter sensitivity can be also be carried out by repeatedly applying clas-
sical schedulability tests, like the holistic analysis [PGGH98]. One example of
this approach is used in the MAST tool [GHGGPGDMO1], in which it is possi-
ble to compute the slack (i.e., the percentage of variation) with respect to one
parameter for single processor and for distributed systems by applying binary
search in that parameter space [PGGH93].

A similar approach is followed by the SymTA/S tool [HHJ'05], which is
based on the event-stream model [RE02]. Another interesting approach is the
Modular Performance Analysis (MPA) [WTVLO06], which is based on Real-Time
Calculus. In both cases, the analysis is compositional, therefore less complex
than the holistic analysis. In [LPPR13], a real time system is modeled using a
high level variant of timed automata including design timed parameters and is
analyzed using the UPPAAL tool. Nevertheless, these approaches are not fully
parametric, in the sense that it is necessary to repeat the analysis for every
combination of parameter values in order to obtain the schedulability region.

3.2 Parametric Formalisms for Real-time Systems

The literature proposes mainly two formalisms to model and verify systems with
timing parameters: parametric timed automata [AHV93] and parametric time
Petri nets [TLR09]. Both formalisms are subject to strong undecidability results,
even with low numbers of parameters [Mil00], syntactic restrictions such as strict
constraints [Doy07], or with restricted parameter domains, such as bounded
rationals [Mil00], or (unbounded) integers [AHV93] (see [And16] for a survey).

Undecidability is not necessarily a problem: semi-algorithms were defined (e. g.,
[AHV93], [ACEF09], [JLR15]) and safe under-approximations were also proposed
(e.g., [ALR15], [JLR15]).

For many real-time systems, in particular when subject to preemptive schedul-
ing, these formalisms are not expressive enough. As a consequence, we therefore
use extensions of parametric timed automata and parametric time Petri nets
augmented with stopwatches, yielding parametric stopwatch automata [SSLT13],
and parametric stopwatch Petri nets [TLR09].

To the best of our knowledge, the only tools using as basis formalism these
two formalisms are IMITATOR [AFKS12] for parametric stopwatch automata,
and RoMEO [LRST09] for parametric stopwatch Petri nets. In this work, we
evaluate the capabilities of both tools using the industrial case study.

4 Tools

We briefly present both tools in the following. Using tools is an opportunity to
increase the confidence in our results. We believe this offers us the diversity we
seek for in our approach, because the tools are developed by different teams,
and based on different theories: parametric stopwatch Petri nets vs. parametric
stopwatch automata, that implies different models.

By doing that, the confidence one can have in both tools increases consider-
ably: if both tools give the same results, the odds that they are both wrong is
clearly very low, and therefore the confidence is high.

4.1 Roméo

RomEOo? [LRST09] is a software studio for parametric analysis of time Petri
nets and some of their hybrid extensions (such as parametric stopwatch Petri
nets). It is available for Linux, MacOSX and Windows platforms and consists of
a graphical user interface (GUI) to edit and design PSwPNs, and a computation
engine.

ROMEO supports the use of parametric linear expressions in the time intervals
of the transitions, and allows to add linear constraints on the parameters to
restrict their domain. Finally, ROMEO provides a simulator and an integrated
TCTL model-checker [BGR09].

4.2 IMITATOR

IMITATOR® [AFKS12] is a software for parametric verification and robustness
analysis of real-time systems. It relies on the formalism of networks of parametric
timed automata, augmented with integer variables and stopwatches. Parameters
can be used both in the model and in the properties.

IMITATOR is fully written in OCaml, and makes use of the Parma Polyhedra
Library [BHZ08]. It is available under the GNU General Public License.

4 http://romeo.rts-software.org
5 http://www.imitator.fr

http://romeo.rts-software.org
http://www.imitator.fr

5 Modeling the Case-Study

Modeling the system in both tools was one of the challenges of this work. Each
theory has its particularities, and translating the case-study specifications ac-
cording to the associated theory was sometimes problematic. This part presents
the modeling choice we made to obtain an equivalent model of the aerial video
tracking system, both with RoMEO and IMITATOR.

Modeling reentrancy In our models, we decompose the task T6—tracking control—
in three different tasks:

— T6_1, duration [4, 4] ms
— T6-2, duration [9, 10] ms
— T6_3, duration [4, 5] ms

This decomposition simplifies the analysis of the transmission of data between
T6, T5 and T7—shown Fig. 2. Indeed, with this modification there is no more
transmission inside a task. However, the system’s behavior needs to stay unmod-
ified: there can not be two cycles T6_1 to T6_3 overlapping. After an activation of
T6—i. e., T6_1—it is impossible to have a new one before its termination—i. e.,
T6_3 termination.

Definition 5. We define a cycle between two tasks T and T'—T causing the
activation of T'—as the the time elapsed between the activation of task T and
the termination of T' caused by this activation.

The phenomenon of overlapped cycles is called reentrancy, e.g., when there
are at least two T6’s activation before any T7’s termination.

5.1 Roméo

We give in Fig. 4 the rules that we use to translate the aerial video track-
ing system into PSwPNs. Each element needed in the system—task, stimulus,
synchronization (blue arc) and priority (red arc)®—is translated (in that or-
der). The whole formal model is constructed by linking by an arc the elements
(pattern) constituting the system. As an example, for the periodic task T2,
the Periodic Stimulus pattern is linked to the Task pattern by an arc between
Jitter transition to Task_place. According to these few rules, we obtained a
PSwPN net modelling the case-study.

Remark 1. In ROMEO, there is no explicit time unit: it is inherent to the model.
Every duration in the case-study is in ms, so the time value given by ROMEO
will be in ms.

5 The use of timed (resp. discrete) inhibitor arc (red arc) leads to the modeling of
preemptive (resp. non-preemptive) scheduling.

Periodic Stimulus
Task Period: period (Task 1 [a, b]) termination causes Priority
Execution interval: [a, b] Offset: offset (Task 2 [c, d]) activation Prio(Task 1 [a, b]) = Prio(Task2 [c, d])
, Jitter: jitter /
4 4 14 4
\ \ Offset_place \ \
Offset_transition
[off; off]
Task_place Period_place Pl P2 PI P2
Period_transition
[T;T]
Task_transit T 2 T ')
?\l _transition Jitler_place Tl T2 Tl T2
[a:b] [a;b] [e;d] [a:b] [e;d]
Jitter_transition
[0:j]

Fig. 4. Translating the system (top) into RoMEO (bottom)

In this model, there are two parameters: jitter—corresponding to the maxi-
mal delay j of the first stimulus defined in Section 2.1—and offset—corresponding
to the offset w of the second stimulus.

To be consistent with the case-study, the following constraints are defined:

jJitter <30 & offset € [0,40) (1)
Remark 2. There is no need for a larger range for the offset: T2 is activated every
40ms (periodic stimulus), so we review all possible cases with these bounds.

To be able to compute a latency, an observer is needed.” An observer is
another time Petri net linked to the initial net that needs to be observed. It does
not change the behavior of the observed part, and—by asking the right property
to the model-checker and thanks to a parameter—it allows to compute the worst
latency between two tasks.

5.2 IMITATOR

We give in Fig. 5 the translation rules to build the IMITATOR model. Constraints
on the model are defined in the same way as with ROMEO in Eq. (1). The whole
formal model is constructed by synchronizing the elements (pattern) constitut-
ing the system. The IMITATOR synchronization model is such that all PSwAs
declaring an action must synchronize together on this action. As an example,
for the periodic task 12, the Periodic Stimulus pattern is synchronized with the
Task pattern by the activate_task action.

Remark 3. As in ROMEO, there is no explicit time unit in IMITATOR.

" Observers (also called testing automata) were studied in [ABBL98,ABL9S8], and a
library of common observers was proposed in [And13].

10

Periodic Stimulus Task activation: thanks to synchronization launch_task, it

Periad. period communicates with a larger automata, dealing with priorities Tasks and scheduling (priorities)

Offset: offset between tasks and their execution intervals.
» One automaton

Jitter: jitter

periodic_stimulus activation

7\

activate_task

'ox=0 c=c+ |

[
cr=c+ -1 aunch_task / 7
’

)

Fig. 5. Translating the system (top) into IMITATOR (bottom)

6 Experiment Results

6.1 Hardware

The computation was conducted on a regular personal computer running Linux
64 bits 3.10 GHz and 4 GiB memory. Models and experiment results are available
at www.imitator.fr/FTSCS16.

For our analysis, as explained in Section 2.2, we are interested in checking
that the worst-case end-to-end latency—from activation of the Tracking control
task to termination of the Camera control task as defined in Section 2.1—does
not exceed 80 ms.

6.2 Worst-case Scenario

We have computed the worst latency for the basic configuration: i.e., with a
30 ms jitter — the activation of T6 in Fig. 2 may happen between 0 and 30 ms
after the arrival of the stimulus. If this worst latency between the T6’s activation
and T7’s termination is less than 80 ms, this configuration of the system meets
the requirements.

Table 1 presents the results obtained with both ROMEO and IMITATOR. In
this table and the following, the Performance ratio denotes a comparison be-
tween the computing times of the two tools. The fastest is taken as reference.

Both tools give the same result: the worst time is 117ms. It is really re-
assuring. As explained in Section 4, this allows the designer to have a strong
confidence in this result.

www.imitator.fr/FTSCS16

Table 1. Case-study: 30 ms jitter, no offset

Worst-case end-to-end latency
Software RoMEO |IMITATOR
Response 117ms= 117 ms
Memory 16.2MB | 342.3MB

Computing time 0.6s 34.3s
Performance ratio (time) 1 57

The used tools are able to produce traces for the worst cases. This is of
prime interest for someone designing a system as it allows him to understand
the existing bottlenecks and to be able to easily address them.

Fig. 6 shows this worst-case scenario. The worst time is reached because of
reentrancy when all tasks have their longest duration. Indeed, the task T7—the
one with the lowest priority—does not have the time to end before the launching
of a new cycle. It is then preempted by all the other tasks. The reentrancy is
possible because of the jitter. There are only 70 ms between both activations of
task T6 (tracking control).

L L]

Fig. 6. Gantt chart of the worst-case scenario

Moreover, the end-to-end delay requirement given by the client is not met.

117 ms > 80 ms

In the next part, we investigate if the modification of environment parameters
could fix it.

12

6.3 Exploitation of Parameters

In this part, we are interested in addressing the capabilities of the tools to explore
different parameter valuations in order to meet requirements. As presented in
Section 2, to modify the external sources of activations—i. e., stimuli—we have
two parameters we can operate on: the offset w between the stimuli, and the
jitter j before the activation of T6—tracking control. As a consequence, the
designer is allowed to change the value of the offset in order to meet the end-to-
end requirements. Otherwise, (s)he has to fix the maximal jitter the system can
tolerate according to the same requirements.

The results (condition on both parameters w and j) of Table 4 are more
general and covers the results of the previous two. However, Table 2 and Table 3
allow to compare the tools and to understand the compromise between the rele-
vance of the result and the memory and the computing time required to obtain
this result.

Offset Only. We are now interested in finding a constraint on the offset such
that the 80 ms requirement is met. The observer is set to check that the end-to-
end delay is below 80 ms. The offset between the two tasks is set as a parameter.
The model checkers will produce a constraint on the offset such that the require-
ment is always met.

Both model-checkers output 1, which denotes that no parameter valuations
are such that the system meets the performance requirement. This means that
no offset valuation can satisfy this requirement.

Table 2. Case-study: 30 ms jitter, parametric offset

Worst-case end-to-end latency
Software RowmEo [IMITATOR
wt < 80 ms 1 = 1
Memory 64.0 MB| 1,816 MB
Computing time 3.3s | 3min35s
Performance ratio (time) 1 65

Remark 4. We have run a full analysis, performed by parameterizing both the
offset and the end-to-end delay in the observer: this analysis, in fact, showed
that no matter the offset, the worst case will always be 117 ms.

This ability to produce a negative result is also of prime interest for a sys-
tem architect. It allows to reduce the design exploration time. In this case, the
architect knows that tweaking the offset will never be successful.

Since acting on the offset was not enough, reducing the jitter’s specification
becomes essential.

13

Reducing the Jitter. In this part, we explore another part of the design space:
reducing the jitter. We are interested in finding jitter valuations that allows the
system to meet its end-to-end maximal delay requirement. If we find a working
configuration, we will take the highest authorised jitter’s value to put in the new
requirements: it gives more flexibility to the system, allowing more flexibility for
the external sources of events.

Jitter Only. In this part, we only use one parameter for the jitter’s value:

J €[0,30] ms, the offset is set at w =0

Table 3. Case-study: parametric jitter j, no offset, wt < 80ms

Worst-case end-to-end latency
Software RomEo |IMITATOR
wt < 80 ms true = true
j (ms) [0, 26) < [0, 26)
Memory 9.6 MB | 267.8 MB
Computing time 0.5s 38.1s
Performance ratio (time) 1 76

Once again, the results are still the same for both tools. According to Table 3:
to meet its requirement, the system shall have a jitter j € [0,26) ms if the offset
is left at w = 0.

However, reducing the jitter can be expensive. We will investigate the possi-
bility to have a higher jitter value by allowing a different offset w.

Offset and Jitter. In this part, we parametrize both the offset w, and the jitter
j—there are now two parameters in our models. To reduce the state-space, we
add the following constraints:

w € [0,40)ms & j € [0,30] ms (2)

In Table 4 are the results we obtained using this configuration: once again,
both tools agreed.

For a system architect point of view, having the full constraints allows to
make smart industrial choices. With these results, one of the smartest thing to
do in order to have worst time < 80 ms is, for example, to use 6 ms offset with
28 ms jitter. These two values are allowed by the results model-checkers gave us,
and it is one of the highest jitter we can have.

14

Table 4. Case-study: 2 parameters (jitter j & offset w), wt < 80 ms

Worst-case end-to-end latency
wt < 80 ms true true true
w (ms) [0, 6) [0, 26) [0, 40)
j (ms) [0, 29) [0, 29) [0, 26)
Condition —JHtw>-23| —j+w>-3 none
Roméo Memory: 117.3 MB — Computing time: 7.5s
IMITATOR |Memory: 2,017 MB — Computing time: 6 min 36 s

6.4 Tool Comparison

In our experimentations, ROMEO has always performed better than IMITATOR
in terms of time and memory consumption. Therefore, ROMEO seems to be a
promising tool for future industrial use. It would be interesting to know why
there is such a gap between these model-checkers, although they use a very
similar notion of symbolic state, and a common internal representation using
the Parma Polyhedra Library [BHZ08]. Here are some hypotheses:

— Both PSwAs and PSwPNs use clocks, i. e., real-valued variables. The number
of clocks significantly impacts the model checking performance. A main dif-
ference is that clocks are created statically in PSwAs (hence in IMITATOR),
whereas they are dynamic in PSwPNs (hence in ROMEO) and are therefore
fewer in this latter case.

— The reentrancy phenomenon is well managed in ROMEO, thanks to the Petri
net theory—it is just multiple tokens in one place—whereas in IMITATOR,
the reentrancy is made possible by adding variables and automata, which
necessarily impacts the efficiency.

In addition, note that the distributed capabilities of IMITATOR were not used in
our comparison.

Nevertheless, IMITATOR and ROMEO gave us the same results: this is crucial
for confidence in our results. Tool redundancy is used in some certification pro-
cesses to lower the certification level needed for each tool. Having several tools
with distinct underlying techniques, formalisms, and libraries that output the
same results, can help in cheaper certifications.

7 Conclusion

In this paper, we faced a concrete industrial need concerning an aerial video
tracking system made by THALES: can this system meet an additional end-to-
end delay?

With our study, we used parametric model checking to investigate possi-
ble designs and answer this question. We used two different tools using formal

15

methods—IMITATOR and RoMEO. By doing that, and checking certain proper-
ties on our models, we have now a precise idea of what we have to do to respect
this requirement. Moreover, both tools drew the same conclusions: that is re-
assuring, both for these two tools and for our models. More important, it also
validates the estimated performances presented in this paper.

This kind of approach was able to give us solutions to our questions. Even if
there is no certification yet, this study allows to glimpse the potential of model-
checking techniques using parameters for industrial use.

In the future, THALES R&D engineers want to promote the use of model-
checking software for industrial practices, and implement it in design and analysis
tools already available. Therefore, the next step is to test the limitation of the
selected tool: by creating models with a large pallet of specifications, and see
if the model-checker can manage every feature. If the tool passes the exam,
there is an upscaling process: from any system modeled with THALES’ tool,
automatically generate a model fit for our model-checker.

Acknowledgment

The authors would like to thank Violette Lecointre for her participation at mod-
eling the case-study with ROMEO.

References

ABBL9S. Luca Aceto, Patricia Bouyer, Augusto Burgueno, and Kim Guld-
strand Larsen. The power of reachability testing for timed automata.
In FSTTCS, volume 1530 of Lecture Notes in Computer Science,
pages 245-256. Springer, 1998. 9

ABLO9S. Luca Aceto, Augusto Burguefio, and Kim G. Larsen. Model checking
via reachability testing for timed automata. In TACAS, volume
1384 of Lecture Notes in Computer Science, pages 263—280. Springer,
1998. 9

ACEF09. Etienne André, Thomas Chatain, Emmanuelle Encrenaz, and Lau-
rent Fribourg. An inverse method for parametric timed au-
tomata. International Journal of Foundations of Computer Science,
20(5):819-836, October 2009. 7

AFKS12. Etienne André, Laurent Fribourg, Ulrich Kiihne, and Romain
Soulat. IMITATOR 2.5: A tool for analyzing robustness in schedul-
ing problems. In FM, volume 7436 of Lecture Notes in Computer
Science, pages 33—-36. Springer, 2012. 7

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric
real-time reasoning. In STOC, pages 592-601. ACM, 1993. 6, 7
ALR15. Etienne André, Didier Lime, and Olivier H. Roux. Integer-complete

synthesis for bounded parametric timed automata. In RP, volume
9058 of Lecture Notes in Computer Science, pages 7—19. Springer,
2015. 7

And13. Etienne André. Observer patterns for real-time systems. In ICECCS,
pages 125-134. IEEE Computer Society, 2013. 9

16

Andl16.

BGRO09.

BHZ08.

Bin04.

Doy07.

GHGGPGDMOL1.

HHJT05.

JLR15.

LPPR13.

LRSTO09.

Mil00.

PGGHOS.

REO02.

SSL*™13.

Etienne André. What’s decidable about parametric timed au-
tomata? In FTSCS, volume 596 of Communications in Computer
and Information Science, pages 1-17. Springer, 2016. 6

Hanifa Boucheneb, Guillaume Gardey, and Olivier H. Roux. TCTL
model checking of time Petri nets. Journal of Logic and Computa-
tion, 19(6):1509-1540, 2009. 7

Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma
Polyhedra Library: Toward a complete set of numerical abstractions
for the analysis and verification of hardware and software systems.
Science of Computer Programming, 72(1-2):3-21, 2008. 7, 14
Enrico Bini. The Design Domain of Real-Time Systems. PhD thesis,
Scuola Superiore Sant’Anna, 2004. 6

Laurent Doyen. Robust parametric reachability for timed automata.
Information Processing Letters, 102(5):208-213, 2007. 6

Michael Gonzéalez Harbour, J. J. Gutiérrez Garcia, José C. Palen-
cia Gutiérrez, and J. M. Drake Moyano. MAST: modeling and anal-
ysis suite for real time applications. In ECRTS, pages 125—134. IEEE
Computer Society, 2001. 6

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst.
System level performance analysis — the SymTA/S approach. IEE
Proceedings — Computers and Digital Techniques, 152(2):148 — 166,
2005. 6

Aleksandra Jovanovié, Didier Lime, and Olivier H. Roux. Integer
Parameter Synthesis for Real-Time Systems. IEEE Transactions on
Software Engineering, 41(5):445-461, 2015. 7

Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, and Yusi
Ramadian. Timed-automata based schedulability analysis for dis-
tributed firm real-time systems: a case study. International Journal
on Software Tools for Technology Transfer, 15(3):211-228, 2013. 6
Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A parametric model-checker for Petri nets with
stopwatches. In TACAS, volume 5505 of Lecture Notes in Computer
Science, pages 54-57. Springer, 2009. 7

Joseph S. Miller. Decidability and complexity results for timed au-
tomata and semi-linear hybrid automata. In HSCC, volume 1790 of
Lecture Notes in Computer Science, pages 296-309. Springer, 2000.
6

José C. Palencia Gutiérrez and Michael Gonzéalez Harbour. Schedu-
lability analysis for tasks with static and dynamic offsets. In IEEE
Real-Time Systems Symposium, pages 26-37. IEEE Computer Soci-
ety, 1998. 6

K. Richter and R. Ernst. Event model interfaces for heterogeneous
system analysis. In DATE, pages 506-513. IEEE Computer Society,
2002. 6

Youcheng Sun, Romain Soulat, Giuseppe Lipari, Etienne André, and
Laurent Fribourg. Parametric schedulability analysis of fixed prior-
ity real-time distributed systems. In FTSCS, volume 419 of Com-
munications in Computer and Information Science, pages 212—-228.
Springer, 2013. 6, 7

TLRO9.

WTVLO06.

17

Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux. Para-
metric model-checking of stopwatch Petri nets. Journal of Universal
Computer Science, 15(17):3273-3304, 2009. 6, 7

Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul Liev-
erse. System architecture evaluation using modular performance
analysis: a case study. International Journal on Software Tools for
Technology Transfer, 8(6):649-667, 2006. 6

	Applying Parametric Model-Checking Techniques for Reusing Real-time Critical Systems

